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A B S T R A C T

Reliability and costs are mainly considered in performance analysis of renewable energy-based distributed grids.
Hybrid Optimization of Multiple Energy Renewables was used in techno-economic analysis of renewable energy
systems involving photovoltaics, wind, diesel and storage in tropical regions of Amazon, Central Asia and
Mediterranean. In a study for a Guinea Savannah region, 70% of renewable energy fraction was achieved.
However, levelized cost of energy of 0.689 $/kWh was higher than tariff rate of 0.6 $/kWh. This paper considers
Hybrid Optimization of Multiple Energy Renewables to achieve lower levelized cost of energy and net present
costs of a nanogrid for increased reliability and low per capita energy consumption of 150 kWh in a Sudan
Savannah region of Nigeria. The proposed grid connected nanogrid aims to serve daily residential demand of
355 kWh. A range of 0.0110 $/kWh to 0.0095 $/kWh and $366,210 to $288,680 as negative values of levelized
cost of energy and net present cost respectively were realized, implying potentials for a large grid export. The
renewable energy fraction of up to 98% was also achieved in addition to low greenhouse gas emission of 2,328
tons/year. The results may further be consolidated with strategies for power dispatch and load scheduling.

1. Introduction

The uncertainties in the global energy markets, the environmental
implications of the fossil fuel combustions and high level of power
losses continue to be a threat to the prospects of conventional power
grids. The large economies of western countries, Asia and Middle East
utilize the potentials of the renewable energy (RE) resources available
within their locations to reduce socioeconomic implications of tradi-
tional fossil fuel power generations. The less economically advantaged
societies of Africa, South America and the Caribbean and Central Asia
are naturally endowed with adequate solar, wind and water resources
to supplement the persistent energy deficits using an emerging tech-
nology of clean energy production. Yet, the limited economic strength
of the countries within the regions is an impediment to realization of
energy goals in both fossil fuel and renewable resources. However,
intermittence of RE resources is challenging to the prospects of RE
system integration into power grids. These implies that optimization
methods and strategies are important to feasibility of RE generation in
today’s power system grids.

Different optimization methods are considered in finding optimal
solutions to planning and operation of RE-based or RE-integrated sys-
tems. In reference Momoh (2012), optimization techniques are being

classified into five. The five distinctive optimization classes categorized
into more general concept of optimization classifications are shown in
Fig. 1. It is worthy of note that adaptive dynamic programming, evo-
lutionary programming and intelligent methods are classified into ar-
tificial intelligence (AI) category of optimization methods for clar-
ifications based on their bio-inspired characteristics.

Sizing of components is a major aspect of power grid planning.
Optimization for sizing in power grids refers to economic selection of
system’s components (as inputs) for the purpose of achieving best
possible technical and/or economic performance objectives (as out-
puts). Sizing of components in a distributed generation (DG) system
involves selection of component specifications depending on load to be
served. Issues such as unmet demands and dump energies resulting
from supply shortage and non-curtailed and/or oversized system re-
spectively are examples of uneconomic performance of a system.
Various methods were used in literature to optimize RE-based power
systems for economy and reliability. Sizing methods implemented using
classical algorithms include grid connected microgrid’s battery energy
storage system (BESS) to assess the economic performance using Linear
Programming in (Sukumar, Mokhlis, Mekhilef, Naidu, & Karimi, 2017).
Islanded hybrid microgrid is designed to consists of power, cooling,
hydrogen storage and load (Li, Roche, Paire, & Miraoui, 2017). A multi-
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objective sizing problem was decomposed and solved using Nash Bar-
gain method, where cost of operation and carbon emission were re-
duced by 15.7% and 12.9% respectively (Zenginis et al., 2017). Mixed
integer linear programming (MILP) was proposed in (Strnad & Prenc,
2017) and (Akram, Khalid, & Shafiq, 2018) to find optimal sizes in
system with DG unit and battery based on operational savings and in-
vestment cost objectives. An analytical methods of Loss of Power
Supply Probability (LPSP) and Reliability Improvement Method (RIM)
was used in (Ayop, Isa, & Tan, 2018) to size a photovoltaic (PV) only
standalone nanogrid for a university building. Only 4.9% was realized
by the LPSP, whereas the RIM was able to improve the system by
77.8%. A cost-effective energy storage was sought in (Jacob, Banerjee,
& Ghosh, 2018). Hence, pinch analysis and design space for a hybrid
storage were proposed as generic sizing methodology. A cyber-physical
Energy Management (EM) and sizing commitment for a networked
nanogrids were implemented in (Ban, Shahidehpour, Yu, & Li, 2017) for
improved cost and reliability. MILP was also used for capacity sizing of
generating components and storage. A joint capacity optimization was
proposed in (Akram et al., 2018) to reduce initial and running costs for
a community-based PV/Wind/Diesel and Energy Storage System using
labyrinthine optimizations to size generating components and loads.

