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Abstract: Generally, two-third of a building’s energy is consumed by heating, ventilation and
air-conditioning systems. One green alternative for conventional air conditioner systems is the
implementation of passive cooling. Wing walls and windcatchers are two prominent passive cooling
techniques which use wind as a renewable resource for cooling. However, in low wind speed regions
and climates, the utilization of natural ventilation systems is accompanied by serious uncertainties.
The performance of ventilation systems can be potentially enhanced by integrating windcatchers
with wing walls. Since previous studies have not considered this integration, in the first part of this
research the effect of this integration on the ventilation performance was assessed and the optimum
angle was revealed. However, there is still gap of this combination; thus, in the second part, the impact
of wing wall length on the indoor air quality factors was evaluated. This research implemented
a Computational Fluid Dynamics (CFD) method to address the gap. The CFD simulation was
successfully validated with experimental data from wind tunnel tests related to the previous part.
Ten different lengths from 10 cm to 100 cm were analyzed and it was found that the increase in wing
wall length leads to a gradual reduction in ventilation performance. Hence, the length does not have
a considerable influence on the indoor air quality factors. However, the best performance was seen in
10 cm, that could provide 0.8 m/s for supply air velocity, 790 L/s for air flow rate, 39.5 1/h for air
change rate, 107 s for mean age of air and 92% for air change effectiveness.
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1. Introduction

Buildings, which account for 40% of global energy consumption [1,2], play a significant role
in increasing greenhouse gas emissions which are going to rise further due to urbanization and
population growth [3]. Buildings consume energy in many parts; but more than two-thirds of this
energy is used for heating, air conditioning (HVAC) and ventilation [4].

Furthermore, many studies have revealed the relation between air conditioning systems and
problems relevant to indoor air quality (IAQ). Organic dusts can contribute to the growth of different
fungi in fans which lead to contamination of condensate trays and cooling coils. As a result of dirty
filters serious contamination problems may occur [5,6]. Hence, “Sick Building Syndrome” as well as
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metabolic diseases are more likely to occur [7,8]. Sick building syndrome symptoms are 30–200% more
abundant in buildings that are air-conditioned than in those without air conditioners [9]. Long-term
exposure to unfavorable IAQ may bring occupants detrimental consequences such as illnesses and
poor performance [10]. As reported by the U.S. Environmental Protection Agency [9], one of the top
five environmental health risks is indoor air pollution. The significance of retaining a good quality
indoor environment comes from the fact that people spend approximately 80 to 90% of the time in
indoor residential and work locations [11,12].

Natural ventilation (NV) systems, as a passive cooling strategy, are suitable alternatives for energy
consumption reduction, and due to their capability to reduce the problems of common air conditioning
systems, these systems have become alternatives for cooling and ventilation systems [13].

A recent study estimated natural ventilation can be used effectively in 1854 locations around
the world by calculating the natural ventilation (NV) hours. Moreover, Building Energy Simulation
(BES) shows the world’s 60 biggest cities have considerable potential for energy saving by natural
ventilation [14].

In current decades cities have faced with a fast growth in population and urbanization, so it is
critical to investigate potential ways for achieving considerable energy savings in the building sector
by applying natural ventilation [15] which is a vital sustainable answer to reduce the energy use in
buildings, while providing thermal comfort, and keeping the indoor environment healthy [16].

A windcatcher, a natural ventilation system, is one of the traditional elements mounted on
buildings, which operates by exploiting renewable energy of wind, and as windcatchers lack moving
parts, their noise and maintenance cost is minimum [17]. In the Middle East, the utilization of
windcatchers dates back to thousands of years ago (Figure 1) [18,19]. Archaeological investigations
have revealed evidence of windcatcher use near the historical site of Tappeh Chackmaq (Shahrood, Iran)
which dates to 4000 BC [20]. The application of modern windcatchers specifically in populous indoor
environments including schools or workplaces such as office buildings is now widely prevalent [21].
The UK is one of the countries benefitting from the installation of more than 7000 windcatchers in
recent years [22].
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Apart from the windcatcher, wing walls are another design solution to lead the outdoor air
flow toward internal space of the building by projecting portions of the walls perpendicularly from
the openings [23]. What causes the flow of ambient wind into and out of the room is the wind
pressure difference between the wing walls’ windward and leeward surfaces [24]. Therefore, it has
been proposed that employing a wing wall can contribute to ventilation enhancement [25]. A light
pressure gradient generated along a wall due to oblique wind blow to a wall is exploitable when the
windward side is equipped with two lateral openings. Accordingly, the airflow is pushed inside by
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positive pressure and negative pressure induces it to exit contributing to generation of an artificial air
movement within the building [26,27].

