
SPECIAL SECTION ON GREEN INTERNET OF THINGS

Received March 16, 2020, accepted March 31, 2020, date of publication April 14, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987977

Flow-Aware Elephant Flow Detection for
Software-Defined Networks

MOSAB HAMDAN 1, BUSHRA MOHAMMED 1, USMAN HUMAYUN 1,
AHMED ABDELAZIZ 2, SULEMAN KHAN 3, M. AKHTAR ALI 3,
MUHAMMAD IMRAN 4, (Member, IEEE), AND M. N. MARSONO 1, (Member, IEEE)
1Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2Faculty of Computer Science, Future University, Khartoum 11115, Sudan
3Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
4College of Applied Computer Science, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding authors: Mosab Hamdan (engmosab.hamdan@gmail.com) and M. N. Marsono (mnadzir@utm.my)

ABSTRACT Software-defined networking (SDN) separates the network control plane from the packet

forwarding plane, which provides comprehensive network-state visibility for better network management

and resilience. Traffic classification, particularly for elephant flow detection, can lead to improved flow

control and resource provisioning in SDN networks. Existing elephant flow detection techniques use pre-set

thresholds that cannot scale with the changes in the traffic concept and distribution. This paper proposes

a flow-aware elephant flow detection applied to SDN. The proposed technique employs two classifiers,

each respectively on SDN switches and controller, to achieve accurate elephant flow detection efficiently.

Moreover, this technique allows sharing the elephant flow classification tasks between the controller and

switches. Hence, most mice flows can be filtered in the switches, thus avoiding the need to send large

numbers of classification requests and signaling messages to the controller. Experimental findings reveal

that the proposed technique outperforms contemporary methods in terms of the running time, accuracy,

F-measure, and recall.

INDEX TERMS Software-defined networking, flow classification, elephant flow detection.

I. INTRODUCTION

Software-defined networking (SDN) [1] has generated signif-

icant interest in industry and academia in recent years. The

most crucial advantage of SDN is the opportunity to provide

intelligence in computer networks. SDN capabilities include

dynamic updates of the forwarding rules, software-based

traffic analysis, and a logically centralized control network

with a global view. These features allow the possible adoption

of machine learning in network management [2]. However,

the continuous growth of data traffic in terms of volume,

velocity, and variety has made network traffic engineering

a challenging task [3]. An accurate flow detection is vital

for establishing appropriate forwarding strategies for various

flow types, particularly for elephant flows (EFs) in an SDN

environment.

Recent measurements conducted in data center net-

works [4], [5] have shown that 80% of the total flows take

The associate editor coordinating the review of this manuscript and

approving it for publication was Haris Pervaiz .

less than a few milliseconds and are less than 10 KB in

size (i.e., mice flows, MFs), and that the majority of the

traffic volume is accounted for by the top 10% of large

flows (i.e., EFs). Any traffic that exceeds a certain threshold

per unit time (e.g., 1 MBps) is often considered also an

EF [6]. Given the high rate of EFs in network traffic, their

effective control and rerouting can potentially improve the

SDN network throughput [7]. By contrast, the competition

for resources between MFs and EFs makes MFs to receive

insufficient bandwidth [8]. Hence, EF detection [9] is an

essential aspect of network traffic classification. The SDN

controller does not need to process all flows, as the controller

only needs to consider those EFs that severely impact the

network performance when performing traffic management.

If they are not efficientlymanaged, the network buffers can be

filled with EFs, thereby leading to queuing delays and packet

drops. Thus, EF detection is essential to easing network con-

gestion [10].

Several EF detection techniques [6], [7], [11]–[20] have

been previously proposed. However, these techniques are

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 72585

https://orcid.org/0000-0002-1008-3028
https://orcid.org/0000-0002-8442-4956
https://orcid.org/0000-0001-9254-5961
https://orcid.org/0000-0002-3685-5997
https://orcid.org/0000-0002-5725-6184
https://orcid.org/0000-0002-4334-0625
https://orcid.org/0000-0002-6946-2591
https://orcid.org/0000-0002-7468-7461
https://orcid.org/0000-0002-8364-4682

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

preconfigured with fixed flow size thresholds in the switch,

which can result in high rates of false positive and false neg-

atives. Moreover, some methods require periodic extraction

of the flow statistics (e.g., [6], [7], [16], [17]) or sampling

packets (e.g., [11]–[15]) from SDN switches, result in a long

flow detection latency and heavy controller-switch signalling

overhead. Some other techniques require either important

modifications in the switch hardware (e.g., [18]) or applying

end-host inference (e.g., [19], [20]), which make adoption in

existing SDN difficult to achieve.

By considering limitations as mentioned earlier, several

improved EF detection techniques have been

proposed [21]–[24]. However, these techniques are weakened

by a slow convergence for several reasons, including the

switch-controller interaction which requires a high band-

width and long detection time. The thresholds of existing

detection approaches are usually preconfigured without any

consideration of the changing traffic load or distribution in the

SDN networks, which may cause a high false detection. Flow

detection in SDN also requires accurate real-time detection.

Flow detection techniques based on statistical thresholds can

operate in real-time but with a lower accuracy, and at the

same time increasing the controller workload. This problem

requires a careful trade-off balancing. When performing an

SDN flow prediction, a failure to detect an EF can have

more severe consequences than that for misdetection an MF.

To further improve the accuracy of EF detection, the flow

characteristics must be fully considered.

This paper presents a flow-aware EF detection technique

for SDN. The proposed technique employs a pair of classi-

fiers that run in tandem on the SDN switches and the con-

troller, respectively, to share the tasks of classifying the EFs.

Hence, most MFs can be filtered in the switches, and a large

number of classification requests and signaling messages can

be avoided at the controller. Our solution provides a good

trade-off between the overall accuracy and the controller

loads, which is critical for real-time traffic flow manage-

ment. Several experiments have also been conducted on real

datasets tomeasure the improvement in the controller running

time, accuracy, F-measure, and recall. The key contributions

of this paper are as follows.

• Proposing a flow-aware EF detection technique for SDN

that can identify real-time EFs with low timing overhead

and high detection accuracy, recall, and F-measure.

• Proposing a switch-side count-min (CM) sketch data

stream structure used to filter MFs with commodity

OpenvSwitch software. Moreover, the OpenFlow pro-

tocol is enhanced with extended signalling messages to

handle the CM sketch data processing between switches

and the controller side classifiers.

• Evaluating the performance of the classifiers in real-time

for EF detection using real traces from the Internet and

a data center in a Mininet simulation environment. The

performance results show that our proposed technique

can significantly improve the running time, accuracy,

recall, and F-measure.

FIGURE 1. SDN architecture.

The reminder of this paper is organized as follows.

A review of previous related studies is presented in Section II.

Section III describes the framework design of the proposed

EF detection technique. An evaluation of the results and a

relevant discussion are detailed out in Section IV. Finally,

Section V provides some concluding remarks regarding this

research and areas of potential future study.

II. BACKGROUND AND RELATED WORK

A. SDN BACKGROUND

The SDN architecture characteristically abstracts the con-

troller and data planes as separate entities, as illustrated

in Figure 1. Programmability is the key characteristic of an

SDN architecture allowing users to develop their customized

applications. Using advanced policy applications and services

and programmable application program interfaces (APIs)

provided by the north-bound interface, users can develop

applications of their choice at the application layer. In addi-

tion, the south-bound interface offers a standard API, such

that the SDN controller communicates with two interfaces,

including the south-bound and north-bound interfaces using

the OpenFlow protocol [25], [26].