The AI-based optimization methods involve techniques im-
plemented using intelligent systems. Example of such implementations
is multi-objective optimal sizing of a storage in Electric Vehicle, where
GA based Fuzzy Logic Control were used to improve and predict the
dynamic life span of the battery storage (Rahbari et al., 2017). A Multi-
objective particle swarm optimization (PSO) was developed to balance
the benefits of cost and reliability in a microgrid (Borhanazad,
Mekhilef, Gounder Ganapathy, Modiri-Delshad, & Mirtaheri, 2014).
Sizing is proposed using adaptive nesting evolutionary algorithm for a
grid-connected microgrid, made up of PV, wind and BESS. Results ob-
tained were compared with that obtained from a two-step algorithm,
where 3.5% improvement was achieved (Mallol-Poyato, Jiménez-
Fernández, Díaz-Villar, & Salcedo-Sanz, 2017). Hybrid storage of Lead-
Acid and Lithium-ion batteries and supercapacitors were sized in order
to optimize microgrid scheduling due to uncertainties of the natural
resources, hence, utilized PSO to obtain sizing parameters of Lifecycle
cost (LCC), construction cost, operation and maintenance costs (Liu,
Chen, Zhuo, & Jia, 2017). An autonomous community microgrid
planning in (Hussain, Arif, Aslam, & Shah, 2017) considers siting and
sizing of tri-generation equipment. The results obtained from PSO-
based solutions were tested on standard IEEE 33-bus distribution.

There are implementations of software-based optimizations in lit-
erature that were considered to be faster and more versatile than the
developed classical or AI-based optimization methods. Most of the
software-based optimizations implemented used Hybrid Optimization
of Multiple Energy Renewables (HOMER). However, some studies
consider other optimization software such as TRNSYS in (Atia &
Yamada, 2016) and OPENDSS in (Sepulveda, Camilo, & Mauricio,
2018). Field-on-Lab Demonstration for a PV/Wind/Battery nanogrid

was analyzed by simulations in HOMER environment and tested by
hardware (Tudu, Mandal, & Chakraborty, 2018). Against the obstacles
of distance, economy and official bureaucracies, electric nanogrid is
proposed for a rural electrification of an energy-poor community by
analyses and load aggregation in HOMER. Another nanogrid sizing
considers an estimated and measured weather data for comparison in
sizing of a PV/Wind/Battery grid-connected hybrid. Lower Levelized
Cost of Energy (LCOE) of 0.15 $/kWh against the unit tariff of 0.175
$/kWh was realized hence, the results obtained corresponds to lower
Net Present Cost (NPC) for a 25-year investment (Sadati, Jahani,
Taylan, & Baker, 2018). A study in (Sepulveda et al., 2018) also con-
siders HOMER in sizing of a DG system made up of PV cells and wind
turbine (WT) system to be integrated with a distribution system.
HOMER and Internet of Things (IoT) smart systems were used in de-
signing a PV-based nanogrids based on requirements of a Middle East
climate. The main objective of the work was to use IoT for monitoring
and control of power consumptions. Hence, PV cells and batteries were
sized based on location’s load profiles (Akmal, El Kashif, Ghazal, & Al
Tarabsheh, 2016). HOMER was used to implement nanogrid design, as
a standalone system to achieve 100% availability of electricity supply to
an energy-poor village in Central Nigeria (Akinyele, 2017). The RE
fraction achieved was up to 70%. However, the LCOE of 0.628 $/kWh
obtained from the system was comparatively higher than the retail
price 0.6 $/kWh, while the greenhouse gas (GHG) emissions not being
addressed.

In this paper, it is envisaged that the 150 kWh average per capita
electricity consumption in Nigeria can be improved using a nanogrid
system design for a suburban quarter of Danladi Nasidi in Kano Nigeria
using HOMER-Pro optimizer. The nanogrids as a scaled down system of
microgrids may be a formation of a confined electricity supply system
to serve limited area or specific application while in isolation or in
connection to the main grid that differ in designs, types or size of loads
they deliver (Burmester, Rayudu, Seah, & Akinyele, 2017; Paper & Boer,
2013). Thus, having microgrids concepts in mind, configuration for
nanogrids may be easier to comprehend. What needs to be considered
are the types and sizes of loads and location’s RE resources. These
mainly determines nanogrid’s type and size, as DC nanogrids, AC na-
nogrids or hybrid system (Burmester et al., 2017). The performance of
the proposed nanogrid under six different component configurations in
terms of lower LCOE and NPC were analyzed and were found have
negative value ranges of 0.0110 $/kWh to 0.0099 $/kWh and $366,840
to $290,100 $290,100 respectively from the first four out of the six
configurations analyzed. This indicates a good prospect for grid pene-
tration (Bachner, Tuerk, Williges, & Steininger, 2017; Ueckerdt, Hirth,
Luderer, & Edenhofer, 2013). In addition to the economic achieve-
ments, the RE fraction of up to 98% was also realized with a relatively
high GHG emissions rates.

