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ABSTRACT This paper proposes a novel compact 4 × 4 butler matrix (BM) with improved bandwidth
based on open-circuit coupled-lines and interdigital capacitor unit-cell to develop composite right/left handed
(CRLH) transmission-line (TL) metamaterial structure. The BM is implemented by the combination of
compact 3dB quadrature hybrid couplers, 0dB crossover and 45◦ phase shifter on a single FR4 substrate
(εr = 4.3 and h = 1.66 mm). The simulated and measured result shows that the return loss and isolation
loss are better than 14 dB at all the ports, good insertion loss of−7± 2dB, which cover the frequency range of
3.2 GHz to 3.75 GHz. The phase difference of −45◦, 135◦, −135◦ and +45◦ are achieved with a maximum
average phase tolerance of 5◦. The overall dimension of the BM is 70mm × 73.7mm, which shows the
compactness of the proposed design that is 75% size reduction and 8.2 times improvement in the bandwidth
(550MHz) as compared to conventional BM. The CST microwave studio is used to design and perform the
simulations. Additionally, the simulated and measured scattering parameters and phase differences show that
they are in good agreement. This compact and improved bandwidth of the proposed BM is suitable for 5G
antenna array beamforming network.

INDEX TERMS 5G, composite right/left handed (CRLH) transmission-line, metamaterial, beamforming
network (BFN), Butler matrix (BM), branch line coupler (BLC).

I. INTRODUCTION
The evolution in wireless communication systems in terms
of enhanced performance by improving data-rate, power dis-
sipation and latency leads to the emergence of 5G [1], [2].
It is predicted that upcoming 5G technology will provide the
end-users; data-rates of ∼10 GB/s (optical fibre-like expe-
rience), reduced end-to-end latency and improved capacity
of up to several billion users as compared to the previous
wireless systems [3]–[5]. Another significant feature of the
planned 5G technology is to exploit microwave (around
3-6 GHz) as well as millimetre-wave (mm-wave) frequency
bands [2], [5]. This leads to greater spectral bandwidths and
directional antenna arrays which can transmit focus radiated
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power in any desired direction by using beamforming net-
works (BFNs) [5]. In addition to the smartphones, tablets
and laptop computers, the huge influx of compact wireless-
enabled wearable devices leads to an exponential increase
in the wireless end-users who demand constant anytime,
anywhere connectivity [6]. To provide good quality of service
(QoS) with constant connectivity, the researchers have put a
lot of efforts in the area of phased array antennas and their
respective BFNs.

It is envisioned that in the upcoming 5G systems, phased
array antennas (PAAs) will be playing a crucial role to get the
desired output at the transceivers [7], [8]. The PAA consists
of a BFN and antenna array. The main beam of an antenna is
steered by the BFN network with the given phase and ampli-
tude. There are many different types of BFNs reported in the
literature [9]–[14], [16]–[18], [22]–[27]. The BFNs have two
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categories 1) Rotman lens and 2) Circuit-based beamformer.
The Rotman lens [14] provide wideband characteristics, but
due to its extremely large size, it is not considered a promising
candidate for 5G applications. The circuit based beamformers
are further classified into three types, which are Nolen, Blass
and Butler Matrix, respectively. The most commonly used
BFN due to its easy fabrication process and low-cost is the
butler matrix (BM) which is used for the antenna array feed.
It requires N input ports (N beams), N output ports, (N/2)
log2(N ) hybrid couplers, and (N/2) log2(N−1) fixed phase
shifters to form the N × N network [9]. Typical design of
BM is a bilateral structure, which consists of three main
components, i.e. couplers, crossovers and phase shifters.

The issue with conventional BM is that it has limited
bandwidth and large size due to the hybrid couplers and phase
shifters. So, the researcher started to introduce new designs
of BM with an open-stub, modified hybrid branch line cou-
pler (BLC), without crossover, without phase shifter and
metamaterial transmission to minimize the size [10]–[15]. In
[10], a miniaturized BM network implemented with the stub-
loaded transmission lines is proposed and experimentally
verified for multi-beam antenna array system. The size of
the BM is reduced by 55% as compared to the conventional
BM design. Another miniaturized BM design is presented in
[12] by employing dumbbell-shaped cross-slot patch hybrid
couplers and meandered lines based crossover. It achieves
the fractional bandwidth improvement of 37.5% and a size
reduction of 17%.