The SDN controller acts as a network operating system

that views the network topology state comprehensively and

manages OpenFlow switches through a secure communi-

cation channel [28]. Its responsibilities include managing

and controlling how the switches process flows through the

entries in the flow tables. Several variations of SDN (com-

patible) controllers have been developed, including the NOX

controller [29], Ryu controller [30], and Floodlight con-

troller [31]. Centralized control in SDN provides an archi-

tectural basis for open network programmability.

By providing a programmable interface for upper-level

applications, the control plane can implement complex

management functions such as EF detection strategies,

load-balancing switches, and global monitoring of the net-

work and its changing needs. OpenFlow switches forward

messages based on the flow entry and various counters

72586 VOLUME 8, 2020

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

defined for maintaining the traffic size or matching the num-

ber of data packets. These counters greatly simplify the

collection of traffic statistics for EF traffic detection. The

current factual south-bound protocol OpenFlow provides

numerous control and monitoring mechanisms, which can

flexibly implement flow management effectively and effi-

ciently. With these features, EF detection in SDN has been

rapidly advanced [9], [32].

B. OVERVIEW OF GENERIC FLOW CONTROL SCHEMES

FOR DIFFERENT APPLICATIONS

A mechanism for controlling the flow of data between a pair

of nodes is known as flow control. This is achieved by adjust-

ing the transmission and receiving rates of the data. However,

to bolster the quality-of-service (QoS) of the network with

an improved quality-of-experience (QoE) for users, there is

a need for an efficient traffic control strategy to cater for the

ever-increasing traffic bandwidth [33].

The decision-making mechanism applied in the SDN

architecture is the controller, which controls the func-

tions for all flows within the entire SDN network [34].

Broadly, the flow control modes can be categorized into

the coarse-grained [35], and fine-grained [36] controls. Sev-

eral SDN-based flow control techniques have been proposed

to further improve flow control. For example, in terms of

traffic classification, Wang et al. [37] dealt with the traffic

of unknown applications within the SDN by employing a

semi-supervised machine learning approach in the classifi-

cation of the QoS. The engine was able to run in real-time

because only the first several packets of every flow were con-

sidered for feature extraction. Periodic polling for EF detec-

tion was also suggested in [7], which operates by extracting

the per-flow statistics from its edge switches.

C. RELATED WORKS

The current EF detection techniques used in SDN fall into

two main categories according to the detecting location:

(i) switch-based detection and (ii) host-based detection.

1) SWITCH BASED DETECTION

A real-time EF detection system was proposed in [21]. The

proposed method is comprised of two stages according to

the statistical thresholding of the flow stream features. The

first stage is to detect suspected EFs based on the statistical

thresholds of multiple flows. The second stage is to identify

EFs from the suspected EF set based on the features from

the first few packets, which can offer timely and accurate

flow classification. In addition, this approach employs a

cost-sensitive learning approach using a C4.5 decision tree

for real-time EF detection and the flow metric measurement.

Chao et al. [23] presented an EF detection method based on

a classification called FlowSeer. FlowSeer uses the features

of the first five packets of a traffic flow to detect the EF.

In FlowSeer, two classifiers are executed, one on the switch

and the other on the controller. The switch-side classifier

acts as a filter to remove most of the MFs, whereas the

controller-side classifier verifies whether the EFs classified

by the switch are genuine.

An EF prediction-mechanism was reported [24] for data

center networks to address the characteristic traffic demands

within the network. This approach seeks to reduce the over-

head associated with the switch-to-controller communication

by forecasting the EFs and adapting their routing policies in

response to the ever-changing conditional demands on the

network. However, this study has some scalability limita-

tions when connecting to large-scale networks that are more

complex and dynamic, such as multi-tenant cloud networks,

large virtualized data centers, and Internet-of-Things (IoT).

Huang et al. [22] proposed the arrangement of a pair of clas-

sifiers that respectively run on the controller and switch. Due

to a limited switch computing power, only rules and decision

trees classifiers can be used on the switch side. The controller,

coupled with the switch-side classifier, accordingly rewrites

the classifier rules and updates the switch flow table.

All approaches mentioned above can reduce the commu-

nication between the switches and the controller by keep-

ing the frequency of transferring EFs statistics for flow

setups to become minimal. Furthermore, by reducing the

switch-controller communication, the workloads of both the

controller and the network, which are the inherent over-

head in the implementation of flow-based networking, can

be reduced. In addition to fixing the threshold value, the

EF detection on switches also requires modifying the switch

hardware. Otherwise, the high detection accuracy of the

EF detection system will be at the expense of a high network

overhead, i.e., switch-controller to detect EF. Moreover, due

to these limitations, achieving a balance among the accuracy,

timeliness, and cost becomes difficult.

2) HOST-BASED DETECTION

Considering the scalability and timeliness of EF detection,

the Mahout architecture [19] deploys a kernel patch in the

terminal host to monitor the traffic statistics generated by

the host and detect the EFs based on the pre-supposed

EF threshold. To reduce the communication overhead,

Mahout informs the controller regarding the EF and pre-

scribes an in-band mechanism. Specifically, Mahout uses

the differentiated service field of the IP header to mark the

elephant stream. When the marked elephant stream reaches

the switch, the switch forwards the corresponding packet

towards the controller based on the default flow entry. Like

Mahout, MicroTE [38] can conduct an analysis of all the

network traffic.

By designating the monitoring end-host in each top-of-

rack switch, the network traffic is collected, aggregated, and

reported to the controller in time. However, due to the invis-

ibility of network traffic generated by the virtual machines

in the end-host, virtual traffic monitoring cannot be realized

by simply deploying a kernel patch. Based on the monitor-

ing tools such as VSFlow and NetFlow supported by OVS,

EMC2 [20] recommends using a hypervisor deployed on

the end hosts to collect the traffic statistics. However, the

VOLUME 8, 2020 72587

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

FIGURE 2. Proposed EF detection technique.

collected data needs to be sent to the centralized flow collec-

tor for further analysis, which may also result in an overhead

of the monitoring traffic.

III. PROPOSED SWITCH-CONTROLLER FOR EF

DETECTION

Elephant traffic detection in SDN must be fast, lightweight,

and non-intrusive (i.e., its impact on the control plane should

be minimal). At the same time, the detector must be able to

accurately differentiate EFs from MFs for an effective flow

migration based on a specific cost argument.

The EF detection process can be split between the con-

troller and switches. Given the limited computational power

of the switches, the classifier on the switch-side must be

lightweight and designed such that it places more emphasis

on a high recall. Therefore, the switch-side classifier can

detect most of the EFs at the expense of false detecting

some of the MFs. Meanwhile, the controller-side has more

computational power and thus uses more features. Therefore,

the classifier on the controller-side must place more empha-

sis on a higher F-measure and precision as opposed to the

emphasis on recall for the classifier on the switch-side.

Figure 2 shows an operation of the proposed technique.

When a new flow arrives, the switch-side classifier pre-filters

the MFs based on the CM sketch algorithm [39]. The con-

troller periodically trains the switch-side CM sketch model,

emphasizing an optimal recall rate, which reduces the misde-

tection of potential (i.e., candidate) EFs. The candidate EFs

are forwarded by the switch to the controller to performs

the controller-side of the process. This is more of a practical

streaming classification model using a very fast decision

tree (VFDT) classifier. Once an EF is recognized, the CM

training model is updated and converted into minimal sets of

rules, given the limited nature of the flow table size of the

switch. Figure 3 shows a flow chart of the EF detection.