Fig. 1. Classifications of optimization techniques used in modern power grids.
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2. The reference case analysis

Performance of the standalone system considered in (Akinyele,
2017) is robust in terms of RE fraction and availability as indicators of
system reliability. However, higher LCOE as economic indicator and
unaddressed GHG emission remain to be issues. In the proposed con-
figurations, grid connection substituting diesel set used in referred
study in reference (Akinyele, 2017) is envisaged to at least maintain the
same RE fraction and most likely reduce the LCOE significantly. The
unreported GHG emission in the referred work shall be considered in
the proposed system’s analysis to compare within the global averages.

Location based optimization cases summarized in Table 1 indicates
performance of RE based systems implemented for reliability and
economy. Most of the locations are tropical regions such that solar in-
solation and moderate wind speeds are much available (E.
(International R. E. A.-I. Aberg et al. (2018); International Renewable
Energy Agency, 2014). Hence, PVs and WTs are mostly used as gen-
erating components. Over a half of the works consulted were standa-
lone systems, but the most important aspect of interest is the wide
margin in between the performance parameters. While the NPC ob-
tained were few hundred thousand United States dollars (US$) in some
of the result analysis, others run into tenths of millions of US$, which
could be attributed to size variations and hence justified. The LCOE
differences however, shall be considered comparatively for analysis.
Considering the most expensive LCOE realized in (Akinyele, 2017),
different operating conditions were analyzed, and hence 0.315 $/kWh
to 0.689 $/kWh is the highest so far obtained from the analyses. The RE
fraction of 70% may be considered adequate however, GHG emission is
not reported and hence, considered not part of the reference study’s
investigations. Diesel plant being part of the reference case power
sources is responsible for the remaining 30% system’s power con-
tribution whose knowledge of the emission rates should be considered
important to the study analysis. The summary presented in Table 1
indicates parameters used mainly in performance analysis in literature,
that mainly consider NPC, LCOE, RE fraction and GHG emission rates
being expressed in Eqs. (1), (2) and (3) which are also used in the case
study analysis. Other parameters considered in various analysis include
plant availability, performance ratio, internal rate of return, return on
investment, the net present value and peak-average-ratio.

The NPC as a main parameter, also referred to as the LCC for a
project is considered as the difference between costs incurred towards
installation, maintenance, operation and replacement costs and all
revenues realized over the entire project life time (Akinyele, 2017;
HOMER ENERGY, 2018; Sadati, Jahani, Taylan, & Baker, 2017). This
can mathematically be represented by the given Eq. (1), where Ct is the
annual cost for t series of investment years, n as the total number of
years for the project lifetime and r as the annualized discount rate.

=
+=

NPC C
r(1 )t

n
t

t
1 (1)

The LCOE is another major economic indicator in system analysis as
the average cost incurred to produce per unit kWh of useful electricity.
Note that LCOE does not cover energy needs in serving thermal loads
(Akinyele, 2017; HOMER ENERGY, 2018; Sadati et al., 2017). The
mathematical expression for determining LCOE is given in Eq. (1),
where CG CB HS and ES are the annualized cost of electricity generation,
total marginal cost of boiler, the total heat served and the total elec-
tricity served respectively.
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The GHG emission is a derivative of technical performance resulting
from combustion of fossil fuels in energy generation. Reference
Boussetta, El Bachtiri, Khanfara, and El Hammoumi (2017) categorizes
carbon dioxide (CO2), Sulphur Dioxide (SO2) and Nitrogen oxide (NOx)Ta
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among the pollutants expected from a PV/Wind hybrid systems.
Whereas Methane (CH4) is another pollutant but insignificantly con-
tributes to emissions in power generation. The RE fraction is obtained
from percentage contribution of the participating RE components
within a projects per total energy generation. Hence, Eq. (3) as con-
tained in Boussetta et al. (2017) is provided for calculating the values of
the fraction, where fRE is the RE fraction, ENR is the non-RE production
and ESER is the total energy served.

=f E
E

1RE
NR

SER (3)

3. Case study

In the proposed study, nanogrid comprising of five housing units in
Danladi Nasidi quarters, Kano Nigeria is aimed to be designed using PV
and WT as generating components. The proposed grid-connected
system is expected to be supported by a battery storage for added re-
liability against periods of autonomous operations. Table 2 shows
electrical loads for the five selected houses based on 24-h demands as
obtained from consumer load survey upon which the proposed system
design shall be based. HOMER optimization software is considered for
the analysis to evaluate techno-economic performance parameters of
NPC, LCOE, RE fraction and GHG emission, being expressed in Eqs.
(1)–(3). The method is chosen for the study due to its speed and ver-
satility (support for numerous RE generating sources and different op-
erating topologies). The area is located within 11°, 56.38`N and 8°,
37.07`E latitude, and falls around the center of northern Nigeria’s
Sudan Savannah region, where the average solar radiation hours are up
to 11.5 (Honsberg & Bowden, 2019).