In [16], it is shown that the use of 45◦ and 90◦ phase shifters
and four BLCs miniaturized by employing open-stubs in
each transmission-line allows the size reduction of 42.68% as
compared to the conventional BM. In [11], aminiaturized BM
using cross-slot patch hybrid couplers and 45◦ phase shifters
using short-circuited stubs are presented. The bandwidth of
the BM is improved by 14%, and the size is reduced by
56% as compared to conventional BM, respectively. A novel
compact BM without phase shifter is presented in [17] that
contains couplers with −45◦ and −90◦ phase difference and
a crossover. In [18], a novel electromagnetic metamaterial
transmission-line (EM-MTM TL) is proposed by using the
structure of symmetric double spiral lines (SDSLs). As per
the literature review presented here, most of the discussed
designs demonstrate a reduction in the area without much
improvement in the bandwidth of the BM.

Therefore, in this paper, a compact and improved band-
width BM is proposed by employing four 3dB BLCs based
on the open-circuit coupled-lines technique and interdigi-
tal capacitor (IDC) CRLH-TL metamaterial structure [21],
one 0dB crossover (instead of two 0 dB crossover in the
conventional BM) and phase shifters of 45◦. The crossover
is designed by cascading two 3dB BLCs. The proposed 4
× 4 BM is designed by using the CST microwave studio
software for 5G applications. The proposed BM is designed
using the flame-resistant (FR4) copper-clad substrate [19]
with relative permittivity (εr ) dielectric constant of 4.3 and
thickness of 1.66 mm. The simulation and measured results

FIGURE 1. Block diagram showing the design of the proposed BM.

TABLE 1. Phase relation between ports at output of BM feed.

suggest that the designed BM achieves excellent performance
and it can be used as an ideal candidate for the beamforming
network in the upcoming 5G antenna array systems.

The rest of the paper is organized as follows: Section 2 dis-
cusses the design configuration of the proposed BM and its
relevant simulation and measured results. Section 3 presents
the comparison of proposed work with the existing design,
and finally, Section 4 draws conclusion.

II. BUTLER MATRIX DESIGN CONFIGURATION
The proposed BM comprises of four 90◦BLCs, one crossover
and two phase shifters which generate −45◦ phase shift.
As shown in Fig. 1, it has four input ports labelled as port 1,
port 2, port 3, and port 4 and four output ports labelled as
port 5, port 6, port 7, and port 8, respectively.

Table 1 shows the phases that will be generated on each
output port based on the selection of the input port. It has four
cases; the phase difference between the consecutive output
ports will be −45◦ when the input port 1 is excited. When
the input port 2 is excited, the phase difference between the
consecutive output ports will be 135◦. For the third case,
the phase difference between the consecutive output ports will
be −135◦, when the input port 3 is excited. When the input
port 4 is excited, the phase difference between the output ports
will be 45◦.

The TL width and length of the BM element is calcu-
lated using microstrip feedline method [20], CSTMicrowave
Studio software is used to perform all the design simulation
and optimization of the individual components and also the
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TABLE 2. Design specifications.

combination of coupler and crossover to construct the BM.
The proposed BLC, crossover and BM were validated with
the design specifications provided in Table 2. The detailed
explanation and design of BM components are given below.