Although windcatchers have considerable advantages, their application in regions with low
speed wind has been less beneficial [28]. As a result, the focus of previous studies was generally on
windcatchers employed in regions where the wind speed is medium to high (3 to 5 m/s). Thus, in low
wind speed conditions such as dense urban environments, implementation of windcatchers is not
efficient and studies on windcatchers are quite limited.

However, wing walls are especially operative on sites where outdoor wind velocity is low and
wind directions are variable [29] because the wing walls amplify the pressure difference through
the openings that improves air exchange [30]. Thus, the current study proposes that when a
windcatcher is integrated with a wing wall, the natural ventilation rate should improve under low
wind speed conditions.

In our previous research [31] it was found that the integration of a two sided windcatcher with
a wing wall (TWIW) can improve the ventilation performance of the windcatcher under low wind
speed conditions and different wing wall angles (5◦ to 70◦) were examined. It was revealed that wing
walls in the range of 15◦ to 30◦ had the most positive effect on the ventilation parameters. Building
on previous works, this paper aims to study the effect of the length of wing wall on the ventilation
performance of windcatchers. In addition, the work will assess several ventilation parameters to better
understand the indoor airflow characteristics including the mean age of air (MAA), air change rate
and air change effectiveness (ACE) (it should be noted that only selected parameters which influence
air quality were analyzed in this paper).

2. Literature Review

In this section, previous studies which investigated the windcatcher and wing wall are presented
briefly. It should be noted that there are no studies which have considered the effect of a combination
of windcatcher and wing wall.

In a study conducted by Afshin et al. [32], a two-sided windcatcher underwent wind tunnel
experimental in several wind angles ranging from 0◦ to 90◦ to assess its ventilation performance.
The model was a typical two-sided windcatcher in the city of Yazd (Iran) with the scale reduced to
1:50. The investigation revealed that for all wind speeds, 55◦ and 39◦ are the wind angles at which
the transition angles of windward opening and house window occurred, respectively. Accordingly,
it was inferred that chimney-like performance of windcatcher occurs when wind angle exceeds the
windward transition angle (α = 55◦) and as the wind was perpendicular to the opening of windcatcher,
the ventilation rate was maximum.

Ghadiri et al. [33] investigated the wind-induced cross ventilation in a building with a two-sided
windcatcher and an openable window at different wind directions (0◦–90◦) with 15 degree intervals
in a wind tunnel at 10 to 20 m/s wind speed. The effect of several computational parameters such
as the turbulence model, the size of domain and resolution of the grid was also explored. The CFD
results were validated against published experimental data. It was discovered that the airflow rate
was decreased on the leeward side of the windcatcher and through the window opening.

Another study by Montazeri et al. [34] aimed to investigate the performance of a two-sided
windcatcher utilizing a reduced-scale model (1:40). The measurement of volumetric airflow and the
pressure coefficient of all surfaces of the model for different air incident angles was carried out in an
open-circuit wind tunnel. In addition, numerical and analytical CFD models for the experimental
setup was developed for the accuracy validation and favorable agreement among the results was
observed. The study demonstrated that short-circuiting is revealed in the windcatcher when the
incidence angle of the wind is high and when this angle is 60, short-circuiting is maximum. Moreover,
it was established that two-sided windcatchers are capable of amending the natural ventilation in
buildings. The comparison of one-sided and two-sided windcatchers suggested the suitability of
employing one-sided windcatchers where a prevailing wind direction exists.
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Chandra et al. [35] studied the wing walls performance in a full-scale experimental building as well as
in models at the Florida Solar Energy Center. They evaluated two vertical walls situated nearby windows.
The air flow rate inside a room equipped with wing walls and without them was measured. It was figured
out that wing walls could generate zones of positive and negative pressure at the room openings when the
angle at which wind blows to the walls is different from the normal condition. It was concluded from this
study that wing walls are effective elements capable of providing ventilation for rooms.