4. The nanogrid system design

The proposed grid-connected nanogrid design whose location’s
weather data of solar radiation, ambient temperature and wind speeds
are shown in Figs. 3 and 4, comprises of generating system, power
converters and storage to be sized based on the 24 -h maximum de-
mands shown in Fig. 2. There are different sensitivity cases in selection
of components based on specifications for optimal configurations of
generating components, BESS, power converters and main grid cou-
pling. The main implications in the sensitivity analysis is the wide range
of technical and economic performance options to be realized, which
shall be the basis of most optimization commitments. Schematics of
Fig. 5 illustrates the system’s architecture as an overall arrangement of
components and parts of the nanogrid, upon which configurations
based on capacity size shall be determined by Eqs. (4)–(11) (Boussetta

et al., 2017).

4.1. The case study load profiles

The case study location’s energy consumptions summarized in
Table 2 consists of electrical and thermal loads meant for domestic
purposes. This indicates the location’s consumer category of residential
system. The contents of the Table highlight the appliances’ power rat-
ings, quantity in use for each household and estimates of daily usage.
The hourly distribution of the load is also presented graphically in
Fig. 2 for a 24-h consumption cycle, where maximum demand is
355 kW h and peak for 24-h profile is about 42 kW.

4.2. The system components and structure

The reference study whose results is aimed to be benchmarked is the
nanogrid design and analysis carried out in Akinyele (2017). Both the
reference and the proposed designs are analyzed in HOMER for opti-
mized configurations however, major differences between the two are
the autonomous architecture of the reference, the grid connection in the
proposed nanogrid design and the climatic conditions of the two loca-
tions. The nanogrid is proposed to be connected to the main grid system
that supplies the case study location in vertically structured conven-
tional grid system equipped with a 500kVA, 33 kV/415 V feeder. The
illustrations of Fig. 5 show the structure the proposed nanogrid com-
prising of the following RE based components;

(a) The solar photovoltaic system

The configurations for the PV depend on commercially available
specifications such as the rated power, lifespan as well as efficiencies
obtained from datasheets (Tycon Solar, 2018). The capital and re-
placement costs are important to economic performance analysis, as
summarized in Table 3. Energy generated from the PV cells for time (t),
that falls within theoretical frameworks of Eqs. (4) and (5) as obtained
in (Atia & Yamada, 2016), where TC is the temperature of the cell in °C,
TNO is nominal operating cell temperature in °C, IGR is the incident solar
radiation (kW/m2), Ta is the ambient temperature in °C, IST is the
standard radiation (kW/m2), kp is the power temperature coefficient
(%/°C) and TSTC is the standard test condition cell temperature (°C).

= +T t T t I t NOCT( ) ( ) ( ) 20
0.8C a GR (4)

=P t Y I t
I

K
T t T( ) ( ) 1

100
( ( ) )PV d

GR

ST

p
C STC

(5)

Table 2
Energy consumptions from selected residential buildings of Danladi Nasidi Quarters.

Appliances Power Ratings (W) Household 1 Household 2 Household 3 Household 4 Household 5

Quantity Daily usage Quantity Daily usage Quantity Daily usage Quantity Daily usage Quantity Daily usage
(Hours) (Hours) (Hours) (Hours) (Hours)

Lightings 18 11 8 10 12 25 12 25 12 12 6
Fridge 450 1 24 – – 2 24 1 24 1 24
A/C 900 3 8 1 6 3 14 – – – –
TV set 330 2 12 1 12 3 16 1 16 1 16
Water pump 750 1 1 – – 1 1 1 1.5 1 1
Electric iron 1000 1 1 1 1 1 1 1 2 – –
Blender 250 1 0.17 – – 1 0.5 – – 1 0.08
Washing machine 1900 1 0.75 1 1 1 1.5 – – – –
Ceiling fan 90 5 16 3 16 3 16 9 16 3 16
Rice cooker 450 – – 1 0.75 – – – – – –
Standing fan 50 1 16 2 16 1 16 – – 1 16
Electric kettle 2000 – – 1 0.3 – – – – 1 0.5
Microwave oven 1200 – – – – – – – – 1 0.08
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(a) The wind turbine model

The Equations for power generation in WT obtained in (Atia &
Yamada, 2016) are used in the proposed work as Eq. (6) based on
specifications for the chosen WT models summarized in Table 4 ob-
tained from a datasheet given in Enercon Energy (2015) Parameters for
the wind generation, PWT in watts (W) for a time t from Eq. (6) are v as
the general wind speed in m/s, vci as the cutout speed in m/s, voc as the
cutout speed and vr as the rated speed. Based on the given Equation
three conditions may be considered in obtaining generated power from
the WT, PWT. (i) PWT may be zero when v(t) is less than vci or v(t) is
greater than vco. (ii) PWT may be a fraction of the WT’s rated power
(Prated) when v(t) is greater than vci and less than vr. (iii) PWT may be
equal to the WT’s Prated when v(t) is greater than vr and less than vco.