A. BRANCH LINE COUPLER (BLC)
The BLC used in this work is a compact design based on
the CRLH-TL metamaterial structure. The CRLH-TL meta-
material structure is achieved by inserting the open-circuit
coupled-lines and interdigital capacitor (IDC) unit-cell for the
vertical and horizontal arm of the BLC as shown in Fig. 2
(a-b). The impedance of the horizontal and vertical arms TL
of the BLC is 35� and 50�, respectively. The width and
length of both the arms of the BLC can be calculated by using
the formula [20], [21] based on the impedances mentioned
above. The optimized dimensions of the IDC-CRLH unit-cell
finger width (wc), length (lc) and gap (S) between the fingers
are calculated and found to be 0.4mm, 3.9mm and 0.4mm,
respectively based on Eq. (1-2) [22], [23]:

wc ≈
w(

5N
3 −

2
3

) (1)

s =
2wc
3

(2)

where in eq. (1), N indicates the number of fingers and
w = 5mm refers to the width required to obtain the horizontal
arm impedance of 35�. The dimension of the horizontal and
vertical arm IDC unit-cell finger length lc is optimized to
be 3.9mm and 2.2mm, respectively for achieving the BLC
center frequency of 3.5GHz. The horizontal and vertical
IDC unit-cell finger length has a different dimension due to
the impedance matching [20]. The open-circuit coupled-line
inner strip width is 0.4mm. The IDC unit-cell and the fabri-
cated BLC prototype are shown in Fig. 2(a-b), respectively.
The BLC is considered as an important component for the
BM design. The simulated and measured scattering param-
eter and phase difference results for the proposed BLC are

FIGURE 2. (a) IDC unit-cell (b) Fabricated prototype of the proposed BLC
using FR4 substrate showing the respective BLC Ports 1-4, respectively
and the PCB dimensions.

summarized in Fig. 3(a-b). The fabricated coupler operates
between 2.74 GHz to 4.15 GHz frequency band for the return
loss and isolation loss of below -10dB. The insertion loss
result also shows very good performance and a variation of
3 ± 0.2dB in the same frequency band. The measured phase
difference between the output ports is found to be 88◦. The
λ/4 open-circuit coupled-lines and the IDC unit-cell are used
to provide wide bandwidth and size reduction in the circuit.

B. 0dB CROSSOVER
The 0dB crossover is a four-port network with two input ports
and two output ports named as port 1, port 4 and port 2, port 3,
respectively. The crossover is designed by using two separate
techniques. The first design consists of cascading two 3dB
BLC combined together by using the copper tape and the
glue, as shown in Fig. 4(a). It can be seen from Fig. 4(a)
that in this design, both BLC shares the same ground plane,
and it has an overall area of 59mm × 23mm, respectively.
The second design of the crossover is considered compact
because it is fabricated using single FR4 PCB with an overall
area of 36mm x 23mm, as shown in Fig. 4(b). The total
area of the compact crossover design shown in Fig. 4(b)
is reduced by 39% as compared to the first design shown
in Fig. 4(a). Since, the insertion loss S31 and S24 and the phase
difference between S31 and S24 introduced by the two designs
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FIGURE 3. (a) S-Parameter response of the proposed simulated and
fabricated BLC (b) Phase difference between the proposed simulated and
fabricated prototype of the BLC.

FIGURE 4. (a) Fabricated prototype of the 0dB crossover by cascading two
3dB BLC using FR4 substrate and copper tape, (b) Fabricated prototype of
the compact 0dB crossover two 3dB BLC using FR4 substrate.

are same, so the compact designed crossover is selected for
the development of the BM. The simulated and measured
insertion loss is -0.19 dB and -0.5dB, respectively, at the
operating frequency of 3.5GHz. Similarly, the simulated and

FIGURE 5. (a) S-Parameter response of the proposed simulated and
fabricated compact 0dB crossover (b) Phase difference between the
proposed simulated and fabricated prototype of the compact 0dB
crossover.

measured phase difference between S31 and S24 is 0◦, and
5◦, respectively, which mean the phase shift introduced is
very small and close to 0◦. Fig. 5(a) shows the S-parameter
response of simulated and measured compact 0dB crossover,
whereas Fig. 5(b) shows the simulated and measured phase
difference between S31 and S24, respectively. The measured
insertion loss and the phase difference validated the design
specification mentioned in Table 2.