Mak et al. [36] did a numerical investigation of wing wall ventilation performance under different
wing wall sizes, wind velocities and wind directions. The result indicated that the wind angle between
40◦ to 70◦ is the ideal angle at which a wing wall performs best. The study also demonstrated that
larger wing wall (1.5 m) or higher wind velocity (5 m/s) can lead to generation of greater pressure
differences between two window openings, higher average air velocity inside the room, and a higher
ventilation flow rate. It was also concluded that the performance of wing walls is satisfactory only in
single-sided ventilation. In cross-ventilation, natural ventilation might be negatively affected due to
the function of the wing wall rather than performing well.

Integration of a wing wall with a balcony was investigated by Mozaffari [37] which included
twenty distinct configurations divided into five classes of Malaysian medium-rise residential buildings.
What she studied was the air flow rate in regard to the position, size and wind wall angle in the balcony
in 0◦ and 45◦. It was found in the study that the indoor air velocity can be boosted up to three times
with a middle positioned-wing wall in comparison with a typical balcony configuration. Furthermore,
she figured out that the maximum ventilation performance occurred in the wind angle of 45◦.

From the review of the literature, it can be concluded that some studies have paid attention to
windcatchers and wing walls separately; however, none of them have studied the effect of windcatcher
integration with wing walls. Thus, current study represents an opportunity to investigate this research gap.

3. Materials and Methods

This research employed Computational Fluid Dynamics (CFD) modelling which is established to
be reliable in terms of evaluating the ventilation and thermal performance of windcatchers [38].

As shown in Figure 2, the model was composed of a rectangular cuboid with 6 m length, 4 m
width and 3 m height which represents a small room. The windcatcher was comprised of two channels
separated by an internal partition wall. The windcatcher height was 1.5 m. The size of openings
and cross-sections of windcatcher were 1 m by 1 m. The height and size of opening was based on
typical windcatcher size as described in [39,40]. The research consisted of two main phases including
validation with experimental data and CFD study of windcatcher which are discussed in detail in the
following sub-sections.
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3.1. Validation with Experimental Data

For the first phase, validation of numerical method was conducted by making comparison
between the obtained results and experimental wind tunnel testing data of reference [31]. The test was
carried out in the wind tunnel of University Technology Malaysia. Figure 3 illustrates the 1:10 scaled
model used in the wind tunnel investigation. This research was based on Malaysian climate conditions
where the average wind speed is 2.5 m/s. Thus, the wind speed in wind tunnel was set to 25 m/s
to attain the Reynolds number similarity regarding the model scale of 1:10. Nevertheless, the wind
speed was adjusted to 10 m/s in consideration of safety and the strength of models. The details of the
experiment can be found in [31].
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3.2. CFD Study of Windcatcher Performance

In the second phase, the windcatcher performance was investigated in low wind speed conditions
with regard to supply rates, airflow distribution and other IAQ factors. The flow equations were solved
by employing the CFD code ANYSS FLUENT applied to steady Reynolds-Averaged Navier-Stokes
(RANS) and three-dimensional computations. The methods used in the computational model
included the control volume method together with the Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) velocity-pressure coupling algorithm with the second order upwind discretization.
All simulations were done in steady state with an isothermal state (only wind-driven was considered
as the main force for ventilation). The governing equations are presented below:

∂ρ

∂t
+∇× (ρu) = 0 (1)

where ρ is density, t is time and u refers to fluid velocity vector.
Momentum conservation:

∂(ρu)
∂t

+∇× (ρuu) = −∇p + ρg +∇× (µ∇u)−∇× τt (2)

where p presents the pressure; g, vector of gravitational acceleration; µ, molecular dynamic viscosity;
and τt, the divergence of the turbulence stresses that explains auxiliary stresses as a result of
velocity fluctuations.

Turbulence kinetic energy (K):

∂(ρK)

∂t
+∇× (ρKu) = ∇×

[
αkµe f f ∇K

]
+ GK + Gb − ρε (3)
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Energy dissipation rate (ε):

∂(ρε)

∂t
+∇× (ρεu) = ∇×

[
αεµe f f ∇ε

]
+ C1ε

ε

K
(Gk + C3εGb )− C2ερ

ε2

K
(4)

where Gk indicates source of turbulent kinetic energy ascribed to average velocity gradient; Gb,
source of turbulent kinetic energy caused by buoyancy force; αk and αε, turbulent Prandtls numbers;
and C1ε, C2ε and C3ε represent empirical model constants.