=

< >

× > <

> <

P t

for v t v or v t v
v t V

v v
P for v t v and v t v

P for v t v and v t v

( )

0, ( ) ( )
( ) ( ) ( ) ( )

, ( ) ( )

WT

ci co

ci

r ci
rated ci r

rated ci co

3 3

3 3

(6)

(a) The battery storage system

The main sizing parameters in battery system is the energy storage
capacity measured in Ampere-hour (Ah), the terminal open circuit
potential in volts (V) expressed in Eq. (7) and the battery type. Lifespan
in a battery is mostly determined by the battery’s usage and state of
charge (SOC) expressed by the constraints defined in Eqs. (8) and (9),
where QB is the amount of the battery charge, ηPch is the efficiency
based battery charging, PDch is the battery discharge power, NB is the

battery capacity size and Qf being the battery charging factor (Table 5).

+ = +Q t Q t P t P t( 1) ( ) ( ) ( )B B ch Dch (7)

Q t SOC N Q t( ) ( )B B f
¯

(8)

Q t SOC N( ) _B B (9)

(a) The power converters

The optimal size of an inverter normally corresponds with the RE
size (PV and BESS ratings). Voltage produced by PVs and stored by
batteries is a direct current (DC) type such that serving alternating (AC)
based loads and grid import/export requires inverters, whose operation
consumes energy that contributes to losses. This implies that effi-
ciencies are always considered in inverter capacity sizing as specified in
Table 6. Hence, Eqs. (10) and (11) for the proposed nanogrid model as
obtained in (Atia & Yamada, 2016) describe the constraints upon which
the inverter will be specified and operate, where DC AC/ and AC DC/ are
efficiencies of the inverter under DC to AC and AC to DC energy con-
version respectively. NInv is the capacity size of the inverter, PDch is the
charge/discharge power of the battery and PG is the grid power im-
ports/exports.

+P t P t N[ ( ) ( )]DC AC Dch PV Inv/ (10)

+P t P t N[ ( ) ( )]AC DC WT G Inv/ (11)

Fig. 2. A full day load demand data of the proposed nanogrid of Danladi Nasidi Quarters.

Fig. 3. Annual profile of solar irradiance and ambient temperature for Danladi Nasidi Quarters, Kano, Nigeria.
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Fig. 4. Annual profile of wind speeds for Danladi Nasidi Quarters, Kano, Nigeria.

Fig. 5. Proposed nanogrid architecture indicating hybrid energy sources, loads and storage.

Table 3
Specifications and cost data of sampled commercial solar panels (Casey, 2018; Tycon Solar, 2018).

Brands Power ratings (watts) Maximum efficiencies Lifespan (years) Initial cost/watt ($) Replacement cost/watt ($) O&M cost/watt

TPS 30–250 24.3 25 2.86 2.86 0
LG 330–350 20.3 25 3.19 3.19 0
SOLARMO 100–240 18.78 – 1.7 1.7 0.015
Canadian Solar 290–330 18.33 10 3.09 3.09 0
HANHWA Q Cells 290–310 18.1 12 2.94 2.94 0

Table 4
Specifications and cost data of sampled commercial wind turbines (Enercon Energy, 2015).

Brands Power ratings
(kW)

Cut-in speed (m/
s)

Rated speed (m/
s)

Cut-out speed (m/
s)

Lifespan (years) Initial cost/unit
($)

Replacement cost/unit ($) O&M cost/unit
($)

Enercon 900 3 10 28 25 137,190 137,190 1,000
Hyundai 1650 3.5 12 20 20 135,500 135,500 1,200
Vestas 3000 3 14 25 25 846,112 846,112 2,500
Siemens 1800 3 13 25 20 150,320 150,320 1,200
Suzlon 2100 3.5 11 25 20 211,400 211,400 1,350
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5. The nanogrid optimized configurations

The components of the nanogrid shown in Fig. 5 have their speci-
fications considered as part of the input parameters to the HOMER
optimization system in addition to load and RE resource data. Ad-
vantages of using HOMER include robustness in hourly analysis of input
data for the purpose of achieving desired optimization objectives based

on constraints of energy balance between electric/thermal loads and
supply system described in Fig. 6. By implementing a year-long ana-
lysis, the method yields several optimal configurations of mainly
technical and economic parameters such as the LCOE, LCC, capital cost,
replacement cost, operation and maintenance cost, renewable pene-
tration and GHG emissions. Hence, optimization objectives of the pro-
posed nanogrid shown in Fig. 5 may be achieved by simulating the
input parameters of weather data, load profiles, RE component speci-
fications and costs provided in Section 3 as described in Fig. 6. Sensi-
tivity analysis can be used to further analyze optimization results on
hourly basis due uncertainties of the RE resources and loads. With
sensitivity analysis, variation in optimization results may be viewed to
reflect corresponding variations of input parameters due to their un-
certainties or different range of applications. Different ranges of com-
ponents specifications were used to produce optimal configurations
shown in Table 7. The PV rating (RP) chosen for the analysis is the
250W TPS shown Table 3 due to its lower per kW cost of $2.86. From
Eqs. (12) and (13), it implies that for 150 kW peak array capacity (PM)

Table 5
Specifications and cost data of sampled commercial energy storage batteries (Victron Energy, 2019).