The switch-side classifier is based on the CM sketch

algorithm [39]. Because switches have limited computing

power, the training of the classifier is achieved by either

the controller or an off-line server. The CM sketch reports

the state of its performance in terms of delay (i.e., buffer

load), total number of packets handled, and list of hashed

IP source-destination address pair for the EF candidates.

A CM sketch algorithm used in the switch-side provides a

quadruple of the hashed IP address, the number of packets,

the aggregated packet sizes, and the average delay, which

FIGURE 3. Flow chart of the EF detection technique.

is forwarded to the controller side. This approach also adds

to the network traffic overhead as the switch-side classifier

needs to communicate with the controller-side classifier.

The controller-side is created using a VFDT classifier

based on the study in [40]. Because it is a multi-commodity

flow problem, the tree needs to be trained using such data and

based on the EF definition. For any given flow identified by an

IP address pair, a set of alternative routes can be generated by

any routing algorithm. Using the total packet arrival metrics

from the switches, the controller predicts the network delay

after a candidate EF passes. Based on these metrics, it selects

the flow and path, which minimizes the functional cost (with

parameters consisting of the maximum network delay and the

number of hops). The selected flow and a new path are used

to create migration instructions, which are compiled and sent

to the switches.

A. SELECTION OF EF FEATURES

Before describing the EF detector architecture, we first need

to define the EF and its features from the flow statistics.

1) DEFINITION OF THE EFs

Some studies, e.g., [7], [41] define an EF based on the band-

width use over the specified limit for a specified time. The

features used to accurately describe these properties are the

72588 VOLUME 8, 2020

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

bandwidth and duration. These can be estimated based on

the number of packets arriving per time window. Because the

definition does not contain any information on the flow type,

such features do not add any additional information regarding

the flow. The time window in which the packets are captured

includes the information on the average interarrival time of

the packets.

2) SELECTION OF FEATURES FOR A FLOW CLASSIFICATION

It is highly desirable to use features that do not exhibit a cor-

relation. Most of the models perform poorly in the presence

of multicollinearity, i.e., when other variables can predict

one explanatory variable [42], [43]. In addition, redundant

variables increase the computational cost in terms of time

and storage. The packet characteristics available are flow

end-point identifiers i.e., the IP addresses and ports. The

OpenFlow protocol indicating the type of flow is often associ-

ated with the port numbers. Therefore, the protocol type and

port numbers are correlated. Similarly, properties related to

Ethernet packets and IP packets are strongly correlated and

therefore introduce multicollinearity.

In view of the load balancing flows in the data plane,

the IP address pair is usually adequate to identify the path

of the flow. Port numbers can be included to divide the

flows into smaller sub-flows. In a large flow, one sub-flow

is likely to be dominant. Because the whole flow may be

subjected to rerouting, these sub-flows give little added infor-

mation but increase the size and complexity of the imple-

mentation. An EF is also not characterized by its direction

(as per the definition).Most flows are asymmetric and usually

dominated by either uplink or downlink traffic (in terms of

bandwidth and packets). The dominant link is, by definition,

strongly correlated with the total flow. In the implementation,

the IP source and destination addresses are hashed to form

a flow identifier. The hash value is symmetric for the two

IP addresses, and thus gives the same key regardless of

direction. The distinction between the up-link and down-link

packets double the number of flows and make the estimation

computationally more expensive. Because only the dominant

flows are of our interest, there is no reason to make this

distinction.

Each additional feature increases the cost of the traffic

classification (i.e., time and space) to both the switches and

controller while maximizing the orthogonality when choos-

ing the classification feature set. Thus, the feature set used for

detection of the EF in an SDN environment has the following

two attributes.
1) It is easy to extract using commodity OpenFlow

switches. These features include the packet inter-arrival

time, IP address and port number, packet size per flow,

max and mean packet size, flow duration, and other

flow statistics [44].

2) It is set up for a fast detection before a flow is con-

cluded. For example, some features such as the frame

length can only be obtained after the flow is concluded,

thus failing to meet our needs for fast EF classification.

Therefore, we only consider the flow feature sets col-

lected by inspecting the IP header. The flow contains the

same five-tuple IP packets {protocol, src_port, dst_ip, src_ip,

dst_port} with each flow distinguishable by statistical fea-

tures such as the IP source and destination addresses, frame

length, and average round trip time of a TCP Stream

(TCP.analysis.ack_RTT) [44].

B. SWITCH-SIDE EF DETECTION

On the switch side, we use a CM sketch [39] to detect EF

(heavy hitter) candidates. This method is fast and lightweight.

As the CM sketch uses hashed IP address pairs, the IP address

pair for the EFs also must be retrieved. The switch does not

store or count the total number of flows, only the IP addresses.

This sampling can be conducted at a relatively high fre-

quency. After each sampling period, the result is stored in

a data structure containing EFs and all packets. The arrival

process vectors (containing the EF, and total flows), the flow

identifiers (IP address pairs) of the EFs, and the buffer load

data are sent to the controller. We next describe how the

CM sketch technique works.

C. THE CM SKETCH

The CM or the Cormode-Muthukrishnan sketch is a data

type suitable for counting frequencies, which is the frequency

of arriving packets associated with a particular flow [39].

An end-to-end flow from a network perspective is defined

by an IP address pair (source and destination IP addresses).

A hash function of the IP address pair is used as an identifier

in the sketch. For this purpose, it is convenient to use the

IP range function in the Python package iptools. The hash

is generated by the following:

h = iptools.IPRange (ipsrc, ipdst)

iphash = h.__hash__()

The first step in the CM sketch algorithm for finding

EFs can now be formulated as finding the heavy hitters

in the sketch, which are high-frequency flows among all

available flows. The heavy hitter problem can be formu-

lated as a sequence of point queries to the sketch, which

returns an approximate frequency related to the index,

which is the hashed pair of IP addresses. For this estima-

tion, the approximation factor ǫ and failure probability δ

are set at the sketch initialization, such that the estimate

υ̂i of the true frequency υi of index i can be presented

as Equation (1):

υ̂i ≤ υi + ǫ‖υ‖1 (1)

with probability 1 − δ, and where
f
υ

f
1 = 6m

k=1υk is the

L1-norm. The L1-norm is essentially unknown initially, and

thus the approximation factor is treated as a fraction relative

to the number of packets arriving in the switch. To initiate

the sketch, the values of ǫ and δ determine the size, which

is the width ω and depth d of the sketch as indicated in

VOLUME 8, 2020 72589

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

FIGURE 4. CM sketch data structure with ω = 9 and d = 4 [39].

Equations (2) and (3), respectively:

ω =
[e

ǫ

]

(2)

d =
[

ln δ−1
]

(3)

The natural base e that can be chosen freely for all e > 1.

The width and depth determine the size of the sketch, which

isω×d words. This is illustrated in Figure 4, where each item

i is mapped to one entry in each row j by the hash function hj,

and when an update of ct to item it arrives, ct is incremented

for entry. The cost of such an update is only related to the

depth d of the matrix.