C. 4 × 4 BUTLER MATRIX PERFORMANCE
The planar single layer implementation of the 4× 4 compact
BM with improved bandwidth is performed by the combina-
tion of above designed 3dB BLC using open coupled lines
and IDC-CRLH TL, 0dB crossover and 45◦ phase shifter
at the centre frequency of 3.5GHz. As shown in Fig. 6(a),
we have used the RF coaxial cables of 20 cm to develop the
45◦ phase shift, SMA L-shaped male-female RF jacks and,
SMA male-female RF connectors to make the connection
between the coupler and the crossover. Fig. 6(a) shows the
hybrid implementation of the 4 × 4 BM which is good for
the proof-of-concept but cannot be implemented as the BFN
in 5G antenna array systems because of size constraints and
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FIGURE 6. (a) Hybrid 4×4 BM by using the combination of BLCs and
Crossovers with the help of SMA male-female RF connectors, SMA
L-shape male-female RF jacks and RF coaxial cables (b) Compact 4×4 BM
fabricated on a single FR4 substrate.

the extra losses induced by the SMA transitions and coaxial
cables. In order to make the design compact and realistic for
the implementation in 5G antenna array systems, it is fabri-
cated by combining all the components on a single FR4 PCB
sharing a common ground plane, as shown in Fig. 6(b). The
compact design has a total area of 70mm× 73.7mm, as shown
in Fig. 6(b). The simulated and measured results from both
the 4× 4 BM structures presented in Fig. 6(a-b) shows a good
match, although there were some variations observed in the
results which could be due to the extra losses and phase shifts
induced by the cables and connectors. So, the discussion
related to the results from now onwards will be based on the
compact structure of the BM as shown in Fig. 6(b).

Fig. 6(b) shows the configuration of 4 × 4 BM, when a
signal given to the input ports (port 1, port 2, port 3, port
4) is transferred to the output ports (port 5, port 6, port 7,
port 8) with equal amplitude and specified phase difference
as mentioned in Table 1.

Fig. 7(a-b) shows the simulated and measured results of
the insertion and return losses, respectively when port 1 is
excited, and all the other ports are terminated with 50�
loads. These results show that the measured and simulated
range of return loss is better than 13 dB and insertion loss
detected at port 5, port 6, port 7 and port 8 is −7 ± 2dB

FIGURE 7. Shows the (a) Simulated and (b) Measured response of the
insertion loss and return loss for port 1 excitation, respectively.

from 3.2 GHz to 3.8GHz, respectively. So, the power splitting
among the four output ports is approximately equal as per
the insertion loss result. The measured return loss is −25dB
and the average insertion loss (S15, S16, S17, S18) is −7dB at
the operating frequency of 3.5GHz. The results obtained from
the below graph validated our design specification mentioned
in Table 2 are very promising and can be used in upcoming
5G systems.

Fig. 8(a-b) illustrates a good agreement between the sim-
ulated and measured results of the phase shift of adjacent
output ports, when port 1 is excited. The phase difference
between adjacent ports should be −45◦ as per the design
consideration in Table 1. In the simulation, phase differ-
ence was −44.2◦ between port 5 and port 6 (S16 − S15),
−52.8◦between ports 6 and port (S17-S16) and -40.3◦ between
ports 7 and port 8 (S18-S17), respectively. So, the errors
were 0.8, 7.8 and 4.7 degrees introducing an average error
of 4.4 degrees, respectively. In themeasured results, the phase
difference was −42.7◦ between port 5 and port 6 (S16-S15),
−51.4◦ between ports 6 and port 7 (S17 − S16) and −54◦

between ports 7 and port 8 (S18 − S17), respectively. So,
the errors were 2.3, 6.4 and 9 degrees introducing an average
error of 5.9 degrees. This small error in phase is due to the
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FIGURE 8. Shows the (a) Simulated and (b) Measured results of the
phase shift of adjacent output ports, when Port 1 is excited.

variation in the electrical permittivity parameter of the lossy
FR4 substrate. This frequency shift problem can be solved
in future by using a low-loss Rogers substrate. These results
suggest a very good agreement between the simulated and the
measured phase difference in value, although the quadrant is
different, as mentioned in the below Table 3.