Brand Size (Ah) Terminal rating (V) η (%) DoD (%) Lifespan (years) Capital cost ($) Replacement cost ($) O&M cost

Victron 60 12 98.5 95 7.5 356 356 10
BMZ 120 55 97 80 7 532 532 15
Panasonic 10.6 46.8 90 Auto 10 156 156 10
NEC 35 13.2 70 50 – 322 322 22

Table 6
Specifications and cost data of renewable energy inverters (Solar Edge, 2018).

Brand Size (kW) Voltage inputs (v) η (%) Voltage outputs (v) Lifespan (years) Unit cost ($) Replacement cost ($) O&M cost ($)

Solar Edge 20 6 98 230 10 3,384 3,384 250

ABB 3 335-800 96 230 10 14,365 1,365 61
5 ” 96.3 ” ” 18,952 1,952 40
6 ” 96.6 ” ” 23,056 2,056 103
10 ” 96.6 ” ” 28,609 2,609 214
15 ” 96.6 ” ” 38,266 3,266 227
30 ” 97 ” ” 40,680 4,680 305
50 ” 97 ” ” 48,044 4,044 349

Fig. 6. Implementation of optimizations in the proposed nanogrid using HOMER optimizers.

Table 7
Optimal configurations for components of the proposed nanogrid.

Configurations PV (kW) Wind (kW) Li-ion Battery (kWh) Converter (kW)

1 150 4500 – 130
2 150 4500 60 130
3 – 4500 – –
4 – 4500 60 60
5 150 – – 130
6 150 – 60 130
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to be installed, 600 units of PV modules (NPV) having intrinsic area
(Aintrinsic) of 617.28m2 have to be used where based on the module
efficiency (ηPV) of 24.3% and standard solar irradiance IST of 1000W/
m2. The Enercon WT systems used have 900 kW rated capacity which
requires 5 units to be installed, that is average of 1 unit per housing
unit. Victron having the second lowest price per unit Ampere-hour (Ah)
of $5.93 is the battery chosen for the analysis. The preference for Vic-
tron is that it has higher efficiency and DoD of 98.5% and 95% against
the cheapest analyzed BMZ battery’s efficiency and DoD of 97% and
80% respectively. Similarly, Solar Edge inverters have more advantage
in terms of cost and efficiency of $169.20 and 98% against range of ABB
inverters with lowest price of $960.88 and highest efficiency of 97%.

=N P
RPV

M

P (12)

=
×

A P
Iintrinsic

M

ST PV (13)

The PV and wind system considered were analyzed based on
available wind speeds and solar irradiance and load profiles of the lo-
cation shown in Figs. 3 and 4. The system was simulated at 6% and 5%
interest and discount rates respectively under 0.01 design precision and

projected to last 25 years (Fig. 6). Top six configurations are considered
for analysis based on their optimality ranking and discussed in the
following section. The remaining configurations exhibits annualized
characteristics of high energy imports and nothing to export which may
be feasible but not optimal to be preferred in the analysis going by the
trend where increase in imports and corresponding decrease in exports
affect the values of LCOE and NPC as indicated in Table 8.

6. Optimization results, analyses and discussions

The optimization results of the autonomous nanogrid discussed in
(Akinyele, 2017) were set to be used to compare the performance of the
proposed nanogrid in both reliability and economy. The 70% renewable
penetration realized in the reference study is being adequate however,
the LCOE of 0.689 $/kWh needs to be reduced to some values much
lower than the retail rates of 0.6 $/kWh. One other important issue to
be considered is that the autonomous system has dump energies due to
unused RE generation especially when the maximum SOC of BESS are
reached. Hence, the proposed nanogrid takes dump energy into con-
sideration and suggests grid trade-offs so that the excess generation can
be exported to the grid to increase system’s economic performance. In
HOMER, a resistive heater is usually employed to convert the excess

Table 8
Techno-economic performance parameters of the proposed grid-connected nanogrid.