The sketch uses a second hash function to reduce the

required space of the sketch. Therefore, the index key is

further hashed to fit into the sketch width ω. Given a prime

number p ≥ ω, the hash function can be chosen using

Equation (4):

h(x) = ((ax + b) mod p) mod ω (4)

where a ∈ {1, . . . , p− 1} and b ∈ {0, . . . , p} are known as

the c-universal family of hash functions [45].

Since collisions are unavoidable when using a small space

to represent a much larger range of values (i.e., the hash of

the IP addresses), it follows that υ̂i ≥ υi for all i. The depth

d of the sketch is made up of d instances using different

hash functions, and taking the minimum over d instances

to give the value υ̂i closest to υi. The hashed IP addresses

cannot be retrieved because collisions occur. It is of interest

to capture other features related to the flows identified by

high-frequency arrivals, i.e., the packet length and round-trip

time, representing the delay. For this purpose, two additional

sketches using the same hash functions as the frequency

counting sketch are initiated to aggregate the packet lengths

and round-trip times, respectively.

As shown in Algorithm 1, by letting the sketches run

for the chosen capture time interval of τ , the frequency is

estimated by the frequency sketch. Because the IP addresses

of the hash cannot be reconstructed, the heavy hitters are

found by point queries to the sketch by taking the hash of

the source and destination IP addresses. When the estimated

frequency exceeds a set fraction φ of the L1-norm ‖ υ ‖1,

the IP address pairs are saved together with the minimum

of d (the frequency estimates corresponding to their hash

value). For the additional features, the maximum values in the

d arrays are used, rather than the minimum to ensures that the

worst possible characteristics are captured.

Algorithm 1 Extended CM Sketch

Given : Parameters ǫ, δ, τ and φ and a packet capture

stream P.

Let : I = Ø be the set of unique IP address pairs.

Initialize: Initiate the three sketches Sf , Stand Sd for

frequency, throughput and delay respectively,

with ω =
[

e
ǫ

]

, d = [ln δ−1], and determine

the prime p.

Output : The k heavy hitters represented by the source

IP, destination IP, frequency (number of

packets), throughput (sum of the packet

lengths), and average RTT ACK (delay).

1 Generate hash functions (a, b, ω, p) according to Eq. (4)

and set time t = 0;

2 while t < τ do

3 for each incoming packet in P do

4 Save IP address in I indexed by its hash function

value;

5 Update Sf , St , and Sd using the same hash

defined initially;

6 end

7 Update t with a timestamp;

8 end

9 if t ≥ τ then

10 for all IP address pairs in I , query Sf with the

corresponding hash function (a, b, ω, p)
11 end

12 else if υ̂i > φ
f
υ

f
1 then

13 Save the IP address pair and υ̂i into the same hash;

14 Query St and Sd ;

15 Reset t= 0;

16 end

The output from the sketch is a set of relatively

high-frequency flows (a large number of packets per time

unit). However, an EF is typically defined as a flow with a

large throughput for a specific duration of time. The sketch

records the estimated performance and delay, the latter is a

likely effect of such a flow, but does not consider these param-

eters when filtering out the flows. By using these sketches on

short time intervals, aggregation makes it possible to estimate

the frequency (i.e., the time aspects of the flow). After each

time interval, the extracted candidate EF data are sent to

the controller-side, and the sketches are reset for the next

aggregation interval.

D. CONTROLLER-SIDE EF DETECTION

The VFDT is a stream-based data mining classification algo-

rithm that incrementally builds it model as a tree by the

division of nodes into a pair of streams of incoming data.

The tree expands incrementally as more data arrives. There-

fore, the candidate EF data are fed into the VFDT for flow

classification based on the aggregated attributes. The VFDT

is a suitable method because the classification tree is binary.

72590 VOLUME 8, 2020

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

FIGURE 5. A flowchart representing the VFDT algorithm tree [46].

As with a sketch, the VFDT reads each candidate EF data

point x only once and does not require the input data to be

stored [40].

In the decision tree, each node represents an implemen-

tation of a logical test on a feature from the features of x.

At the same time, each leaf indicates a classification from

which an appropriate label y is assigned to the incoming

data point x as y = VFDT(x). The learning process of the

tree is achieved through a successive replacement of each

leaf with a node, starting from the root. The Hoeffding tree

(HT) [40] algorithm uses the Hoeffding bound (HB) to train

the model using the smallest possible number of training

samples. The VFDT is made of key elements that include

i) an initialization process of a tree beginning with a single

leaf, and ii) a growth process of a tree where a repeated

splitting check is heuristically carried out using the HB and an

evaluation function G(.). Information gain is used in VFDT

to representG(.). Figure 5 shows the flow of operations in the

VFDT algorithm [46].

The HB is the basis of the VFDT, where for a given

sequence of independent random variables 0≤Xi≤R bounded

within the range R, the probability of the sample mean X̄ =
1
n
(X1+X2+· · ·+Xn) deviating from its expectation E(X̄) by a

positive constant ǫ is related to the sample size n as indicated

in Equation (5):

P(X̄❂E(X̄)≥ǫ) ≤ exp(❂2nǫ2) (5)

The HB states that, by consideration of n independent obser-

vations of a random variable with sample mean r̄ and δ

pre-defined tolerable estimation error, with probability 1❂δ,

the true mean of the variable is at least r̄ − ǫ, where

ǫ =

√

R2 ln(1/δ)

2n
(6)

The VFDT uses the HB to select the attribute to split as a

decision node. Let xa and xb be the attributes with the highest

and second-highest G(.) respectively and ∆G = G(xa) −

G(xb) > 0 be their difference. If △G > ε with N as the

number of observed samples in the leaf, and 1 − δ as the

probability of xa being the highest value attribute inG(.) given

by HB the leaf is then converted into a decision node splits on

xa. The HB is not dependent on the distribution of Xi, which is

extremely convenient because the distributions of the traffic

features are complex and vary with the application.

The HT algorithm aims to guarantee that the selected

attribute with high probability and n examples is the same

as that selected when using a significantly large number of

examples. One major characteristic of the HT algorithm lies

in the possibility of guaranteeing the construction of a tree

that is asymptotically and arbitrarily comparable to the prod-

uct of a batch learner. During each step, the attribute with the

highest information gain is chosen as the test attribute. As the

error ǫ decreases with increasing n, the difference in gain

of the two attributes with the highest information decreases.

When this difference falls below ǫ, the node is split, and

testing on the attribute with the next highest information

yields new leaves [40].

In the VFDT, the training sequence uses the EF definition

based on the limits in throughput and duration, scaled to

the time window used for aggregation as conducted by the

CM-sketch. The maximum size of the tree is 2h+1
❂1, where

h stands for the tree height, which equals the number of

attributes. The VFDT thus produces a flow classification that

can be used for processing and rerouting.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup, results and in-depth discussion of our

proposed methods are presented in this section. We also com-

pare our findings with other contemporary methods found in

the literature.

A. EXPERIMENT SETUP

The simulation was designed based on machine learning

using Python socket programming APIs. The actual hardware

used for the simulation included a Dell Inspiron laptop with a

3.20 GHz Intel i5-4570 CPU and 8 GB of RAM. In addition,

Virtual Box was used as the virtual environment for loading

a Mininet image. An SDN Hub 64-bit tutorial VM image

is used to create a VM in Virtual Box with 4GB of RAM

and a 20GB Hard drive. The Mininet image is a modified

Ubuntu platform with a range of pre-installed and precon-

figured network tools that include a Mininet simulation [47],

and OpenvSwitch [48]. The Ryu controller [30] is installed

and used as part of the SDN controllers for managing the

OpenFlow compatible switches.

