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a b s t r a c t

In Response Surface Methodology (RSM), variables are correlated through polynomial functions based on
Stone-Weierstrass theorem. However, such formulation inherits four weaknesses: possible misleading
approximation, incapability to accurately determine the ranking of factors’ dominance, failure to analyse
factors in random value and proliferation of guess functions due to Pascal Triangle. Therefore, this article
aims to develop an improvised method to rectify and complement the weaknesses of RSM. Multivariable
Power Least Squares Method (MPLSM) has been developed to correlate various sets of independent vari-
ables with dependent variable in the form of power functions. MPLSM is built upon least squares method,
and able to approximate the indices of the variables easily. Two variants of MPLSM are suggested to fur-
ther ensure the numerical stability: the Normalised MPLSM and Iterative MPLSM. The proposed method
is not only substantial in big data analysis and multivariable problems, but also providing an alternative
approach in engineering optimisation.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

The development of regression method started with the work of
Galton [1] in tandem with the call of vibrant scientific research,
which requires the formation of equation as the tool for result pre-
diction. Various regression methods such as polynomial, exponen-
tial, logarithmic and power regressions were later developed [2–4].
Recent regression models are built upon these fundamental regres-
sion methods in order to identify a more suitable dependency pat-
tern between the variables. For instance, multiple linear regression
[5], parameterised linear regression [6], geographically weighted
beta regression [7] and multivariate total least squares method
[8] are developed based on linear regression, while Moving Least
Squares Method (MLSM) [9], multivariable Laguerre polynomials
[10] and Response Surface Methodology (RSM) [11] are con-
structed based on polynomial functions regression.

Amongst all, RSM is the most perennial regression approach in
applied science and engineering research due to their excellent
ability in correlating multiple variables with very high coefficients
of determination and optimising the response of interest. RSM is
widely applied in process optimisation, which spans across the
fields of materials, environmental, food, thermal and biochemical
engineering [12–20]. Despite its popularity, not all process optimi-
sation can be investigated via RSM, especially for those cases
where the variables possess highly deforming trend of curves [21].

It is not satisfactory for RSM to deal with second or higher poly-
nomial functions [21]. A simple remedy to this could be MLSM and
its variants [22–25], which are also widely used in the formulation
of meshfree methods [26–28] and image processing [29,30]. MLSM
is able to deal with various guess functions, where polynomial
function is mostly applied. Moreover, MLSM can generate equa-
tions with high order of polynomial function, up to the precision
of prescribed guess functions. This may be due to the establish-
ment of Stone-Weierstrass theorem [31], which claimed that with
sufficient amount of polynomial forms, the equation should be able
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to describe most of the non-linear phenomenon. However, both
RSM and MLSM share two crucial common shortcomings. Firstly,
they will be generating a very long and complicated equation when
the order of polynomial increases [32]. Secondly, it is very difficult
to precisely determine the ranking of variable dominance when the
significance level or p-value is less than 0.0001.

RSM also requires pre-defined discrete independent variables
(factors) in order to fulfil statistical design criteria of orthogonality,
rotability and uniform precision [11]. This feature will become a
great hindrance when the experiments cannot be conducted in a
carefully controlled laboratory, especially for the variables that
can only be captured in nature and haphazard fashion. Some exam-
ples of such studies comprise investigation of solar radiation and
power generation [33–35], seismic prediction [36], tidal and ocean
engineering [37,38] and turbomachinery [39,40]. When the vari-
ables with great randomness set in, RSM will fail, and most of
the researchers have to resort to the soft computing such as artifi-
cial neural networks (ANN). Although MLSM can tackle these
predicaments in principle, the unavoidable weaknesses as
explained in the previous paragraph, will still transpire.

The root cause behind all these is their inherited limitation that
the indices of variables have to be constrained to integers in the
earliest stage of mathematical formulation. This is because the
substitution of value of variables into the prescribed order of poly-
nomial function is required. Therefore, this paper is to derive and
develop a method that can deal with multivariable problems using
power function, in which the indices of the parameters can be
determined to the extent of any real numbers. This will bypass
the tedious numerical procedure to form the expanded polynomial
terms. Since least squares method is used for minimisation of
residuals, the method is named as Multivariable Power Least
Squares Method (MPLSM). The indices of the respective variables
can be easily determined using an inverse matrix.