Configurations LCOE ($/kWh) NPC ($) RE Fraction (%) GHG Emission (kg/year) Grid Imports (kWh) Grid Exports (kWh)

1 −0.0110 −366,210 98 32,463 51,037 2,329,140
2 −0.0110 −365,584 98 32,463 51,037 2,329,140
3 −0.0094 −302,358 97 43,344 68,143 2,138,462
4 −0.0099 −288,680 97 43,344 68,143 2,138,462
5 0.0220 96,852 60 86,716 136,327 112,664
6 0.0222 96,928 60 86,716 136,327 112,664

Fig. 7. Hourly power generation and loads for a sampled cold and dry seasonal December/January days.

Fig. 8. Hourly power generation and loads for a sampled hot and rainy seasonal May/July days.
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energy into thermal load using “Thermal Load Controller” HOMER
ENERGY (2019). Since the proposed nanogrid architecture consists of
grid connection, economically it becomes imperative to use grid as a
dump load for absorbing the excess energy. Optimization results of the

proposed system being presented in Table 8 shows six topmost optimal
configurations each with performance parameters being obtained. It is
worthy of note that the parameters realized determines systems’ con-
figuration to be chosen depending on the set objective functions, which
are all tied to the grid utilities.

(a) Configurations 1 & 2

Configuration 1 is the highest optimal settings obtained from the
system comprising of a 150 kW of PV, 4500 kW of WT and 130 kW
inverter. The inverter size is determined from Eqs. (10) and (11) in-
dicating that power losses in inverter circuits contributes to in-
efficiencies. Table 6 shows that the lowest inverter efficiency is 96%
however, only 86.67% (130 kW) of the 150 kW PV rating is considered
as lowest and feasible inverter size in the proposed configurations,
which is the same as 1.154 array-to-inverter ratio, that falls within the
range (1.15 to 1.25) recommended in (Thoubboron, 2018). This con-
figuration exhibits large potentials for energy export to the grid which
implies much lower LCOE and NPC comparatively. The RE fraction of
98% is much adequate to be compared with many configurations of
autonomous or grid-connected systems. The −0.0110 $/kWh cost of
energy implies a corresponding positive gain of 0.0110 $/kWh by the
nanogrid for every kW generated and exported. This configuration also
has a comparatively low GHG emission rates. Configuration 2 differs
from configuration 1 only for the addition of 60 kW h BESS capacity.
The only parameter being affected by the change is the NPC with dif-
ference of $626 (−$366,210 in configuration 1 compared to
−$365,584 in configuration 2) for an annualized sum where the first
configuration has better advantage.

(b) Configurations 3 & 4

There are peculiarities within configurations 3 and 4 from the six
optimal solutions realized. The two configurations (3 & 4) consider only
WT as the only source of RE generation to be used by the nanogrid.
Thus, under these configurations grid exports are still high, implying
that a corresponding low grid imports, negative values of LCOE and
NPC (−0.0094 $/kWh and−$302,358 respectively) can be maintained
that may have to require functional FIT to be implemented (Fendri &
Chaabene, 2019). The RE fraction of 97% is maintained in the two
configurations however, there is an appreciable growth in the GHG
emission against the first two sets of configurations. The system com-
ponents in the fourth configuration differ from the third configuration
only in the use of 60 kW h BESS. The gain in the LCOE of 0.0001 $/kWh
(−$0.0094 to −$0.0095)kWh was insignificant, whereas the system

Fig. 9. Flowcharts describing algorithms for the proposed nanogrid operation.

Fig. 10. Annualized energy trade-offs under different configurations of the
proposed nanogrid.

Fig. 11. Three identical energy annualized trade-offs of the nanogrid config-
urations.
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value reduced by $13,678 (NPC changes from −$302,358 to
−$288,680). These arrangements have a feasible solution but, with a
comparatively lower benefits than the first two configurations. The
GHG emission is high however, grid export and import levels are ade-
quate for the configurations to maintain negative values of both LCOE
and NPC.

(c) Configurations 5 & 6

Although fifth in the feasibility ranking, configuration 5 is the first
configuration to have a positive value of LCOE and NPC. The change
corresponds to grid imports that exceed the exports. This is another
optimal configuration whose contribution to grid maintains a low LCOE
as compared to the current grid tariff rates of 0.6 $/kWh. The positive
values of LCOE and NPC indicate the aggregate energy cost to be borne
by the nanogrid per each kW generated. The configuration only con-
siders PV for RE penetration hence, RE fraction in this case dropped to
60%. In configuration 6, values for RE fraction, GHG emission, grid
exports and imports did not differ from the fifth configuration. The PV
only grid-connected system of configuration 5 added a 60 kW h storage
capacity. The addition causes increase in LCOE by 0.0002 $/kWh that
appear insignificant although NPC increased by $76. The much lower
LCOE realized in the six configurations are only but average values for
electricity cost for a year-long operation. Hence, LCOE values may
differ periodically based on operational conditions of the system in-
stantaneously. Optimal EM objectives for generating components’ dis-
patch and load scheduling can be useful to improve economic perfor-
mance analysis and realistic time of use tariffs (Khalkhali & Hosseinian,
2019).