VOLUME 8, 2020 72591

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

FIGURE 6. Experimental setup of the EF detection framework.

The three main steps applied in our experiment are shown

in Figure 6. First, the data are divided into training and testing

sets. Second, the training dataset is initially classified such

that it can handle diverse varieties of traffic before given

to the framework switches/controller sides to identify the

correct attributes. Third, we train our CM sketch algorithm

and VFDT classifiers to differentiate between EF and MF

traffic, respectively. The performance of the proposed system

is evaluated based on certain evaluation metrics.

1) DATASETS

We evaluate the proposed EF detection method on three

different real network traffic datasets MAWI [49], UNI1 [49],

and UNI2 [49]. The MAWI dataset (from April 9 to April 20,

2016) was obtained from a world-wide trace. The dataset

comes from the daily tracking of trans-Pacific lines (the link

was upgraded from 100 Mbps to 1 Gbps with a 150 Mbps

committed access rate (CAR)). It has numerous stochastic

factors, which makes the traffic classification more chal-

lenging. For this dataset, we select extensive flows as the

significant flows because they dominate Internet traffic. This

approach is used in our simulation for the measurement of the

EF detection technique. A threshold of 10 MB/sec is set for

the EF in this experiment [23]. In reality, the number of MFs

is usually larger than the number of EFs. Thus, the MAWI

dataset has approximately 10% - 20% EFs. The UNI1 and

UNI2 datasets were captured from data centers studied in

IMC 2010 [5]. EFs constitute ratios of approximately 2.5%

and 5% in the UNI1 and UNI2 datasets, respectively.

2) EVALUATION METRICS

The performance metrics for the two-step flow classification

method are the precision, accuracy, recall, F-measure, and

running time. These metrics are all calculated from a con-

fusion matrix.

In the confusion matrix, the true positive (TP) represents

the number of actual positive records that are correctly clas-

sified. By contrast, the true negatives (TN) is the number

of actual negative records correctly classified. In addition,

the false positives (FP) is the number of misclassified neg-

ative records whereas the false negatives (FN) is the number

of misclassified positive records.

1) The accuracy Acc is defined as the percentage of

instances of the correct classification within the total

number of instances.

Acc =
TP+ TN

TP+ FP+ TN + FN
(7)

2) The precision P is the total number of true positives

divided by the sum of the false and true positives. The

higher P reflects the lower number of false positives.

P =
TP

TP+ FP
(8)

3) The recall R is the number of true positives divided by

the sum of the false negatives and true positives. A high

R-value is desired.

R =
TP

TP+ FN
(9)

4) The F-measure is the harmonic mean of P and R, which

has found widespread use in information retrieval

and other supervised machine learning tasks. We also

define high F values, as shown in Equation (10).

F =
2P " R
P+ R

(10)

5) The running time Trun is the time taken to run a single

experiment from start Tstart to finish Tfinish.

Trun = Tstart − Tfinish (11)

B. EXPERIMENTAL RESULTS OF THE SWITCH-SIDE EF

DETECTION

In this subsection, we compare a CM sketch method with

C4.5 in terms of the accuracy, precision, recall, F-measure,

and running time.We then discuss the trade-off of CM sketch.

1) CM PERFORMANCE COMPARISON

Table 1 compares the results of the CM sketch [39] and work

proposed in [50] on the MAWI dataset. Hence, the results

show that the CM sketch method outperforms C4.5 by eight

times faster in terms of running time. Moreover, a values

of P = 1 indicates zero false positives and an R of up to

90%. Our method performs better than the C4.5 method in

terms of accuracy by up to 2.67%. The improved accuracy

is because the estimated sum of the flow used by CM sketch

is the hashed buckets with the smallest counter value. It can

be determined whether a flow is a heavy hitter by checking

whether its estimated sum falls below a certain threshold. The

absolute change of flowover two epochs can be similarly used

to verify whether a flow is a heavy hitter.

Moreover, our proposed switch-side CM sketch prefilter

is real-time and has low-overhead. The primary rationale

behind the proposed technique is to ensure the switches and

the controller work together in sharing the EF classification

task such that the majority of the MFs are filtered out by

the CM sketch on switches, and the number of classification

requests to the controller are significantly reduced. Table 2

demonstrates how our proposed flow detection method is

different from other similar techniques.

72592 VOLUME 8, 2020

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

TABLE 1. Performance evaluation of switch-side classifiers.

TABLE 2. EF detection techniques in SDN.

2) SKETCH TRADE-OFF

CM sketch uses a hash function to count the frequency in

a sub-linear space and store the number of occurrences in a

stream into a d × w matrix. These parameters determine the

trade-off between the accuracy and space/time constraints.

Each row has an associated hash function. An arriving ele-

ment is hashed, and its corresponding row is incremented

by 1. Furthermore, the CM sketch solution might be lightly

slower by waiting until the CM sketch has collected an ade-

quate number of packets to form an aggregate to send to the

controller side. This time overhead is noticeable if packets

arrive at extremely irregular intervals.

C. EXPERIMENTAL RESULTS OF THE CONTROLLER-SIDE

EF DETECTION

In this subsection, we present the results of a set of exper-

iments conducted to validate the performance of our pro-

posed method. First, we present the performance of the

controller-side EF detection for the SDN network. We then

compare it with othermethods in terms of accuracy, precision,

recall, F-measure, and running time.

1) CLASSIFICATION ACCURACY

Accuracy is one of the essential classifiers metrics. To eval-

uate the influence of our EF detection method, we tested

its classification accuracy with several training data sizes

ranging from 10,000 to 50,000 on the MAWI dataset.

Figure 7 shows the accuracy of our purposed classification

for various training sizes. We observed that our EF detection

method on the controller-side achieves a higher accuracy

than the existing EEFD method [21] by up to 0.7%, and the

classification-based EDMAR [22] by up to 0.5%.

Figures 8(a) and 8(b) illustrate the precision and recall of

our method compared to EDMAR [22], FlowSeer [23], and

the Bayes network (BayesNet) [51]. Our method performs

better in terms of accuracy, precision, and recall because

the controller-side classifier becomes more accurate with

an increase in the number of features used. Furthermore,

FIGURE 7. Accuracy with different numbers of flows.

FIGURE 8. (a) Precision rate and (b) recall rate comparison with different
methods.

improvement in metrics is slightly due to the efficiency of the

algorithm, early detection, and proper selection of features

from accessible commodity switch features.

In our experiments, the EF detection applied to SDN

achieves a recall rate of up to 98.3%. This high recall rate

suggests that our method can detect most EFs, and only a few

VOLUME 8, 2020 72593

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

TABLE 3. Overall performance comparison with existing EF detection methods using MAWI dataset, UNI1 dataset and UNI2 dataset.

FIGURE 9. F-measure value comparison with different methods.

MFs aremisidentified as EFs. A comparison of the F-measure

between our method and other existing methods is shown

in Figure 9. It can be observed that the F-measure of our

method is over 96.1%, a significant improvement over the

other methods.

2) VFDT PERFORMANCE COMPARISON

In terms of the amount of times required by different methods

to detect EFs in SDN, our proposed method can detect EFs

within the shortest time among the four methods (see Fig-

ure 10). Furthermore, our method takes less than a second to

detect 10,000 flows, which is adequate to filter and detect EFs

in the SDN network. The results show that the controller-side

classifier function can achieve a better running time as it is

lightweight as it does not store any dataset points in memory,

making it ideal for the detection of EFs on the controller side.