The structure of the paper is divided into two main sections: the
mathematical formulation and examples of MPLSM applications.
The new method is able to inspire more solid investigation in the
research fields, which involve curve-fitting, multivariable analysis
and optimisation.
2. Mathematical formulation

Consider the independent variables x ¼ x1 x2 � � � xmf g
2 Rd > 0 in which R represents real numbers in d dimensions. m
is the total number of set in the independent variables. The single
dependent variable, y can be correlated through an approximation
function, f where f : x ! y by taking the dot product of respective
power functions. yh is the guess function in the form of multivari-
able power function as shown in (1).

y � yh ¼ axb11 xb22 � � � xbmm ð1Þ
It is an important feature that a, b1, b2, . . ., bm 2 R, and they are

the coefficients for respective set of variables. Since it is unwise to
directly apply least squares analysis on (1) due to its insurmount-
able complexity, (1) shall be expanded in logarithmic form before
the deployment of least squares method, i.e.

In yh
� � ¼ In að Þ þ b1In x1ð Þ þ b2In x2ð Þ þ � � � þ bmIn xmð Þ ð2Þ
By taking A = ln(a), with the subscript j as the number of set of

variables, the square of least squares residual, J can be formulated
as:

J ¼
Xn
i¼1

In yið Þ � In yhi
� �� �2 ¼

Xn
i¼1

In yið Þ � A� b1In x1ð Þ � b2In x2ð Þð

� � � � � bmIn xmð ÞÞ2 ð3Þ
Upon expansion of (3), solution for A can be obtained by taking
the minimisation of J with respect to A, in which:
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A ¼ 1
n
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Xm
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where i is the ith elements within the set of variables while n is
the total number of elements within the set of variables. The min-
imisation of J with respect to b = b1 b2 � � � bmf g will yield the
set of equations which can be solved easily using matrix.
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in which,
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The subscript k represents the value of second subscript of the

termq. Thematrix as shown in (5) can be solved using variousmeth-
ods such Cramer rules, Gauss elimination, Gauss-Jordan elimination,
LUdecomposition or anyother suitable iterative schemes. Therefore,
the coefficients b can be obtained, while a = exp(A). Two variants of
MPLSM are suggested in this paper as well: Normalised MPLSM
and Iterative MPLSM, as further improvement of the method.

2.1. Normalised MPLSM

The above formulation possesses two flaws: inability of dealing
with negative value factors since natural logarithmic function is
considered and deciding the ranking of dominance. Therefore, the
formulation can be further improved via the normalisation of the
factors. In Normalised MPLSM, the factors must be set within the
range of the range of [C,C + X], where C is a positive integer namely
0.05, while X is integer ratio.

X ¼ x� xmin

xmax � xmin
ð9Þ
2.2. Iterative MPLSM

MPLSM also experiences numerical instability especially high
number set of random factors are involved. To improve the numer-
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ical stability, iteration is needed. The iterative procedure can be
completed by imposing (10) as the ‘‘new” y (y0). The new values
of the a (a0) and b (b0) will be as in (11) and (12) respectively.
The iterative process will be conducted upon reaching conver-
gence, as shown in the algorithm flow chart in Fig. 1. The examples
for this will be illustrated in Section 3.4.

y0 ¼ y=yh ð10Þ

a ¼ aa
0 ð11Þ

b ¼ bþ b ð12Þ
Fig. 1. Algorithm for complete i
In the comparison of the accuracy of the computed results, the
root mean square error (RMSE) and coefficient of determination, R2

is applied. The equations of RMSE and R2 can be expressed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
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mplementation of MPLSM.
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3. Examples of MPLSM applications

In this section, few examples are considered to examine the
practicality of MPLSM and its variants. In Section 3.1, the basic
applications of MPLSM will be illustrated. Meanwhile in the fol-
lowing sub-sections, MPLSMwill be applied to rectify the problems
of the works done via RSM. They are discussed in the following sec-
tions: (3.2) accurate determination of ranking of dominance; (3.3)
application on random multi-factors experiments; and (3.4) highly
accurate approximation for large random factors’ set studies.
3.1. Basic numerical examples

Considering the basic heating flow condition for a fully devel-
oped turbulent flow in a smooth circular pipe [41], Nusselt number
(Nu) can be expressed as a function of Reynolds number (Re) and
Prandlt number (Pr), as indicated in (15).