The six configurations exhibit appreciable RE penetrations of 60 to
98% that is adequate to highly rate the nanogrid performance. The
wind contributes close to 91% of the total RE generation, while 9% of
PV contribution may insignificantly be considered in system config-
urations however, there are periods of wind power loss as shown in
Figs. 7 and 8 (when actual wind speeds are lower than WT’s design cut-
in speed) upon which the nanogrid may be used to improve the system
reliability based on Eq. (6) with respect to wind profiles of Fig. 4. The
constraints of limited space for the PV array and needs for promotion of
RE system of power generation and utilization due to free inexhaustible
fuels is another deciding factor for such combinations. Moreover, it is
unlikely that the 4500 kW capacity of the WT could be fully achieved

(even when the wind speeds are above cut-in speed) due to the WT’s
capacity factor that hardly exceeds 0.4 (40% of the installed capacity)
(Khalkhali & Hosseinian, 2019). The envisaged prospects for energy
tradeoffs indicated in Fig. 10 shall be feasible through functional system
operations to be implemented by optimization algorithms described in
the flow chart of Fig. 9, where the system initially considers RE sources
first for primary consumption and storage. Any excess generation may
be exported to the main grid. In any event of supply deficits from the
primary (RE) sources and storage, the system hence considers imports
from main grid. Storage hidden in the flow chart may be considered for
duality purpose hence, during charging period categorized as load and
during discharge as part of RE sources being integrated to serve the load
and possibly grid exports.

7. Summary

A critical look into results presented in Table 8, indicates that the six
configurations exhibits three different techno-economic performance
patterns, where each pair of configurations discussed in Section 6 have
identical performance patterns and components structures (consider
Tables 7 & 8 and Figs. 10 & 11 ). Configurations 1 and 2 have both PVs
and wind as RE components. Storage makes the only difference hence
the two configurations may be classified within the first pattern. The
pattern may be more clearly expressed by analyzing the optimization
results, which showcases the LCOE, RE fraction, GHG emission and grid
exports and imports apart from NPC having exactly the same values.
The second pattern utilized only wind in RE generation. The pattern is
conceived through comparison between the third and fourth config-
urations in terms of component structures. The only difference within
this performance pattern (involving third and fourth configurations) is
the 60 kWh converter and storage in the fourth configuration aimed to
be utilized during hours of autonomous operations. The optimization
results also show the difference only lies in the NPC values. The third
pattern which comprises of fifth and sixth configurations had PVs as the
only RE generating components. Like the two previous patterns, storage
is the only difference between the two configurations making up the
third pattern. Figs. 10 and 11 consider grid exports and imports in both
configuration and patterns as the main parameters considered in fea-
sibility analysis for the proposed nanogrid. Four out of six configura-
tions shown in Fig. 12 are negative value of LCOE and NPC, indicating
potentials for grid exports. Inclusion of Li-ion battery storage

Fig. 12. Techno-economic performance analysis of the proposed nanogrid.
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contributes insignificantly to lower LCOE and NPC objectives (Bachner
et al., 2017; Ueckerdt et al., 2013). Despite the insignificant economic
contribution from the battery, it is however important for reliability
enhancement against main grid failures and uncertainties of the
weather conditions (Sharifi & Maghouli, 2018).

8. Conclusions

There are methods used in optimizations for sizing and operations of
modern electric power grids. Software based optimization methods are
used in achieving multiple optimization objectives due to their speed
and versatility. Efforts to consolidate gains of a RE-based autonomous
nanogrid implemented in HOMER were achieved by substituting diesel
plants used in the reference case with a main grid connection in a
proposed study with the aim of improving the 150 kWh per capita
electricity consumption and relatively higher LCOEs and NPCs of the
reference case. Several optimal configurations of nanogrid components
were realized hence, the four topmost optimal configurations had LCOE
ranges 0.0095 $/kWh to 0.0110 $/kWh, and NPC ranges $288,680 to
$366,210. Fifth and sixth configurations have LCOEs as 0.0220 $/kWh
and 0.0222 $/kWh as well as NPCs of $96,852 and $96,928 respec-
tively. The nanogrid’s RE penetration were 98%, 97% and 60% for the
six configurations. The nanogrid achieved a moderately lower emission
of 2328 tons/year as compared to 4000 tons/year in the reference case.
The negative values of LCOEs and NPCs obtained in the first four
configurations indicates high prospects for the proposed nanogrid’s
energy exports to the main grid. The feasibilities of the configurations
suggest potentials for improving the per capita electricity consumption
within the area of study through RE-based systems in addition to the
system’s contribution to clean energy production. The renewable pe-
netration and the emission rates of the proposed nanogrid may require
legislative support and operational incentives. It is therefore suggested
that the optimization results obtained can further be consolidated
through integrations of functional FIT into the system operations.
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