The decision tree model can be slowly built from scratch,

which helps to detect EF at any point. Whenever a new

data section arrives, the testing and training phase is carried

out to keep the data stored up-to-date. It does not need to

read the entire dataset and instead updates the decision tree

to the latest incoming and collected statistical attributes,

thereby consuming less memory. Furthermore, the use of the

switch-side CM sketch classifier greatly minimizes flows as

MFs by about 80%, while non-MF candidates can only give

it to the controller-side by about 20%, further decreasing

the controller-side load. These features make the VFDT

FIGURE 10. Running time comparison with different methods.

a suitable candidate to introduce an autonomous decision-maker

for the detection of EFs in SDN networks.

D. CM-VFDT PERFORMANCE COMPARISON

Table 3 shows the overall performance of our proposed

method. We compared the performance of our EF detection

methodwith that of the EDMARmethod [22], FlowSeer [23],

and the EEFD method [21]. The experiments were con-

ducted on the MAWI dataset [52], UNI1 Dataset [49], and

UNI2 Dataset [49].We found that our method performs better

than the other methods in recall and precision. Moreover, our

method also performs better than other existing methods in

terms of F-measure, indicating that our approach achieves a

better balance between precision and recall. The results also

show that this study achieves a higher accuracy and better

running time.

The EF detection classifier was trained using a train-

ing flow, as described in Table 4, which summarizes the

experimental results. The table shows the ability and effi-

ciency of our method to detect EFs at the flow-level with

an extremely small FN and high TP for all tests conducted

on the switch/controller side. As the reason for these results,

the CM sketch and VFDTmethods apply traffic classification

differently. By definition, EFs are specified on flows based

on their duration and intensity (bandwidth), and the packet

data have no information regarding the flow duration. Thus,

72594 VOLUME 8, 2020

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

TABLE 4. Confusion matrix of flow-level of the MAWI dataset.

the CM sketch creates an aggregate of packets to approximate

the flow.

However, neither CM sketch nor VFDT has any long-term

memory. Hence, to identify the EF, it is necessary estimate

the duration by sampling the CM sketch and use it as an

input to the VFDT classifier. Moreover, the improved metrics

are due to the efficiency of the lightweight algorithm used

on the switch-side to filter out most of the flows unlikely

to be EFs. The experiments showed that the CM sketch

algorithm is efficient at estimating frequencies of candidate

EF with a fast update and query times, and low space usage.

Finally, the switch-side only forwards the remaining poten-

tial EFs to the controller. The use of combined CM-VFDT

greatly minimizes the classifier-side load. This technique

proves to be a suitable candidate to introduce an autonomous

decision-maker for the detection of EFs in SDN networks.

V. CONCLUSION

This paper presented a framework that can contribute to

real-time traffic flow management in SDN networks. The

proposed EF detection combines the switch-side extended

CM sketch and controller-side the VFDT classifiers to pro-

vide real-time EF detection for effective and efficient SDN

traffic flowmanagement. The CM-VFDT classifiers can con-

currently perform EF detection on commodity OpenFlow

enabled switch and SDN controller. To detect EF candidates

as heavy hitters, the fast and lightweight CM sketch classifier

is used on the switches. The sketch extension focused on

four flow features: delay (round-trip time), IP addresses,

throughput, and packet count. The experiments are imple-

mented in Mininet simulation using OpenvSwitch as OF

switch managed by Ryu controller. Real traffic datasets such

asMAWI, UNI1, and UNI2 are used tomeasure improvement

in controller running time, accuracy, F-measure, and recall.

Our experimental results show that EF detection method can

achieve up to 98.13% accuracy with a higher recall rate and

F-measure, and with better running time, which is better than

other works in the comparative study.

Our directions for futureworks include a performance eval-

uation of the proposed algorithm in a broader orchestration

context. With expansion growth of the SDN deployment in

the near future, on-line flow classification will become more

significant. Other applications that can benefit from flow

classification include intrusion detection, load balancing, and

bandwidth brokerage, for which the framework may need

adaptation to accommodate data from various sensors.

REFERENCES

[1] ‘‘Software-defined networking: The new norm for networks,’’
Open Netw. Found., ONF White Paper, 2012, vol. 2,
pp. 2–6. Accessed: Mar. 12, 2020. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

[2] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, ‘‘A survey
of machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,’’ IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 393–430, 1st Quart., 2019.

[3] S. Mallesh, ‘‘Automatic detection of elephant flows through openflow-
based openvswitch,’’ M.S. thesis, Nat. College Ireland, Dublin, Ireland,
Nov. 2017.

[4] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
‘‘The nature of data center traffic: Measurements & analysis,’’ in Proc. 9th
ACM SIGCOMM Conf. Internet Meas. Conf. (IMC), 2009, pp. 202–208.

[5] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. 10th Annu. Conf. Internet Meas. (IMC),
2010, pp. 267–280.

[6] K. Lou, Y. Yang, and C. Wang, ‘‘An elephant flow detection method based
on machine learning,’’ in Proc. 7th Int. Conf. Smart Comput. Commun.,
2019, pp. 212–220.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc. 7th
USENIX Conf. Netw. Syst. Design Implement., 2010, pp. 89–92.

[8] W. Wang, Y. Sun, K. Salamatian, and Z. Li, ‘‘Adaptive path isolation for
elephant and mice flows by exploiting path diversity in datacenters,’’ IEEE
Trans. Netw. Service Manage., vol. 13, no. 1, pp. 5–18, Mar. 2016.

[9] B. Wang and J. Su, ‘‘A survey of elephant flow detection in SDN,’’ in Proc.
6th Int. Symp. Digit. Forensic Secur. (ISDFS), Mar. 2018, pp. 1–6.

[10] Y. Tian, J. Liu, Y.-X. Lai, Z.-S. Bao, andW.-B. Zhang, ‘‘TPEFD: An SDN-
based efficient elephant flow detection method,’’ Chin. J. Netw. Inf. Secur.,
vol. 3, no. 5, pp. 70–76, 2017.

[11] C. Bi, X. Luo, T. Ye, and Y. Jin, ‘‘On precision and scalability of elephant
flow detection in data center with SDN,’’ in Proc. IEEE Globecom Work-

shops (GC Wkshps), Dec. 2013, pp. 1227–1232.
[12] M. Afaq, S. Rehman, and W.-C. Song, ‘‘Large flows detection, marking,

and mitigation based on sFlow standard in SDN,’’ J. Korea Multimedia
Soc., vol. 18, no. 2, pp. 189–198, Feb. 2015.

[13] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, ‘‘OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,’’ in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., Jun. 2014,
pp. 228–237.

[14] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff, ‘‘Sampling and
large flow detection in SDN,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 345–346, Aug. 2015.

[15] F. Tang, H. Zhang, L. T. Yang, and L. Chen, ‘‘Elephant flow detec-
tion and differentiated scheduling with efficient sampling and classi-
fication,’’ IEEE Trans. Cloud Comput., early access, Feb. 26, 2019,
doi: 10.1109/TCC.2019.2901669.

[16] C.-Y. Lin, C. Chen, J.-W. Chang, and Y. H. Chu, ‘‘Elephant flow detection
in datacenters using OpenFlow-based hierarchical statistics pulling,’’ in
Proc. IEEE Global Commun. Conf., Dec. 2014, pp. 2264–2269.