The COST 732 guideline [41] for studies of environmental wind flow was the instruction upon
which the position and size of the computational domain in the current study was based. The COST
732 recommended that the domain lateral extension (the distance between the computational domain
lateral boundaries and building sidewalls) for a building with height of H should be 5H (Figure 4).
For the inlet, the boundary has to extend 5H in flow direction as well, whilst for the outlet, extension
of the domain behind the building should be 15H to provide the flow with a condition to re-develop in
back of the wake region, since fully developed flow is commonly presumed as the boundary condition
in steady RANS calculations. The vertical extension ranging from 4H to 10H with consideration of the
blockage effect is proposed by COST 732 [41], hence 5H was selected to minimize the blockage effect.
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3.2.1. Mesh Generation

The production of the computational grid was carried out by utilizing the Gambit 2.4.6 software
(Canonsburg, PA, USA) and then exported to ANSYS FLUENT (16, ANSYS, Canonsburg, PA, USA)
for simulation. Since the geometry shape was complex, a non-uniform mesh was applied for the
computational volumes (Figure 5). The meshed model consisted of 6.5 million elements and 1.5 million
nodes. To ensure the accurate capture of the flow field in the simulations, the mesh refinement around
the windcatcher and openings was done. Flux balance and grid sensitivity analysis are the methods
on which the mesh was based and will be described in Section 4.1.1.
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3.2.2. Boundary Conditions

Guidelines of AIJ [42] and COST 732 [41] were the two sources used to specify the boundary
conditions. The turbulent kinetic energy k and the airflow velocity U were imposed at the inlet which
were based on [43], with the approaching flow streamwise velocity that obey the power law with an
exponent of 0.25 corresponding to a sub-urban terrain. Regarding the wind speed range in regions
with low wind speed, the velocity was 2.5 m/s at 10 m. Assumption of local equilibrium of Pk = ε

contributed to acquisition of The values of ε for the k-epsilon turbulence models [41]. Apart from
ground or bottom wall that had its wall functions adjusted for roughness, other wall boundaries
applied the standard wall functions (Table 1) [44]. On the basis of [45], this has to be determined by a
roughness constant Cs together with an equivalent sand-grain roughness height ks. The horizontal
non homogeneity of the ABL was limited by adapting sand-grain roughness height and roughness
constant to the inlet profiles, following the equation of [46]:

ks =
9.793z0

Cs
(5)

where z0 represents the aerodynamic roughness length of the sub-urban terrain (Figure 6). The selected
values of a roughness constant and sand-grain roughness height were 1.0 and 1.0 mm, respectively.
The top and the sides of the domain were designed as symmetry boundary conditions representing
zero gradient and zero normal velocity for the variables at the top and side wall. Zero statistic pressure
was applied at the boundary wall.

In this study, mean age of air (MAA) was another factor for indoor air quality in which the concept
of age of air defined by Sandberg was employed and could be described as the elapsed duration since
entrance of air into the space from an opening [47].

In the current study, the estimation of the local mean age of air resulted from solving the equation
of user-defined scalar (UDS) transport. The diffusivity of the UDS transport equation was assumed as:

(2.88 × 10−5)ρ + µeff/Sct (6)

with ρ indicating the density of the air; µeff, the effective viscosity of the air; and Sct, the turbulent
Schmidt number which is 1.2 in this study. The related boundary conditions was set to 0 for inlet and
outlet diffusers of Windcatcher. For the convection and diffusion terms of the scalar transport equation,
Second-order discretization is applied.
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Table 1. The brief of boundary conditions settings in CFD.

Factor Domain

Macro-climate Fluid zone
Micro-Climate Fluid zone

Walls
Top: Symmetry
Side: Symmetry

Bottom: Wall
Velocity Inlet ABL Profile

Pressure Outlet 0 Pa
Operating Pressure Atmospheric

Viscous Model k-ε (standard)
Near-Wall Treatment Standard wall functions

Solver Type Pressure-based
Time Steady

Gravity 9.81 m/s2

Energies 2018, 11, x FOR PEER REVIEW  8 of 23 

 

(2.88 × 10−5)ρ + μeff/Sct (6) 

with ρ indicating the density of the air; μeff, the effective viscosity of the air; and Sct, the turbulent 

Schmidt number which is 1.2 in this study. The related boundary conditions was set to 0 for inlet and 

outlet diffusers of Windcatcher. For the convection and diffusion terms of the scalar transport 

equation, Second-order discretization is applied. 