Fig. 9(a-b) show the simulated and measured results of
the insertion and return loss, when port 2 is excited, and all
other ports are terminated with 50� load. These results in
Fig. 9 (a-b) show that the measured and simulated range of
return loss is better than 14 dB and insertion loss detected at
port 5, port 6, port 7 and port 8 is −7 ± 2dB from 3.2 GHz
to 3.7GHz, respectively. So, the power splitting among the
four output ports is approximately equal as per the insertion
loss results. The measured return loss is −15dB and the
average insertion loss (S25, S26, S27, S28) is −7dB at the
operating frequency of 3.5GHz. The results in Fig. 9(a-b) are
in agreement with each other when port 2 is excited, which
suggest excellent BM performance.

Fig. 10(a-b) illustrates the results when port 2 is excited,
and it shows a good agreement between the simulated and
measured results of the phase shift of adjacent output ports.
The phase difference between the adjacent ports should be
135◦ as per the design consideration provided in Table 1.

FIGURE 9. Shows the (a) Simulated and (b) Measured results of the
insertion and return loss for the Port 2 excitation, respectively.

In the simulation, it is found that the phase difference between
the output ports is 145◦, 129◦, 141◦, respectively at the
center frequency. These values differ from the desired value
of 135◦ by 10, 6 and 6 degrees introducing an average error
of 7.3 degrees. In the measured results, the phase difference
between output ports is 139◦, 142◦, 130.3◦, respectively,
at the centre frequency of 3.5GHz. So, the errors were 4, 7 and
4.7 degrees introducing an average error of 5.2 degrees and
very good agreement between simulated and measured phase
difference in value.

Fig. 11(a-b), shows the simulated and measured results of
the insertion and return loss, when port 3 is excited, and all
other ports are terminated with 50� load. These results in
Fig. 11 (a-b) show that the measured and simulated range of
return loss is better than 13 dB and the insertion loss detected
at port 5, port 6, port 7 and port8 is −7 ± 2dB between
3.2 GHz to 3.75GHz frequency band. So, the power splitting
among the four output ports is approximately equal as per the
insertion loss results. The measured return loss is−17dB and
the average insertion loss (S35, S36, S37, S38) is−7.7dB at the
operating frequency of 3.5GHz. The result obtained from the
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TABLE 3. Simulated and measured phase difference of the proposed butler matrix at 3.5 GHz.

FIGURE 10. Shows the (a) Simulated and (b) Measured results of the
phase shift of adjacent output ports, when Port 2 is excited.

below graph shows good agreement between simulated and
measure results.

Fig. 12(a-b), illustrates a good agreement between
the simulated and measured results of the phase shift
of adjacent output ports, when port 3 is excited. The
phase difference between the adjacent ports should be
−135◦ as per the design consideration in Table 1. In the
simulation results; the phase difference was −141.6◦

between port 5 and 6 (S36-S35), −128◦ between ports 6

FIGURE 11. Shows the (a) Simulated and (b) Measured results of the
insertion and return loss for Port 3 excitation, respectively.

and 7 (S37-S36) and −146.5◦ between ports 7 and 8
(S38 − S37), respectively. So, the errors were 6.6, 7 and
11.5 degrees introducing an average error of 8.3 degrees,
respectively. Whereas, in the measured results, the phase
difference was −136.5◦ between port 5 and 6 (S36-S35),
−141◦ between ports 6 and 7 (S37-S36) and −146◦ between
ports 7 and 8 (S38-S37), respectively. So, the errors were
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FIGURE 12. Shows the (a) Simulated and (b) Measured results of the
phase shift of adjacent output ports, when Port 3 is excited.

1.5, 6 and 11 degrees, respectively introducing an average
error of 6.1 degrees and very good agreement between the
simulated and measured phase difference in value but the
quadrant is different as summarized in Table 3.

Fig. 13(a-b) shows the simulated and measured insertion
and the return loss results, when port 4 is excited, and all
other ports are terminated with a 50� load. These results
show that the measured and simulated range of return loss
is better than 13 dB and insertion loss detected at port 5, port
6, port 7 and port 8 is −7 ± 2dB between the 3.2 GHz to
3.75GHz frequency band. So, the power splitting among the
four output ports is approximately equal as per the insertion
loss results shown in Fig 13 (a-b). The measured return loss
is -16.3dB and the average insertion loss (S45, S46, S47, S48)
is −6.75dB at the operating frequency of 3.5GHz.