Nu ¼ 0:023Re4=5Pr0:4 ð15Þ
The value of Nu is generated from the factors of Re and Pr in the

range of 104 to 106 and 0.6 to 160 respectively, with the maximum
Table 1
Relationship between Prandtl number (Pr) and Reynolds number (Re) to Nusselt number

Set Pr Re Prescribed Nu (±30%

1 80.3 505,000 3398.9533
2 160 1,000,000 8840.2758
3 160 10,000 222.0577
4 0.60 1,000,000 946.4078
5 80.3 505,000 4612.8652
6 0.60 505,000 547.9128
7 0.60 10,000 32.6874
8 80.3 505,000 5341.2123
9 80.3 505,000 5098.4299
10 80.3 1,000,000 8806.5003
11 160 505,000 9596.2199
12 80.3 505,000 6312.3418
13 80.3 10,000 273.8782

RMSE
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Fig. 2. Comparison between the R2 for the relationship betw
error of 30%. The data are shown in Table 1. The equation formu-
lated via RSM and MPLSM can be illustrated as in (16) and (17)
respectively.

Nuh ¼ 187:62712þ 2:1619� 10�3Reþ 11:1697Prþ 4:8823

� 10�5RePr ð16Þ

Nuh ¼ 0:0281Re0:7757Pr0:4280 ð17Þ
The RMSE for (16) and (17) is 1608.0497 and 1221.0167 respec-

tively, while the R2 for (16) and (17) is 0.778 and 0.874 respec-
tively. The comparison is made in both Table 1 and Fig. 2. Both
the accuracy metrics suggest that the equation constructed
through MPLSM outperforms RSM, and this implies that some
physical phenomena are more suitable to be correlated using
MPLSM.

For the second numerical example, consider a U-tube manome-
ter with length L, is filled with fluid with the dynamic viscosity l
and density q. When the manometer is subjected to the pressure
difference, it will vibrate if the radius of the manometer is larger
than the critical radius, Rcr [42], which can be defined mathemati-
cally as in (18).
(Nu) for a heating turbulent flow in a circular smooth pipe.

) Predicted Nu via RSM Predicted Nu via MPLSM

4158.5641 4874.9223
11957.8471 11124.2226
2074.6098 312.5141
2385.5583 1018.4860
4158.5641 4874.9223
1300.8998 599.5124
216.2412 28.6125
4158.5641 4874.9223
4158.5641 4874.9223
7171.7027 8281.7969
7016.2285 6548.0622
4158.5641 4874.9223
1145.4255 232.6615

1608.0497 1221.0167

R² = 0.7785

R² = 0.8748

000 8000 10000 12000
ribed Nu

PLSM Prediction

een Re and Pr with Nu formulated via RSM and MPLSM.
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Rcr ¼ 6l2L
q2g

	 
1=4

ð18Þ

Rcr is computed with the maximum error of 30% too based on
the randomly generated value of factors as shown in Table 2. The
range of the factors are: 1 � 10-5 � l � 0.01, 0.01 � L � 0.1 while
1000 � q � 3000. The approximated equation contrived via RSM
and MPLSM is (19) and (20) respectively.

Rcr ¼ 2:198� 10�4 þ 0:0885lþ 1:9613� 10�3L� 9:7249� 10�8q
ð19Þ
Table 2
Relationship between length of manometer (l), fluid density (q) and fluid dynamic viscos

Set l l q Prescribed R

1 0.01000 0.055 2000 0.0006703
2 0.00500 0.055 3000 0.0003874
3 0.00500 0.055 2000 0.0005760
4 0.00500 0.055 1000 0.0008144
5 0.00001 0.100 1000 0.0000423
6 0.00001 0.100 3000 0.0000258
7 0.00001 0.010 3000 0.0000145
8 0.00500 0.055 2000 0.0004948
9 0.00001 0.055 2000 0.0000385
10 0.00500 0.100 2000 0.0010227
11 0.01000 0.010 3000 0.0006382
12 0.01000 0.010 1000 0.0011054
13 0.00500 0.055 2000 0.0008469
14 0.00500 0.055 2000 0.0004740
15 0.01000 0.100 1000 0.0011008
16 0.01000 0.100 3000 0.0010441
17 0.00500 0.055 2000 0.0007456
18 0.00001 0.010 1000 0.0000196
19 0.00500 0.055 2000 0.0008810
20 0.00500 0.010 2000 0.0005754

RMSE

Fig. 3. Comparison between the R2 for the relationship betw
Rcr ¼ 0:2777l0:512L0:1905q�0:3664 ð20Þ
From Table 2 and Fig. 3, the RMSE and R2 for RSM equation is

0.000182792 and 0.7607 respectively. Equation obtained via
MPLSM indeed performs better by achieving a smaller RMSE of
0.000157617 and a higher R2 of 0.8254.