Table 1. The brief of boundary conditions settings in CFD. 

Factor Domain  

Macro-climate Fluid zone 

Micro-Climate Fluid zone 

Walls 

Top: Symmetry 

Side: Symmetry 

Bottom: Wall 

Velocity Inlet ABL Profile   

Pressure Outlet 0 Pa 

Operating Pressure Atmospheric 

Viscous Model k-ε (standard) 

Near-Wall Treatment Standard wall functions 

Solver Type Pressure-based 

Time Steady 

Gravity 9.81 m/s2 

 

Figure 6. Atmospheric boundary layer (ABL) profile of the approach flow. 

3.2.3. Solution Convergence and Flux Balance 

Since no common metrics are available to decide solution convergence, it is significant to 

consider investigative residual levels along with relevant variables [48]. This study monitored the 

solution convergence and relevant variables (Figure 7), and absence of changes between iterations 

led to completion of the solution. The property conservation was checked if achieved, which was 

performed by conducting mass flux for the converged solution, besides monitoring solution variables 

and residuals. For the selected boundary zones, computing the mass flow rate was carried out 

utilizing the flux report panel in FLUENT. For simulating a wind catcher, the mass flow rate balance 

was below <1% of smallest flux through domain boundary. 

0

5

10

15

20

25

30

35

0 0.5 1 1.5

V
er

ti
ca

l 
he

ig
h 

 (
m

)

U/Uref

Figure 6. Atmospheric boundary layer (ABL) profile of the approach flow.

3.2.3. Solution Convergence and Flux Balance

Since no common metrics are available to decide solution convergence, it is significant to consider
investigative residual levels along with relevant variables [48]. This study monitored the solution
convergence and relevant variables (Figure 7), and absence of changes between iterations led to
completion of the solution. The property conservation was checked if achieved, which was performed
by conducting mass flux for the converged solution, besides monitoring solution variables and
residuals. For the selected boundary zones, computing the mass flow rate was carried out utilizing the
flux report panel in FLUENT. For simulating a wind catcher, the mass flow rate balance was below
<1% of smallest flux through domain boundary.
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4. Results and Discussion

The results of CFD simulation, which were obtained from the performance of the windcatcher,
are presented in this section. At first, the CFD model was compared against the experimental data
of previous study conducted by authors to validate the computational model. In the next stage,
windcatcher with different wing wall lengths were assessed. The aim was to analyze the effects of
different length of wing wall on the indoor air quality factors.

4.1. Validation and Sensitivity Analysis

It is of paramount importance to make validation study prior to conducting CFD simulation in
detail since numerical simulation is always followed by uncertainty and errors [49]. The numerical
method was validated by comparing the CFD results and the experimental data acquired from wind
tunnel testing of TWIW scaled model published by authors in the previous study [31].

The windcatcher utilized in the previous study had similar geometrical construction and the
simulation using the same CFD code and model set up. The comparison between air velocity of CFD
and that of experiment shown in Figure 8 was made in six points, I1 to I6, in inlet diffuser together
with six points, O1 to O6, in outlet diffuser.
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Figure 8. The inlet and outlet channel used for validation of CFD with experiment (dimensions are in mm).

Figure 9 compares the CFD simulation results against wind tunnel experimental data of small
scaled model in the wind speed of 10 m/s. Air flow distribution between inlet (I) points is uneven,
particularly the airflow adjacent to the partition wall (I4–I6) with the airflow speed significantly higher
at the center (I5) and a similar trend can be observed for both the CFD modelling and experimental
data. Whereas in the exhaust channel (O), the airflow near the partition wall (O1–O3) was at a lower
speed in comparison with the airflow near the exhaust opening (O4–O6). A similar trend can be
observed for the experiment except for point O3 which can be attributed to error in measurement
or positioning/angle of the hot wire anemometer in the channel. The average difference between
the different points was 7%; hence, it was established that the simulation’s accuracy was reasonable
enough to carry out the study.
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4.1.1. Sensitivity Analysis