Fig. 14(a-b) illustrates a good agreement between the sim-
ulated and measured results of the phase shift of adjacent
output ports, when port 4 excited. The phase difference
between the adjacent ports should be 45◦ as per the design

FIGURE 13. Shows the (a) Simulated and (b) Measured results of the
insertion and return loss for Port 4 excitation.

consideration in summarized Table 1. In simulation results; it
is found that the phase difference between the output ports
is 42, 51◦, 50◦ respectively at the centre frequency. These
values differ from the desired value by 2.3, 6 and 5 degrees
introducing an average error of 4.4 degrees. In the measured
results, the phase difference between output ports is 47.4◦,
44◦, 46.8◦ respectively, at the centre frequency of 3.5GHz.
So, the errors were 2.4, 1 and 1.8 degrees introducing an aver-
age error of 1.7 degrees and very good agreement between
simulated and measured phase difference in value but the
quadrant is different as summarized in Table 3.

Table 3 and Table 4 summarize the simulated andmeasured
phase difference between the ports and the S-parameter of the
proposed BM at the operating frequency of 3.5GHz, respec-
tively. It can be seen from the Table 3 and Table 4 that at the
3.5GHz operating frequency, the phase difference between all
the ports has a very good agreement with the desired value
and the magnitude tolerance of ±2 dB.
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TABLE 4. Simulated and measured s-parameter of the proposed butler matrix at 3.5 GHz.

FIGURE 14. Shows the (a) Simulated and (b) Measured results of the
phase shift of adjacent output ports, when Port 4 excited.

III. COMPARITIVE STUDY
A comparison of the proposed planar and compact BM with
the existing works is shown in Table 5. The comparison table
shows that our proposed BM has good improvement both
in terms of bandwidth and size reduction which are major
design consideration for the future 5G system deployments.
The return loss, insertion loss and the phase difference for
the proposed BM achieved design specification summarized
in Table 1 and 2. The references cited in Table 5 were selected

TABLE 5. Performance of the proposed butler matrix at 3.5 GHz with
existing planar technology based BM.

based on the planar single-layer BM and their respective
operating frequency. From Table 5, it is very important to
note that in most of the presented designs, the researchers
are either trying to improve the bandwidth or reducing the
size. Although, the work presented in this paper shows the
improvement in the bandwidth and the size reduction at
the same time.

IV. CONCLUSION
In this paper, a novel 4 × 4 butler matrix has been proposed,
designed and fabricated for the 5G antenna array system.
The proposed butler matrix is designed using the composite
right/left handed transmission-line metamaterial structure,
which is based on open-circuits coupled-lines and interdigital
capacitors. The proposed butler matrix has the advantage of
compact size (70mm × 73.7mm) and improved bandwidth
(550MHz) as compared to the previous designs discussed
in the literature and summarized in the previous section.
Moreover, the circuit size has been reduced by 75%, and the
overall bandwidth has been improved by 8.2 times more than
the conventional butler matrix [29].

The proposed butler matrix is fabricated using two differ-
ent techniques. The first one was the hybrid 4 × 4 butler
matrix design by using the combination of BLCs, crossovers,
SMA male-female RF connectors and the coaxial cables.
The second 4 × 4 butler matrix design was fabricated on a
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single FR4 substrate in which the BLCs, crossovers and phase
shifters are sharing the common ground plane which leads to
a compact structure with improved bandwidth. The simulated
and measured return loss, insertion loss and phase difference
between the ports shows good correlation with the design
specification summarized in Table 2. The measured phase
difference between the output ports are −45◦,135◦, −135◦

and +45◦, respectively achieved with a maximum average
phase tolerance of 5◦ at 3.5GHz based on the excitation of the
input port, so it is possible to switch in a different direction
at the same time. Based on the results, the proposed butler
matrix design is considered to be a suitable candidate for the
beamforming network in 5G antenna array systems.
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