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Abstract: Ca3Co4O9 is a p-type semiconducting material that is well-known for its thermoelectric (TE), 
magnetic, electronic, and electro-optic properties. In this study, sol–gel autoignition was used to 
prepare Ca3Co4O9 at different calcination temperatures (773, 873, 973, and 1073 K) and time (4, 6, 8, 
10, 12, and 14 h) using starch as a fuel. The phase and microstructure of the prepared Ca3Co4O9 
powder were investigated. Thermogravimetry–differential thermal analysis (TGA) confirms that the 
final weight loss occurred at 1073 K to form Ca3Co4O9 stable powder. The variable-pressure scanning 
electron microscopy (VP-SEM) images show that the size of powder particles increases from 1.15 to 
1.47 μm as calcination time increases from 4 to 12 h, and the size remains almost constant thereafter. 
A similar pattern is also observed on the increment of the crystallite size and percentage of 
crystallinity with X-ray diffraction (XRD) analysis. The highest crystallinity is found about 92.9% 
when the powder was calcinated at 1073 K for 12 and 14 h with 458 and 460 Å crystallite size, 
respectively. Energy dispersive X-ray spectroscopy (EDS) analysis demonstrates that the calcinated 
powder has a high intensity of Ca, Co, and O with uniform distribution. High-resolution transmission 
electron microscopy (HRTEM) images prove that there is no distinct lattice distortion defect on the 
crystal structure. 
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1  Introduction 

In recent years, utilizing of fossil fuels has shown 
severe impacts on atmospheric and environmental 
problems, causing international warming, climate change, 
greenhouse gas emission, ozone layer depletion, and acid 
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rain. The thermoelectric power generator is one of the 
promising ways to reduce dependency on fossil fuels to 
generate energy. Thermoelectric devices can generate 
electrical energy from waste heat, and they are a highly 
encouraging solution for waste heat recovery and self- 
powered systems [1–3]. The oxide-based thermoelectric 
material can be utilized at high temperature in an 
oxidizing environment. In addition, these materials are 
nontoxic and having low processing cost, thermal, and 
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chemical stability. Therefore, they have been recognized 
as promising thermoelectric materials [4]. However, 
despite of these advantages, the disadvantage of 
thermoelectric oxides is their low efficiency (figure of 
merit). Therefore, these oxides need to improve their 
thermoelectric properties to enhance the thermoelectric 
conversion efficiency. 

The misfit of calcium cobalt oxide (Ca3Co4O9) 
ceramics is eliciting considerable interest for their 
practical applications in refrigeration devices, 
recycling of waste heat to electricity, and solar 
thermoelectric generators [5]. Calcium cobaltite is also 
extensively studied as a possible thermoelectric oxide 
material due to its low electrical resistivity and high 
Seebeck coefficient with low thermal conductivity  
[6,7]. Therefore, in most thermoelectric applications, 
doping of Ca3Co4O9 ceramics to increase electric 
conductivity is indispensable. Many kinds of research 
have been conducted to evaluate the effects of various 
doping and co-doping elements on the changes of 
crystal structure and thermoelectric properties of the 
material. For instance, in the recent developments, 
significant enhancement in the thermoelectric 
performance of Ca3Co4O9 thermoelectric material was 
reported through combined strontium substitution and 
hot-pressing process [8]. While in Ref. [9], Na and W 
dual doping in Ca3Co4O9 system was claimed able to 
increase figure of merit value more than two times of 
the undoped sample at 1000 K. The crystal structure of 
Ca3Co4O9 misfit-layered as shown in Fig. 1 consists of  
two layers (Ca2CoO3)(CoO2)b1/b2

. The Ca2CoO3 layer is  
an insulating distorted NaCl type, and the CoO2 layer  
is an electrically conductive CdI2 type. They stack 

along the c-axis alternately, with b1 and b2 representing 
the length of the (Ca2CoO3) and (CoO2) sublattice, 
respectively, along the b-axis [10,11]. The Ca2CoO3 
layer decreases the thermal conductivity due to work 
as phonon scattering centers, whereas the CoO2 layer 
serves as electron transport sites due to having an 
effectively correlated electron system [7]. 