Grid Adaption

The independency of the numerical model from the grid size was assessed by evaluating different
number of grids (1.5, 3, 6 and 9 million elements). A mesh sensitivity analysis was the basis of the
computational mesh which was performed by further simulations with same boundary conditions and
domain but different mesh sizes. The error indicator was presumed to be the area-weighted average
value of the inflow velocity in the vertical height of the windcatcher inlet channel (Figure 10) due to
grid refinement from 1.5 million coarse elements to 9 million fine ones. The maximum error between
fine and medium mesh did not exceed 1%. Hence, no notable effect was observed when numerical
model with finer mesh was repeated. Therefore, applying the medium mesh (6 million) was accurate
enough and finer mesh was not necessary.
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Figure 10. Grid sensitivity analysis of different sizes: 1.5 million, 3 million, 6 million and 9 million.

Sensitivity Analysis of Turbulence Model

It is fundamentally important to validate turbulence model to ensure CFD simulation is reliable.
Verifying the capability of the selected turbulence model to render the most precise flow prediction
was the purpose of turbulence sensitivity analysis. Therefore, the following three turbulence models
were appraised: (1) the standard k-ε (Sk-ε) model, (2) the realizable k-ε (Rk-ε) model and (3) the
renormalization group k-ε model (RNG k-ε). Figure 11 illustrates the predictions of the three different
turbulence models on the airflow velocity in I and O points of inlet and outlet channels of model.
The experimental data is ideally in accordance with the standard k-εmodel; therefore, it is preferred
over the other two models. The experimental data and mentioned model had a difference average of
7% (below the other two). Thus, as standard k-εmodel was consistent with preceding studies about
windcatchers in reference of [8,50].
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Figure 11. The impact of different turbulence models on the air velocity in inlet and outlet points.

4.2. The Effect of Wing Wall Length on Ventilation Performance.

The length was the parameter for wing wall design in this study as illustrated in Figure 2. In order
to create diverse windcatcher configurations, ten distinct lengths for wing wall were employed.
Figure 12 depicts the different planes in which the parameters of indoor air quality were appraised
with the purpose of evaluating the windcatcher’s ventilation performance. The inlet and 1.1 m
horizontal planes were used to calculate and display the contours of different IAQ factors. The opening
plane (the purple one) was defined as the start time of air traveling inside the model for mean age of
air (MAA) calculation.
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Figure 12. The positions of planes used for calculations.

4.2.1. Air Flow in Inlet

Evaluation and comparison of the ventilation performance among various wing wall configuration
were made by calculating the airflow velocity average inside the inlet channel as it can manifest the
windcatcher’s capability to provide buildings with fresh air.
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The simulation outcomes for TWIW’s inlet air velocity in various wing wall lengths from 10 cm to
100 cm with 10 cm increments in outdoor wind speed of 2.5 m/s is portrayed in Figure 13.
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Figure 13. The air velocity in inlet of TWIW in different wing wall length (at 2.5 m/s wind speed).

From the above graph, it is revealed that the air velocity pattern demonstrates a steady decrease
from model with 10 cm wing wall length to 100 cm; thus, the maximum (0.79 m/s) was observed in
10 cm. However, the difference between maximum and minimum was less than 12%.

Figure 14 displays the air flow rate and air flow rate per square meter of TWIW with different
wing wall lengths. The air flow rate and inlet air velocity had similar pattern since the air flow rate is
considered as a function of inlet air velocity. In such a way, as the length increased, the air flow rate
decreased and reached its minimum value at 100 cm (698 L/s and 29.1 L/s/m2).Energies 2018, 11, x FOR PEER REVIEW  14 of 23 
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Figure 14. The air flow rate and air flow rate per square meter in different wing wall length (at 2.5 m/s
wind speed).

The following is an equation that calculation of the minimum ventilation rate (VR) in ASHARE
standard 62.1 was based on:

VR = (A × Od × Rp) + (A × Ra) (7)
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where A reprents the ventilated area; Od, the density of occupants as persons per m2; Rp, the needed
ventilation rate for a single individual as L/s per person; and Ra, the needed ventilation rate for
one square meter as L/s/m2. Rp and Ra could be adopted for each ocupancy category type such as
office in the ASHRAE standard 62.1 [51]. In case the model represents a small classroom (A = 24 m2,
Od = 0.65 persons/m2, RP = 3.8 L/s per person, Ra = 0.3 L/s per m2), the minimum VR is:

(24 × 3.8 × 0.65) + (24 × 0.3) = 68 L/s (8)

Comparison between the TWIW’s air flow rate and minimum requirement of ASHRAE 62.1
shows the TWIW’s potential to supply ten times more than standard requirement. It implies that a
single TWIW is capable of fresh air provision for larger area and meet the standard as well.