From these two numerical examples, it is clear that there are
some physical phenomena whose factors existed as ratio form
between each other. Apart from its superior simplicity where only
one term exists in the equation, the importance of MPLSM will be
more eminent for the investigation of dimensionless constant such
ity (l) to the critical damping radius (Rcr).

cr (±30%) Predicted Rcr via RSM Predicted Rcr via MPLSM

0.0010182 0.0009335
0.0004793 0.0005649
0.0005766 0.0006553
0.0006734 0.0008444
0.0003196 0.0000393
0.0001251 0.0000263
�0.0000514 0.0000169
0.0005766 0.0006553
0.0001341 0.0000272
0.0006644 0.0007340
0.0008327 0.0005815
0.0010272 0.0008697
0.0005761 0.0006550
0.0005766 0.0006553
0.0012037 0.0013487
0.0010092 0.0009017
0.0005766 0.0006553
0.0001431 0.0000253
0.0005766 0.0006553
0.0004883 0.0004736

0.000182792 0.000157617

een L, l and q with Rcr formulated via RSM and MPLSM.
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as fine-structure constant in quantum field theory, Morton number
in bubble dynamics and Zeldovich number in combustion. MPLSM
henceforth renders robust mathematical alternative for such mul-
tivariable studies.

3.2. Accurate determination of ranking of factors’ dominance

Normalised MPLSM is able to accurately determine the ranking
of factors’ dominance based on the indices of the approximated
equation. Validation is made based on the works via RSM, where
the significance ranking can be determined accordingly. In MPLSM,
the larger the norm of indices, the larger the dominance of the fac-
tors. The work of Huang et al. [43] and Wong et al. [44] are used as
the examples for validation.

Huang et al. [43] investigated the optimisation process of liposo-
mal encapsulation of piceid where liquid content (x21), ultrasound
power (x22) and ultrasound time (x23) are taken as the factors, which
influence the encapsulation efficiency (y21), absolute loading (y22)
and particle size (y23). The Normalised MPLSM equations for the
studyare from(21) to (23). The indices of the factors aredirectly rep-
resenting the ranking of dominance,which reach the similar conclu-
sion with the p-value in RSM, as shown in Table 3.

y21 ¼ 66:6598x0:247421 x�0:0182
22 x�0:0648

23 ð21Þ

y22 ¼ 2:1854x�0:1147
21 x�0:0178

22 x�0:0655
23 ð22Þ

y23 ¼ 659:5229x0:091521 x�0:1506
22 x�0:7133

23 ð23Þ
Meanwhile Wong et al. [44] optimised Puerariaiso flavonoids

(y24) via the factors of time (x24), ethanol concentration (x25) and
liquid-to-solid ratio (x26). The comparison is made in Table 4 and
the conclusion on the ranking of dominance determined via Nor-
malised MPLSM is the same with the implication of p-value in
RSM. The Normalised MPLSM equation for this investigation is
(24).

y24 ¼ 659:5228x�0:0566
24 x�0:1413

25 x�0:0357
26 ð24Þ
Table 3
Study of ranking of dominance for the factors in the encapsulation of piceid [43].