Several synthesis methods have been used to produce 
Ca3Co4O9 powder, including thermal hydro-decomposition 
[15], pechini [16], polymer solution synthesis [17], and 
solid-state reaction [18–22]. These processes are operating 
at high reaction temperatures, long process, and low 
chemical homogeneity [23]. Apart from powder synthesis, 
only solid-state reaction technique has reported the 
effect of calcination procedure, temperature, and time 
on thermoelectric properties. For instance, Smaczyński 
et al. [24] studied the influence of the solid-state 
reaction and calcination at different temperatures and 
time using the thermogravimetry–differential thermal 
analysis (TGA) test. The results showed that a stable 
composition of Ca3Co4O9 powder was obtained at 
calcination at 1073 K for a higher soaking time 
between 20 and 30 h. However, some traces of cobalt 
oxide were still observed in the calcinated powder 
because of the Ca3Co4O9 nonstoichiometry at room 
temperature. Bresch et al. [25] investigated the effect 
of the calcination procedure on the thermoelectric 
properties of Ca3Co4O9 powder using solid-state reaction 
technique. According to this study, no systematic study 
had been done on the thermoelectric properties affected 
by the calcination procedure. Conversely, the 
advantages of sol–gel combustion method are simple, 
easy control of homogeneity and stoichiometry, and  

 

 
 

Fig. 1  Crystal structure of Ca3Co4O9 [12–14]. Reproduced with permission from Ref. [12], © Elsevier Ltd and Techna Group 
S.r.l. 2018; Ref. [13], © The Royal Society of Chemistry. 2016; and Ref. [14], © American Chemical Society. 2016. 
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economical preparation [26,27]. Previous studies showed 
that synthesized Ca3Co4O9 powder produced by the 
sol–gel method results in fine-sized particles, as well 
as regular size distribution, which is significant in 
improving magnetic, electrical, and optical properties 
[12,28–31]. 

In the sol–gel preparation method, ethylene glycol, 
polyethylene glycol, and nitric acid were used to 
polymerize the solution, induce nitrate salt decomposition, 
and facilitate new compound formation [32,33]. On the 
other hand, citric acid and polyethylene glycol were 
used to polymerize the solution which produces 
carbonaceous xerogel and needs to be crushed [3,31, 
34–36]. Some researchers focused on the preparation 
of Ca3Co4O9 powder with different calcination 
conditions by using different preparation techniques. 
For example, Chen et al. [7] investigated the influence 
of the precursor calcination temperature on the 
microstructure properties of Ca3Co4O9 powder. They 
prepared the calcium cobaltite powder using the 
sol–gel technique and calcined at various temperatures 
between 923 and 1073 K. The results showed that the 
calcination temperature has a significant effect on the 
microstructure properties. Crystal size increases with 
the increase in the calcination temperature. However, 
they did not study the effect of calcination time on the 
crystallite size. 

Most of polymerizing agents used in powder 
preparation are acid-based which require special care 
in handling them for preparing ceramic powder. Recent 
developments show that starch has been increasingly 
used as a fuel in the sol–gel combustion method [37– 
43] due to the ease of preparation and environmental 
friendliness. Apart from that, it only generates CO2, N2, 
and H2O after ignition [44,45]. Moreover, the use of 
starch as a fuel is becoming more favorable because its 
ability to maintain the pH of the gel [46,47] and it 
generates non-toxic gases during the calcination process. 
The method is also capable of producing nanoparticle 
powder with pure phase [37–39,44,48] and homogenous 
doped particles [37]. It has been reported that the 
thermoelectric properties improve with smaller powder 
grain size, which exhibits low thermal conductivity 
[49,50]. Previous investigations on the properties of 
Ca3Co4O9 powder using starch as fuel were only limited 
to the preparation of powder at different temperatures 
[45]. However, there is no report published on the effect 
of calcination time on the particle size, crystallite size, 
and crystallinity as yet. The aim of the present study is 

to evaluate the microstructure of Ca3Co4O9 powder 
when it is prepared via the sol–gel combustion method 
and uses starch as a fuel during the calcination process. 