[17] W. Liu, W. Qu, Z. Liu, K. Li, and J. Gong, ‘‘Identifying elephant flows
using a reversible MultiLayer hashed counting Bloom filter,’’ in Proc.

IEEE 14th Int. Conf. High Perform. Comput. Commun. IEEE 9th Int. Conf.

Embedded Softw. Syst., Jun. 2012, pp. 246–253.
[18] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-
performance networks,’’ Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[19] A. R. Curtis, W. Kim, and P. Yalagandula, ‘‘Mahout: Low-overhead dat-
acenter traffic management using end-host-based elephant detection,’’ in
Proc. IEEE INFOCOM, Apr. 2011, pp. 1629–1637.

[20] V. Mann, A. Vishnoi, and S. Bidkar, ‘‘Living on the edge: Monitoring
network flows at the edge in cloud data centers,’’ in Proc. 5th Int. Conf.
Commun. Syst. Netw. (COMSNETS), Jan. 2013, pp. 1–9.

[21] P. Xiao, W. Qu, H. Qi, Y. Xu, and Z. Li, ‘‘An efficient elephant flow
detection with cost-sensitive in SDN,’’ in Proc. 1st Int. Conf. Ind. Netw.
Intell. Syst., 2015, pp. 24–28.

[22] Y.-H. Huang, W.-Y. Shih, and J.-L. Huang, ‘‘A classification-based ele-
phant flow detection method using application round on SDN environ-
ments,’’ in Proc. 19th Asia–Pacific Netw. Operations Manage. Symp.

(APNOMS), Sep. 2017, pp. 231–234.

VOLUME 8, 2020 72595

http://dx.doi.org/10.1109/TCC.2019.2901669

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

[23] S.-C. Chao, K. C.-J. Lin, and M.-S. Chen, ‘‘Flow classification for
software-defined data centers using stream mining,’’ IEEE Trans. Services
Comput., vol. 12, no. 1, pp. 105–116, Jan. 2019.

[24] Z. Liu, D. Gao, Y. Liu, H. Zhang, and C. H. Foh, ‘‘An adaptive approach
for elephant flow detection with the rapidly changing traffic in data center
network,’’ Int. J. Netw. Manage., vol. 27, no. 6, Nov. 2017, Art. no. e1987.

[25] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, ‘‘A roadmap for
traffic engineering in SDN-OpenFlow networks,’’ Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[27] M. P. Singh and A. Bhandari, ‘‘New-flow based DDoS attacks in SDN:
Taxonomy, rationales, and research challenges,’’ Comput. Commun.,
vol. 154, pp. 509–527, Mar. 2020.

[28] S. Clayman, L. Mamatas, and A. Galis, ‘‘Efficient management solutions
for software-defined infrastructures,’’ in Proc. NOMS - IEEE/IFIP Netw.

Operations Manage. Symp., Apr. 2016, pp. 1291–1296.

[29] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
‘‘On controller performance in software-defined networks,’’ in Proc. 2nd
USENIX Workshop Hot Topics Manage. Internet, Cloud, Enterprise Netw.

Services, 2012, pp. 1–6.

[30] Ryu Controller. Accessed: Jun. 1, 2018. [Online]. Available: http://osrg.
github.com/ryu/

[31] Floodlight Controller. Accessed: Mar. 2 2018. [Online]. Available: http://
floodlight.openflowhub.org/

[32] I. I. Awan, N. Shah, M. Imran, M. Shoaib, and N. Saeed, ‘‘An improved
mechanism for flow rule installation in in-band SDN,’’ J. Syst. Archit.,
vol. 96, pp. 32–51, Mar. 2019.

[33] A. Jindal, G. S. Aujla, N. Kumar, R. Chaudhary, M. S. Obaidat, and I. You,
‘‘SeDaTiVe: SDN-enabled deep learning architecture for network traffic
control in vehicular cyber-physical systems,’’ IEEE Netw., vol. 32, no. 6,
pp. 66–73, Nov. 2018.

[34] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, ‘‘Minimizing
controller response time through flow redirecting in SDNs,’’ IEEE/ACM
Trans. Netw., vol. 26, no. 1, pp. 562–575, Feb. 2018.

[35] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, ‘‘Optical
service chaining for network function virtualization,’’ IEEE Commun.

Mag., vol. 53, no. 4, pp. 152–158, Apr. 2015.

[36] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
‘‘Application-awareness in SDN,’’ ACM SIGCOMM Comput. Commun.

Rev., vol. 43, no. 4, pp. 487–488, Sep. 2013.

[37] P. Wang, S.-C. Lin, and M. Luo, ‘‘A framework for QoS-aware traffic
classification using semi-supervised machine learning in SDNs,’’ in Proc.
IEEE Int. Conf. Services Comput. (SCC), Jun. 2016, pp. 760–765.

[38] T. Benson, A. Anand, A. Akella, and M. Zhang, ‘‘MicroTE: Fine grained
traffic engineering for data centers,’’ in Proc. 7th Conf. Emerg. Netw.

EXperiments Technol. (CoNEXT), 2011, pp. 1–8.

[39] G. Cormode and S. Muthukrishnan, ‘‘An improved data stream summary:
The count-min sketch and its applications,’’ J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[40] P. Domingos and G. Hulten, ‘‘Mining high-speed data streams,’’ in Proc.
6th ACM SIGKDD Int. Conf. Knowl. Discovery DataMining (KDD), 2000,
pp. 71–80.

[41] K. Xi, Y. Liu, and H. J. Chao, ‘‘Enabling flow-based routing control in data
center networks using probe and ECMP,’’ in Proc. IEEE Conf. Comput.

Commun. Workshops (INFOCOM WKSHPS), Apr. 2011, pp. 608–613.

[42] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for Internet
traffic classification using machine learning,’’ IEEE Commun. Surveys

Tuts., vol. 10, no. 4, pp. 56–76, 2008.

[43] B. Ghojogh, M. N. Samad, S. Asif Mashhadi, T. Kapoor, W. Ali, F. Karray,
and M. Crowley, ‘‘Feature selection and feature extraction in pattern anal-
ysis: A literature review,’’ 2019, arXiv:1905.02845. [Online]. Available:
http://arxiv.org/abs/1905.02845

[44] OpenFlow V1.4. Accessed: Jan. 6, 2018. [Online]. Available:
https://www.opennetworking.org/

[45] J. L. Carter and M. N. Wegman, ‘‘Universal classes of hash functions,’’
J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, Apr. 1979.

[46] H. Yang and S. Fong, ‘‘Moderated VFDT in stream mining using adaptive
tie threshold and incremental pruning,’’ in Proc. 13th Int. Conf. Data

Warehousing Knowl. Discovery, 2011, pp. 471–483.

[47] Mininet. Accessed:Jun. 5, 2016. [Online]. Available: http://mininet.org/

[48] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, ‘‘OpenVirteX: Make your virtual SDNs pro-
grammable,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined Netw.

(HotSDN), 2014, pp. 25–30.
[49] Data Center Measurement. Accessed: Feb. 3, 2018. [Online]. Available:

http://pages.cs.wisc.edu/~tbenson/IMC10_data.html/
[50] P. Domingos, ‘‘MetaCost: A general method for making classifiers cost-

sensitive,’’ in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining (KDD), 1999, pp. 155–164.
[51] A. W. Moore and D. Zuev, ‘‘Internet traffic classification using Bayesian

analysis techniques,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 50–60, Jun. 2005.