Equation Details x21 x22 x23

(21) p-value 0.0006 0.6480 0.039
Ranking of dominance 1 3 2

(22) p-value 0.0122 0.7235 0.062
Ranking of dominance 1 3 2

(23) p-value 0.0833 0.0270 <0.00
Ranking of dominance 3 2 1

Table 4
Study of ranking of dominance for the factors in the optimisation of Puerariaiso flavonoid

p-value

x24 x25

Ranking of dominance 0.0003 0.0001
2 1

Table 5
Erroneous indication of ranking of dominance for the factors in the optimisation of cadmi

p-value

x27 x28

Ranking of dominance 0.3577 0.0178
2 1
However, do note that the R2 of the Normalised MPLSM equa-
tion must be at least 0.5 to be a legitimate equation to represent
majority (>50%) of the data set, in order to warrant ranking of dom-
inance of these factors. For example, in the work of Qu et al. [45],
which optimised CS2-RH ratio (x27), Xanthantion contact time
(x28) and Xanthantion temperature (x29) for obtaining cadmium
uptake (y25), the Normalised MPLSM equation as in (25) possesses
a very low R2 of only 0.085. The misleading indication is shown in
Table 5.

y25 ¼ 125:0385x�0:1358
27 x�0:0803

28 x�0:1086
29 ð25Þ

The shortcoming of RSM is its inability in determining the rank-
ing of significance when the p-value is less than 0.0001. This can be
easily addressed via Normalised MPLSM. With this, several works
of process optimisation [46–51] where the p-value of all the factors
are less than 0.0001 are re-visited. The result of re-investigation is
compiled in Table 6, and ranking of dominance can be accurately
determined.

3.3. Applications on random multi-factors experiment

There are abundance of scientific experiments, which involve
factors with random values. This is a deadlock for RSM to analyse
such cases. Nonetheless, MPLSM could address this issue well.
One example is taken from the work of Akbari-Sharbaf et al.
[52], which investigated nanoscale graphene doping, which plays
an imperative role in nanoelectronics and sustainable energy. In
their study, the electrical conductivity (r) is correlated with work
function (u) and area coverage fraction (fj), in which their data is
tabulated in Table 7. Since zero is involved in the value of factors,
Normalised MPLSM is applied and the associated equation is
shown in (26). The RMSE and R2 is 6.3059 � 10�4 and 0.981
respectively, which implies an excellent fitting for this random
data.

r ¼ 0:0089u1:0447f3:3212j ð26Þ
Details x21 x22 x23

2 Indices 0.2474 0.0182 0.0648
Ranking of dominance 1 3 2

4 Indices 0.1147 0.0178 0.0655
Ranking of dominance 1 3 2

01 Indices 0.0915 0.1503 0.7133
Ranking of dominance 3 2 1

s [44].

Norm of indices

x26 x24 x25 x26

0.7770 0.0556 0.1413 0.0357
3 2 1 3

um uptake [45] via normalised MPLSM.

Norm of indices

x29 x27 x28 x29

0.4879 0.1358 0.0803 0.1086
3 1 3 2



Table 6
Revisited works [46–51] for determination of ranking of dominance of factors.

Reference Normalised MPLSM Equation R2 Factors Norm of
Indices

Ranking of
Dominance

[46] Force = 45.5944(Laser power)1.0158(Scaling speed)�0.4653(Spot diameter)0.4529 0.634 Laser power 1.1058 1
Sealing speed 0.4653 2
Spot diameter 0.4529 3

[47] Yield of quercetin = 76.6182(Temperature)�0.1070(Time)�0.1046(Concentration)�0.1087 0.699 Temperature 0.1070 2
Time 0.1046 3
Concentration 0.1087 1

[48] Cell viability = 3.1418(Power)1.5067(Time)0.5185(Pulse duty ratio)�0.0197 0.866 Power 1.5067 1
Time 0.5185 2
Pulse duty ratio 0.0197 3

[49] COD Removal = 77.5582(Temperature)�0.0132(Contact time)0.1099(Absorbent
dosage)0.0272(pH)�0.1753

0.745 Temperature 0.0132 4
Contact time 0.1099 3
Absorbent dosage 0.7691 1
pH 0.1753 2

[50] % OMR = 89.9754(Pulp density)0.0548(Oil dosage)0.0996(Agglomeration)0.0272(Particle
size)�0.0019

0.937 Pulp density 0.0548 2
Oil dosage 0.0996 1
Agglomeration 0.0272 3
Particle size 0.0019 5

[51] Absorbent capacity = 351.2487(Contact time)0.1007(Absorbent dosage) �0.2875(CPX
Concentration)0.4057(Solution pH)0.1017

0.725 Contact time 0.1007 4
Absorbent dosage 0.2875 2
CPX concentration 0.4057 1
Solution pH 0.1017 3

Table 7
Relationship between work function and area coverage fraction with electrical
conductivity [52].