2  Materials and experiments 

Polycrystalline Ca3Co4O9 powder was synthesized 
using the sol–gel combustion method. Starch (C6H10O5)n 
was used as a combustion fuel and gelling agent. 
Calcium nitrate tetrahydrate Ca(NO3)2·4H2O (99%) 
and cobalt nitrate hexahydrate Co(NO3)2·6H2O (99%) 
were dissolved in distilled water and stirred using a 
magnetic hot-plate stirrer (IKA-C-MAG HS4, Germany) 
to obtain a stoichiometric mixture. The starch was 
mixed with distilled water, and the solution was added 
gradually into the mixed metal–nitrate solution. The 
produced transparent pink solution was heated under 
constant stirring within 353–373 K to obtain a pink gel. 
Subsequently, the resultant gel was decomposed using 
a hot-plate at 673 K for 1 h, and stirred until the gel 
burned and became a black precursor. TGA of the 
precursor was carried out using TA instruments Q500 
TGA (Leatherhead, UK) from room temperature to 
1383 K in the air at a heating rate of 10 ℃/min. The 
precursor was then calcined at different temperatures 
(773, 873, 973, and 1073 K) and time (4, 6, 8, 10, 12, 
and 14 h) at a heating rate of 10 ℃/min under ambient 
using Carbolite CWF 12/23 electric furnace. The 
morphology of Ca3Co4O9 particles was examined using a 
variable-pressure scanning electron microscope (Model- 
JEOL JSM-IT300LV) and energy dispersive X-ray 
spectroscope (JEOL JSM-IT300LV, Akishima, Japan) 
for elemental mapping. The crystal structures of calcined 
Ca3Co4O9 particles powdered at different dwelling 
times were characterized using a Rigaku (Smartlab) 
X-ray diffractometer with Cu Kα radiation (λ = 0.154, 
18 nm) and 2θ value was between 5° and 60°. The 
lattice structure of Ca3Co4O9 powder was examined 
under scanning transmission electron microscopy (STEM) 
with a JEOL JEM-ARM200F (FEG-STEM/TEM- USA 
model) at 200 kV with a 0.08 nm resolution, equipped 
with a Cs-corrector (CEOS GmbH) for the electron 
probe. 

3  Results and discussion 

The black precursor was obtained after the pink gel 
heated at 673 K for 1 h. The conversion process of the 
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gel is represented by Eq. (1). The synthesized black 
precursor was then studied using TGA, and the results 
are shown in Fig. 2. It illustrates the weight loss 
percentage as a function of temperature for the 
Ca3Co4O9 sample. The TGA curves show that the 
Ca3Co4O9 powder is stable up to 860 K, and no weight 
loss is observed below this temperature. The maximum 
weight loss peak occurred at 973 K as a result of 
Ca3Co4O9 compound formation, partially (CaO and 
Co3O4) from the decomposition of calcium carbonate 
into calcium oxide by the release of carbon dioxide 
(CO2). The weight loss process is represented by Eq. 
(2). The final weight loss occurred at 1073 K, where 
the decomposition residuals of cobalt oxide and 
calcium oxide formed a stable Ca3Co4O9 product. 
Equation (3) explains the weight loss due to Ca3Co4O9 
compounds formed. These results are in agreement 
with Refs. [45,51,52]. 
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Figure 3(a) shows the image of black powder formed 
after pink gel burnt at 673 K for 1 h. Figures 3(b)–3(e) 

 
 

Fig. 2  TGA of Ca3Co4O9 powder. 
 

illustrate the morphology of black powder after being 
calcinated at 773, 873, 973, and 1073 K for 4 h, 
respectively. As the calcination temperature increases, 
the size of black powder particles also increases,   
and the shape of particles becomes more defined at 
1073 K. 

Figure 4 demonstrates the X-ray diffraction (XRD) 
results of each calcinated powder. At low calcinated 
temperatures (< 973 K), the CaCO3 and Co3O4 phases 
are dominant while Ca3Co4O9 phase only appears 
marginally at 873 K. The amorphous phase of 
Ca3Co4O9 formed at 973 K, and single phase of 
Ca3Co4O9 only becomes more evident at 1073 K. 

Figures 5(a)–5(f) show scanning electron micrographs 
of the Ca3Co4O9 powder when calcined at 1073 K at 
different calcination dwelling time (4, 6, 8, 10, 12, and 
14 h), respectively. The images reveal that the 

 

 
 

Fig. 3  VP-SEM micrographs of black powder (a) before calcination; after calcination for 4 h at (b) 773, (c) 873, (d) 973, and (e) 
1073 K. 
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Fig. 4  XRD patterns of black powder before calcination 
and after calcinated for 4 h at 773, 873, 973, and 1073 K. 

 
 

calcination time has an effect on the particle size 
distribution and morphology of these particles. The 
calcined Ca3Co4O9 powder demonstrates a fine particle 
size with plate-like as well as irregular shape 
morphology. The distribution of particles size is quite 
homogenous and normally distributed as shown in 
Figs. 5(g)–5(l) with a mean of 1.15, 1.19, 1.38, 1.39, 
1.47, and 1.47 μm for 4, 6, 8, 10, 12, and 14 h 
calcination time, respectively. The morphology of the 
powder has changed slightly with increasing the 
average particle size, and some agglomerations were 
observed between fine particles. The number of 
plate-like shaped particles increased with the increase 
of calcination time, which is due to the grain growth 
over the soaking time. 