[52] MAWI Working Group Traffic Archive. Accessed: Jun. 7, 2018. [Online].
Available: http://mawi.wide.ad.jp/mawi

MOSAB HAMDAN received the B.Sc. degree

in computer and electronic systems engineering

from the University of Science and Technology,

Sudan, in 2010, and the M.Sc. degree in computer

architecture and networking from the University of

Khartoum, Sudan, in 2014. He is currently pursu-

ing the Ph.D. degree with the Faculty of Engineer-

ing, School of Electrical Engineering, Universiti

Teknologi Malaysia. His current research interests

are in software defined networking (SDN), load

balancing, network traffic classification, and future networks.

BUSHRA MOHAMMED received the B.Sc. and

M.Sc. degrees in computer engineering and net-

works from the Faculty of Engineering and Tech-

nology, University of Gezira, Sudan. He is cur-

rently pursuing the Ph.D. degree with the School

of Electrical Engineering, Universiti Teknologi

Malaysia. He is currently a Lecturer with the Fac-

ulty of Computer and Statistics Studies, University

of Kordofan. His research interests include com-

puter architecture, network traffic classification

and control, artificial intelligence, and optimization techniques.

USMAN HUMAYUN received the B.Sc. degree

in computer engineering from the NFC Insti-

tute of Engineering and Technology, Multan, Pak-

istan, in 2008, and the M.Sc. degree in com-

puter engineering from the Islamia University of

Bahawalpur, Pakistan, in 2015. He is currently

pursuing the Ph.D. degree with the School of Elec-

trical Engineering, Universiti Teknologi Malaysia.

He has been working as a Lecturer with the

Department of Computer Engineering, Bahauddin

Zakariya University, Multan, since 2009. His research interests are software

defined networking (SDN), flow tables architectures, and controller over-

heads in SDN.

AHMED ABDELAZIZ received the M.Sc. degree

in computer science and the Ph.D. degree in infor-

mation technology from the Universiti Malaya

(UM), Malaysia, in 2007 and 2017, respectively.

He has been working on ONOS and OpenStack,

since October 2015, during the Ph.D. degree

research project. In the Ph.D. degree research,

he proposed a novel service-based load balanc-

ing technique to use in the cloud using SDN and

OpenStack. He is currently a full-time Assistant

Professor with Future University (FU), Sudan. He published a number of ISI

index articles in the areas of SDN, OpenFlow, and network virtualization.

He has been involved in the Centre for Mobile Cloud Computing Research

(C4MCCR) Projects funded by theMalaysianMinistry of Higher Education.

His areas of interest include SDN/NFV technology, OpenStack, and network

virtualization.

72596 VOLUME 8, 2020

M. Hamdan et al.: Flow-Aware EF Detection for Software-Defined Networks

SULEMAN KHAN received the Ph.D. degree

(Hons.) in computer science and information tech-

nology from the Universiti Malaya, Malaysia,

in 2017. He was a Faculty Member of the School

of Information Technology, Monash University,

Malaysia, from June 2017 to March 2019. He is

currently a Faculty Member of the Department of

Computer and Information Sciences, Northumbria

University, Newcastle upon Tyne, U.K. He has

published more than 50 high-impact research arti-

cles in reputed international journals and conferences. His research areas

include, but are not limited to, network forensics, software-defined networks,

the Internet-of-Things, cloud computing, and vehicular communications.

M. AKHTAR ALI received the Ph.D. degree

in computer science from Manchester

University, in 2003. He is currently a Faculty

Member of the Department of Computer and

Information Sciences, Northumbria University,

U.K. He served with this university for more

than 19 years and has been involved in various

research projects. His research interests include

data analytics, databases, and machine learning.

MUHAMMAD IMRAN (Member, IEEE) received

the Ph.D. degree in information technology from

the Universiti Teknologi PETRONAS, Malaysia,

in 2011. He is an Associate Professor with the

College of Applied Computer Science, King

Saud University, Saudi Arabia. His research was

financially supported by several grants. He has

completed a number of international collabora-

tive research projects with reputable universities.

He has published more than 200 research arti-

cles in peer-reviewed, well-recognized international conferences and jour-

nals. His many research articles have been highly cited and frequently

downloaded. His research interests include mobile and wireless networks,

the Internet of Things, big data analytics, cloud computing, and information

security. He was consecutively awarded as an Outstanding Associate Editor

of IEEE ACCESS, in 2018 and 2019, in addition to numerous other awards.

He has been involved approximately in 100 peer-reviewed international

conferences and workshops in various capacities such as a chair, co-chair,

and technical program committee member. He served/serving as a Guest

Editor for approximately two dozens special issues in journals such as the

IEEE Communications Magazine, the IEEEWireless Communications Mag-

azine, Future Generation Computer Systems, IEEE ACCESS, and Computer

Networks. He has served as an Editor-in-Chief for the European Alliance

for Innovation (EAI) Transactions on Pervasive Health and Technology.

He is currently serving as an Associate Editor for top-ranking international

journals such as the IEEE Communications Magazine, the IEEE Network,

Future Generation Computer Systems, and IEEE ACCESS.

M. N. MARSONO (Member, IEEE) received

the B.Eng. degree in computer engineering and

the M.Eng. degree in electrical engineering from

the Universiti Teknologi Malaysia, Malaysia,

in 1999 and 2001, respectively, and the Ph.D.

degree in electrical and computer engineering

from the University of Victoria, Victoria, BC,

Canada, in 2007. He is an Associate Profes-

sor in electronics and computer engineering with

the Faculty of Engineering, School of Elec-

trical Engineering, Universiti Teknologi Malaysia. His research inter-

ests are in many-core system-on-chips, network-on-chip interconnects,

domain-specific computer architectures, network processing algorithmics,

and network processing accelerators.

VOLUME 8, 2020 72597

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	SDN BACKGROUND
	OVERVIEW OF GENERIC FLOW CONTROL SCHEMES FOR DIFFERENT APPLICATIONS
	RELATED WORKS
	SWITCH BASED DETECTION
	HOST-BASED DETECTION

	PROPOSED SWITCH-CONTROLLER FOR EF DETECTION
	SELECTION OF EF FEATURES
	DEFINITION OF THE EFs
	SELECTION OF FEATURES FOR A FLOW CLASSIFICATION

	SWITCH-SIDE EF DETECTION
	THE CM SKETCH
	CONTROLLER-SIDE EF DETECTION

	EXPERIMENTAL RESULTS AND DISCUSSION
	EXPERIMENT SETUP
	DATASETS
	EVALUATION METRICS

	EXPERIMENTAL RESULTS OF THE SWITCH-SIDE EF DETECTION
	CM PERFORMANCE COMPARISON
	SKETCH TRADE-OFF

	EXPERIMENTAL RESULTS OF THE CONTROLLER-SIDE EF DETECTION
	CLASSIFICATION ACCURACY
	VFDT PERFORMANCE COMPARISON

	CM-VFDT PERFORMANCE COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	MOSAB HAMDAN
	BUSHRA MOHAMMED
	USMAN HUMAYUN
	AHMED ABDELAZIZ
	SULEMAN KHAN
	M. AKHTAR ALI
	MUHAMMAD IMRAN
	M. N. MARSONO