The TWIW’s air change rate for several wing wall lengths is displayed in Figure 15. The air
change as well as the air flow rate was directly associated with inlet air velocity. Hence the maximum
air change rate (39.5 1/h) and minimum (34.9 1/h) occurred in 10 cm and 100 cm length respectively.
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Figure 15. The air change rate of windcatchers with different wing wall length.

4.2.2. The IAQ Parameters on Horizontal Plane

In this section, the IAQ parameters including velocity, mean age of air (MAA) and air change
effectiveness (ACE) are assessed in the in 1.1 m horizontal plane as the breathing height at sitting
position (the blue plane in Figure 12) with respect to the American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) standard. The air velocity contours inside the occupied
zone were plotted in the 1.1 m horizontal plane in Figure 16.

The air velocity scale is illustrated on the left of the Figure 16. The colors of the domain contour
were based on the range of air velocity, 0 to 0.3 m/s. The highest air velocity zone is depicted by the
red color while the lowest air velocity is represented by the dark blue.
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Figure 16. Air velocity contours of 1.1 m horizontal planes (at 2.5 m/s wind speed).

The line graph in Figure 17 illustrates the average of air velocity in 1.1 m horizontal plane in
different length from 10 cm to 100 cm. Compared to inlet, Same behavior of the air flow in the
horizontal plane can be seen so that there is negative (but weak) relationship between the length
of wing wall and air velocity in the horizontal plane. The negligible 0.04 m/s difference between
maximum and minimum values of the graph, proves that increase in length has no notable impact on
the air velocity in horizontal plane.
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Figure 17. The average of air velocity in 1.1 m horizontal planes in different wing wall lengths.

Mean Age of Air

The ventilation quality and identification of poor ventilated spaces are assessed by mean age of air
(MAA), which is described as the elapsed time since the air enters an indoor environment. The present
study employed the approach explained by [47,52] to calculate the MAA through a numerical method
that utilizes the CFD code Fluent.

Figure 18 indicate the MAA calculated values in 1.1 m horizontal plane at different wing wall
length in which lower values appear to be more desirable. The maximum MAA was 33% higher than
the minimum MAA in 10 cm length. It seems that the MAA become greater by increase in length of
the wing wall which implied that smaller area of stagnant air existed at lower length.
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Figure 18. The Mean age of air of horizontal plane in different length.

Figure 19 depicts the MAA in the vertical plane (in the centre of room) of 10 cm model.
The distribution of MAA was in concert with airflow pattern inside the room with gradual increase
from the inlet along the supply jet, then getting to the maximum value in the zone of recirculation
(116 s). The lowest MAA value was observed in the center of the area (blue space below the inlet)
which represents a fresher air there. By contrast, high MAA values exist in areas with stagnant air
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or poor ventilation. At the height of 1.1 m (a sitting person’s breathing height), MAA values in
windcatcher-ventilated space ranges between 30 s (centre) and 116 s.
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Comparing the MAA results of windcatcher with previous studies can better reveal its
performance and improvement. For instance, the research conducted by Calautit and Hughes [18]
evaluated a four sided windcatcher (with 100 × 100 cm2 cross section, same as current research) placed
on the top of a 5 m × 5 m × 3 m room at 3 m/s outdoor wind speed. Although the wind speed in
their study was 25% higher, as Figure 20 demonstrates, the MAA generally shows relatively higher
values in the vertical plane. For, instance, the MAA passed the 200 s in recirculation zone, which is 90%
higher than TWIW performance. Moreover, further areas were affected by recirculation and stagnant
zone on both sides of the room.
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Figure 20. The MAA distribution of four sided windcatcher in the vertical plane in Calautit study [18].