 
 

Fig. 5  VP-SEM micrographs of Ca3Co4O9 powder calcined at 1073 K with different calcination time (a) 4, (b) 6, (c) 8, (d) 10, 
(e) 12, and (f) 14 h and their particle size distribution in (g–l), respectively. Yellow circles indicate plate-like particles.  
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The effect of calcination time on lattice-parameters 
was analyzed using XRD patterns on the powder 
calcined at 1073 K. These XRD patterns are shown in 
Fig. 6(a). All peaks were indexed according to ICDD 
PDF card number 00-021-0139. Structural parameters 
were refined with the superspace group X2/m(0b0)s0 
using JANA 2006 software [53]. The refined XRD 
pattern of 12 h calcination time sample is shown in Fig. 
6(b), as an example. Miller indices are also illustrated 
in Fig. 6(a) and all the peaks determine the 
transformation of Ca3Co4O9 powder to the monoclinic 
misfit crystal structure. The lattice parameters were 
estimated based on the XRD patterns of each powder, 
as summarized in Table 1. The crystal parameters a = 
4.835 , b1 = 4.556, b2 = 2.824, c = 10.854, and b1/b2 
ratio of 1.613 for the 12 h-calcined powder were close 
to the crystal parameters as reported by Masset et al. 
[10,54–56]. From XRD data, the analysis of the  

  

 
 

Fig. 6  (a) XRD patterns of pure Ca3Co4O9 powder 
calcinated at 1073 K with different time of 4, 6, 8, 10, 12, 
and 14 h. (b) Rietveld refined XRD pattern of Ca3Co4O9 
for 12 h sample. 

crystallite size of Ca3Co4O9 nanocrystals was calculated 
using a modified Scherer equation as follows: 
 / cosD K           (4) 

where D is the crystallite size (nm), K is a shape factor, 
which usually takes a value of about 0.9, λ is the 
wavelength of X-ray source for Cu Kα radiation (λ = 
0.15418 nm), β is the full width at half-maximum 
(FWHM) of the observed peak, and θ is the Bragg 
diffraction angle (°) [38,57–59]. 

The crystallinities of Ca3Co4O9 powder were 
calculated from the XRD intensity data by assuming a 
two-phase structure (crystalline–amorphous) with a 
line through the minimum intensity to get an arbitrary 
background to diffraction trail, thus an arbitrary 
crystalline phase segregating from an amorphous phase 
[43,44]. The crystallinity Xcr was calculated by the 
following equation: 

 

cr
cr

cr am
100%A

X
A A

 


          (5) 

where Acr and Aam are the integrated areas of the 
crystalline and amorphous phases, respectively. Figure 
7 illustrates the relationship of the calcination time 
with the degree of crystallinity and crystallite size of 
the synthesized Ca3Co4O9. It can be seen that the 
degree of crystallinity and crystallite size increase with 
the increasing of calcination time. As the calcination time 
increases, the crystallinity of Ca3Co4O9 powder 
improves near to 92.9%, and it becomes less amorphous. 
The application of TE materials requires pure phase 
and thermally stable bulk materials [60]. It is noticed 
that the crystallite size and crystallinity (%) of powder 
become insensitive after 12 h calcination time. 
 

 
 
Fig. 7  Effect of calcination time on the crystallinity and 
crystallite size of Ca3Co4O9 powder. 
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Table 1  Relevant parameters and reliability factors of Ca3Co4O9 powder from XRD results calcinated at temperature 
1073 K with different dwelling time (4, 6, 8, 10, 12, and 14 h) 