Set Work function Coverage fraction Electrical conductivity

1 4.58667 0.0000 0.125
2 4.47333 17.1429 0.550
3 4.43333 32.8251 0.950
4 4.38000 51.4286 1.600
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3.4. Highly accurate approximation for random large factors’ set
studies

When the number of sets of random variables increases, numer-
ical instability may incur. Iterative variant of MPLSM is imple-
mented as the remedy. Consider a set of data consists of six
Table 8
Convergence study of Iterative MPLSM for large factors’ set approximation.

Iteration Indices

x41 x42 x43 x44

1 1382.8 3.40 �0.19 �0.80
2 74.2167 3.45 �0.85 0.71
3 15.4647 3.45 �0.29 1.49
4 65.6567 3.45 0.01 1.92
5 4.2318 3.45 0.17 2.14
6 3.3173 3.45 0.26 2.26
7 2.9105 3.45 0.31 2.33
8 2.7128 3.45 0.33 2.37
9 2.6122 3.45 0.34 2.39
10 2.5597 3.45 0.35 2.40
11 2.5319 3.45 0.36 2.41
12 2.5171 3.45 0.36 2.41
13 2.5092 3.45 0.36 2.41
14 2.5049 3.45 0.36 2.41
15 2.5026 3.45 0.36 2.41
16 2.5014 3.45 0.36 2.41
17 2.5008 3.45 0.36 2.41
18 2.5004 3.45 0.36 2.41
19 2.5002 3.45 0.36 2.41
20 2.5001 3.45 0.36 2.41
random factors correlated with one variable y41 as in (27). The
range of the factors are prescribed as: 1 � x41 � 10, 5 � x42 � 16,
2 � x43 � 15, 3 � x44 � 14, 7 � x45 � 9 and 2 � x46 � 3. There are
50 intervals equally divided between them. When the Iterative
MPLSM is administered, the result of convergence study can be
shown in Table 8.

y41 ¼ 2:5x3:4541 x0:3642 x2:4143 x�1:78
44 x0:56745 x4:346 ð27Þ

From Table 8, 20 iterations are required to converge and coin-
cide with the indices in (27). The numerical overshoot or under-
shoot in the MPLSM can therefore be resolved.

Another example is the work by Hakkarainen et al. [53] which
involves six variables (irradiance, x47; ethanol specimen, x47; thick-
ness, x49; ignition time, x410; heat release rate per unit area, x411;
total heat released per unit area, x412) in investigating the net heat
combustion (y42) of small scale pool fire test of ethanol-water mix-
ture. Iterative MPLSM reported an equation of (28) for their works.
Accuracy

x45 x46 RMSE R2

0.170 4.3 9.0973 � 106 0.953
1.169 4.3 1.1072 � 107 0.977
0.891 4.3 7.0295 � 106 0.994
0.741 4.3 9.7141 � 107 0.998
0.661 4.3 2.6572 � 106 0.999
0.617 4.3 1.0497 � 106 0.999
0.594 4.3 88,441 1.000
0.582 4.3 32,682 1.000
0.575 4.3 30,643 1.000
0.571 4.3 32,334 1.000
0.569 4.3 26,294 1.000
0.568 4.3 13,827 1.000
0.568 4.3 98,926 1.000
0.567 4.3 29,983 1.000
0.567 4.3 15,909 1.000
0.567 4.3 5866 1.000
0.567 4.3 4896 1.000
0.567 4.3 2448 1.000
0.567 4.3 1224 1.000
0.567 4.3 612 1.000
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The value of R2 obtained is 0.9961, which implies an excellent
equation prediction for this study.

y42 ¼ 1:0211x�0:073
47 x0:103848 x�1:0066

49 x�0:0057
410 x�0:0067

411 x0:9947412 ð28Þ
4. Conclusion

Multivariable Power Least Squares Method (MPLSM) with its
normalised and iterative variants is developed as a robust comple-
mentary computational tool for RSM. The proposed techniques
could be an alternative numerical technique when RSM does not
work well, especially in terms of its prediction accuracy, arrange-
ment of factor significance ranking, randomness of factors’ input
and complexity incurred when the number of set of factors
increases. MPLSM provides a simple yet powerful numerical plat-
form for future multivariable statistical analysis in science and
engineering.
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