Likewise, Montazeri [47] investigated one sided and two sided windcatcher with 1.5 m height
and cross-section of 1 m × 1 m in a 6 m × 8 m × 3 m room at 3 m/s wind speed. He found that in the
optimum configuration, the maximum of MAA in the vertical plane (same as Figure 19) reached to
140 s which is still 20% more than TWIW results.
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Air Change Effectiveness

Air change effectiveness (ACE) is defined as the ratio of a nominal time constant to a mean age of
air [52]. This parameter yields a measure of the air distribution at the breathing height and values close
to unity are indicators of perfect mixing of air distribution. A ratio of the room volume (6 × 4 × 3 m3)
to the flow rate of supply air volume (m3/s) to the room is the nominal time constant. The relative
air change effectiveness can also be described as the criterion of efficiency of supply air utilization
ventilating the environment. In case of perfect mixing of the air in a space, the ACE value for the
environment and the local ACE value for every spot of the environment will be 1.0. ACE values
below 1.0 represent the air distribution being less than perfect mixing and values greater than 1.0
are indicators of better ventilation. The ACE calculated values at 1.1 m horizontal plane shown in
Figure 21 ranges between 0.67 (for 80, 90 and 100 cm) and 0.92 (10 cm).
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Figure 21. The air change effectiveness of horizontal plane in different length.

Comparison between 10 cm and 100 cm length

In this section a more detailed comparison between 10 cm model as the optimum configuration
with highest IAQ performance with 100 cm model as the lowest is performed. Figure 22 compares the
air velocity in horizontal plane between 10 cm model with 100 cm one. It is clear that bigger area was
affected with higher air velocity in 10 cm model.

Figure 23 compares the dead zones between 10 cm and 100 cm wing wall in the horizontal plane
which defined by Dehghan [38], as the spots of occupied area with zero or near zero air velocity,
a common challenge in the ventilation systems. The isoclip contour with condition of velocity below
0.1 m/s was plotted in Figure 23 to represent the dead zone area and it is obvious that a bigger dead
zone area exists in 100 cm model. The FLUENT function calculation used to determine the percentage
of the dead zone area to the full area of the 1.1 m horizontal plane. The results showed the dead zone
formed 24% and 38% of horizontal plane in 10 cm and 100 cm respectively.

Figure 24 compares the calculated values of ACE at breathing height (1.1 m) between 10 cm model
and 100 cm which is ranging from 0.5 (in 100 cm) to 2.9 (under supply jet of 10 cm model). Generally,
values of the ACE in 10 cm model in the occupied space are higher than the other, which proves that
ventilation air has better mixing in the ventilated location.
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5. Conclusions

Many parts of buildings consume energy, but more than two-thirds of this energy is consumed
for heating, air conditioning (HVAC) and ventilation. Apart from the high energy expenditure,
a significant share of indoor air quality problems might be related to air conditioning (AC) systems.
One solution is to replace conventional AC with natural ventilation ones among which windcatchers
are one the most famous natural ventilation systems. In this study a two sided windcatcher integrated
with a wing wall (TWIW) was evaluated at low wind speed (2.5 m/s wind speed) by variation of the
wing wall length.

The research consisted of a CFD simulation which was validated against the experimental data
of previous studies and good correlation was observed. The results indicated that the average
difference between CFD results and experiments was less than 7%, which is in an acceptable range
and consequently, the simulation could be trusted. In the second step, this study focused on the length
as the other deign factor of TWIW to see its influence on the indoor air quality factors such as air
velocity, air flow rate and air change rate, mean age of air and air change effectiveness. Different wing
wall lengths from 10 cm to 100 cm were assessed and it was found that the length did not have a
considerable effect on indoor air quality factors; however, the findings highlighted that in the 10 to
20 cm range relatively higher values could be observed. The results of this study can be implemented
in any low wind speed climate type such as tropical climate or dense urban areas.
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Nomenclature

A cross-sectional area (m2)
ε turbulence dissipation rate
ρ density
µ molecular dynamic viscosity
g gravitational acceleration (m/s2)
K turbulence kinetic energy
H height (m)
l kinematic viscosity (m2/s)
L length (m)
P pressure (Pa)
Po total pressure (Pa)
Ps static pressure (Pa)
q air density (kg/m3)
Q volume flow rate (m3/s)
Re Reynolds number
t time (s)
TWIW two-sided windcatcher intertied with wing wall
u x-direction velocity
v y-direction velocity
w z-direction velocity
W width (m)
X, Y, Z Cartesian co-ordinates (m)
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