Dwelling time (h)  
Composition Ca3Co4O9 

4 6 8 10 12 14 

Relevant parameters       

Crystal system Monoclinic 

Crystallite size (nm) 37.8 38.1 39.3 44.0 45.8 46.0 

Theoretical density (g/cm3) 4.67 4.67 4.68 4.68 4.68 4.68 

Volume (nm3) 0.2365 0.2364 0.2364 0.2361 0.2365 0.2365 

Lattice parameters       

A (nm) 0.4834 0.4829 0.4834 0.4833 0.4835 0.4836 

bCa2CoO3 (nm) 0.4558 0.4554 0.4558 0.4552 0.4556 0.4557 

bCoO2 (nm) 0.2825 0.2822 0.2824 0.2821 0.2824 0.2824 

b1/b2 1.6133 1.6135 1.6138 1.6134 1.6130 1.6136 

c (nm) 1.0841 1.0857 1.0840 1.0843 1.0854 1.0858 

α (°) 90 90 90 90 90 90 

β (°) 98.126 98.121 98.176 98.181 98.173 98.158 

γ (°) 90 90 90 90 90 90 

Reliability factors       

Rwp (%) 4.68 4.38 4.23 4.20 4.18 4.16 

Rp (%) 4.35 4.32 4.03 3.93 3.76 3.75 

GOF 3.87 3.85 3.80 3.33 2.55 2.54 
 

Based on the XRD results, it can be deduced that the 
highest purity of Ca3Co4O9 powder is obtained at 1073 
K for 12 and 14 h. Considering the energy consumption 
under these two conditions, 12 h is more favorable 
since their crystallite size and crystallinity are almost 
the same. Subsequently, the distribution of the elements 
on the microstructure of Ca3Co4O9 powder at 1073 K 
for 12 h was characterized using EDS elemental 
mapping, and the results are shown in an overlay color 
image in Fig. 8(a). The measured EDX spectrum of 
Ca3Co4O9 elements is illustrated in Fig. 8(b) with 
peaks of Ca, Co, and O, which verify the existence of 
Ca (24.9 wt%), Co (54.1 wt%), and O (20.7 wt%). 
Cobalt is homogeneously distributed in the investigated 
area, as shown in Fig. 8(c) with rose color. Identical 
distribution of calcium mapping element is represented in 
a light blue color, as shown in Fig. 8(d). The oxygen  
content is high and homogeneously distributed too, 
which referred by green color, as shown in Fig. 8(e). It 
can be said that from the SEM–EDS mapping, there 
were formations of an aggregate consisting of Co, Ca, 
and O. The quantitative of SEM–EDS analysis confirmed 
that the chemical compositions of the Ca3Co4O9 
sample corresponded to the nominal compositions. 
Furthermore, neither N nor C signals were detected in 

the EDS spectrum, which means the product is pure 
and free of any surfactant or impurity. 

Figures 9(a)–9(e) show the structure observed for 
the as-calcined Ca3Co4O9 powder at 1073 K for 12 h. It 
is noticed that the Ca3Co4O9 particles appear as 
non-uniform size and shape, as shown in Fig. 9(a). 
Enlargement view of Ca3Co4O9 particles is illustrated 
in Fig. 9(b). Darker contrast detected on the particles is 
attributable to metal-rich cobalt ion aggregates, bound 
with each other by the calcination process. High- 
resolution TEM images were obtained from the 
marked red square area Y in Fig. 9(b). The crystal 
layered structures of the material with distinct CoO2 
and Ca2CoO3 layers are clearly seen without lattice 
distortion defect. The atomic arrangement of Ca, Co, 
and O atoms are schematically presented next to 
high-resolution transmission electron microscopy 
(HRTEM) image in Fig. 9(d). This image is identical to 
the description of Ca3Co4O9 crystal structure as 
described in Fig. 1. The d spacing of planes of 
Ca3Co4O9 along the c direction is determined using 
Gatan software which is about 1.08 nm. This result is 
in agreement with the d spacing counted from the 00l 
peaks of the θ–2θ scan [6,14,18]. The selected area 
electron diffraction (SAED) patterns of the samples are 
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Fig. 8  SEM–EDS elemental mapping of Ca3Co4O9 powder calcined at 1073 K for 12 h. 

 

 
 

Fig. 9  TEM image of Ca3Co4O9 structure with (a) low-magnification image, (b) enlargement of X-area, (c) enlargement of 
Y-area, (d) lattice-resolved TEM image and schematic of the atomic arrangement of the layers. (e) shows the SAED patterns 
recorded from the respective samples. 
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shown in Fig. 9(e). The samples had particle sizes in 
the order of several micrometers; therefore, the SAED 
covers the area, including small grains. The SAED 
shows diffraction spots of single crystals mixed with a 
speckled-ring pattern. 

4  Conclusions 

Ca3Co4O9 is successfully synthesized using starch- 
assisted sol–gel auto-combustion method. The final 
powder is obtained through calcination at 1073 K by 
varying soaking time for 4, 6, 8, 10, 12, and 14 h. All 
the calcinated powder transforms into a single-phase 
calcium cobalt oxide with the particle size ranging 
from 1.15 to 1.47 µm. Similarly, the purity of calcium 
cobalt oxide particles increases with the increase of 
calcination time and becomes saturated after 12 h. 
TEM images also show no distinct lattice distortion 
defect observed on the crystal structure. The maximum 
attainable purity of Ca3Co4O9 is 92.9%, which is a very 
encouraging result for the thermoelectric material 
applications. Besides the purity, the performance of 
thermoelectric material could be further enhanced via 
doping elements for improving their thermoelectric 
properties. 
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