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Abstract
This study presents the development and optimization of a proposed path tracking controller for an autonomous armoured

vehicle. A path tracking control is developed based on an established Stanley controller for autonomous vehicles. The basic

controller is modified and applied on a non-linear, 7degree-of-freedom armoured vehicle model, and consists of various

modules such as handling model, tire model, engine, and transmission model. The controller is then optimized using

particle swarm optimization algorithm to select the optimum set of controller parameters. The main motivation of this

study is that implementation of path tracking control on an autonomous armoured vehicle is still very limited and it is

important to have a specific study on this field due to the different dynamics and properties of the armoured vehicle

compared to normal passenger vehicles. Several road courses are considered and the performance of the developed

controller in guiding the vehicle along these courses was compared against the original Stanley Controller. It was found

that the optimized controller managed to improve the overall lateral error throughout the courses with 24–96% reduction in

lateral error. Also, the optimization for the proposed controller was found to converge faster than its counterpart with up to

93% better solution.

Keywords Particle swarm optimization � Armoured Vehicle � Autonomous path tracking � Path tracking �
Stanley controller

Nomenclature
CG Vehicle’s centre of gravity

X Global vehicle position in X axis (m)

Y Global vehicle position in Y axis (m)

x Local vehicle position in x axis (m)

y Local vehicle position in y axis (m)

Ax Lateral acceleration in vehicle local

coordinates (ms-2)

Ay Longitudinal acceleration in vehicle local

coordinates (ms-2)

Fx, Fy, Fz Forces in vehicle local coordinates direction

(N)

h Vehicle’s inclination w.r.t ground as shown in

Fig. 1 (rad)

CR Distance between gun and vehicle’s CG (m)

u Firing angle w.r.t. vehicle’s longitudinal axis

(rad)

b Vehicle’s moving direction w.r.t. vehicle’s

longitudinal axis (rad)

R Radius of wheel (m)

Alpha, a Lateral slip angle (rad)

Ta Engine acceleration torque (Nm)

Omega, x Wheel rotational speed (rad/s)

Vx Longitudinal vehicle velocity(m/s)

Technical Editor: Victor Juliano De Negri.

Throughout this paper, all of the symbols used and its definitions were

made consistent with authors’ previous papers Amer et al. [9] and

[38]. Main definitions can be referred to Figs. 1 and 3. Unless stated

otherwise, definitions can be summarized in nomenclature.
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d Steered wheel angle (rad)

Ytraj Y-position of a point on path nearest to the

vehicle (m)

w Vehicle’s yaw angle (rad)
_w Vehicle’s yaw rate (rads-1)

wtraj Path yaw angle (rad)

_wtraj
Path’s yaw rate (rads-1)

/ Heading error, w - wtraj (rad)

/ Heading error, w - wtraj (rad)

e Lateral error, Ytraj - Y (m)

k/ Tuned controller gain

k1 Gain for /
k Tuned controller gain (s-1)

kw Tuned controller gain (s)

v Instantaneous vehicle velocity (m/s)

1 Introduction

In military application, usage of autonomous vehicle can

be beneficial in terms of survivability of military personnel

involved and accessibility of the vehicle to access hardly

reached regions. Using autonomous vehicle, the possibili-

ties of compromising personnel safety during missions are

relatively low compared to the conventional ways where

soldiers carrying out missions on foot. While autonomous

technology for normal vehicle are easily found, the same

technology for military vehicles have been very limited [1].

Therefore, this study is aimed to provide an academic

insight on path tracking control for automatic steering of an

armoured vehicle system.

In path tracking for autonomous vehicle, control

strategies can be categorized into several types namely

geometric/kinematic controller which developed based on

the geometric/kinematic properties of the vehicle such as

velocities and dimensions [2, 3]; dynamic controller which

considers the dynamic properties of the vehicle such as

forces and torques [4, 5]; classical controller such as sliding

mode [6, 7] and PID approaches [8, 9]; and intelligent or

adaptive controller which may include model predictive

control (MPC) [10, 11]. Many studies proposed geometric

or kinematic controller in their setup due to its simple

mechanism and easy to implement.

Perhaps, one of the most popular geometric controllers

is Pure Pursuit which has been proven to be efficient with

low computational cost [12–14]. However, the controller

requires careful selection of look-ahead distance since it

will relate directly to the steering command and future path

for vehicle. To overcome this, Shan et al. [15] employed a

fuzzy controller to tune the look-ahead distance and clo-

thoid curve fitting to create a smooth curvature for the

vehicle to undertake to reach the desired path. Regardless,

tuning the look-ahead distance is still a trivial issue for this

type of controller and good balance between stability and

tracking performance is usually not easy to achieve [3].

This controller was also observed to neglect the dynamics

of vehicle [16].

Stanley controller is another effective geometric con-

troller. Compared to Pure Pursuit, careful tuning of the

look-ahead distance can be avoided and it considers the

vehicle dynamics and instantaneous vehicle velocity. It has

led the Stanford team and their autonomous vehicle,

Stanley to win the DARPA Challenge 2005 with average

0.1 m cross track lateral error [17] and performed sur-

prisingly well against other popular controllers [3, 18]. It is

preferable mainly to avoid careful selection of look-ahead

distance usually associated with other geometrical con-

trollers such as Pure Pursuit. Also, it is easier to implement

with simpler structure compared to other intelligent con-

trollers such as model predictive control (MPC). However,

going through the Stanley applications, one can notice that

Fig. 1 Armoured vehicle model

[9, 30, 31]
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most applications are applying the simplified, linear ver-

sion of the controller as presented in Hoffmann et al. [17].

The original publication also presented an extended version

of the controller that includes yaw rate term which can

compensate the absence of look-ahead distance and pro-

vide future state of the path. In this study, the extended

version is considered and modified to be applied on the

armoured vehicle model.

To optimize controller parameters, particle swarm

optimization (PSO) algorithm was chosen. It is one of the

many nature inspired optimization algorithms available as

research tools, such as Genetic Algorithm (GA), ant colony

optimization (ACO), artificial bee colony algorithm

(ABC), and gravitational search algorithm (GSA). A

comprehensive study on these algorithms and their opti-

mization performance can be found in [19] which stated

that PSO performed relatively better in terms of conver-

gence and consistencies compared to the other evolutionary

algorithms stated above. A study by Zhang [20] also con-

cluded that PSO was better in finding global solution with

greater precision compared to conventional optimum

search methods. Compared against genetic algorithm (GA),

PSO was easier to implement with less parameters to

adjust. Overall, the study concluded that PSO provides

better accuracy with a fast convergence with a standard

computing capability. In terms of controller parameters

tuning, recent study by Merabti et al. [11] studies different

meta-heuristic searching algorithm in tuning a model pre-

dictive controller using PSO, ACO, and GSA. The study

proved the superiority of PSO which produced better

controller performance compared to the others. PSO was

shown to carry out optimization tasks within up to 90%

quicker duration compared to ACO and GSA algorithms.

Based on these advantages, this study adopts PSO in the

optimization task of controller parameters. Other than this,

the algorithm has been successfully utilized to optimize

PID controller’s parameters [9, 21, 22] as well as LQR

controller’s parameters [23] previously. In each case, the

algorithm has managed to find the optimum parameters in

improving the controller’s performance.

In a nutshell, PSO is a meta-heuristic approach to solve

optimization problems by emulating the motion of particles

moving in swarms. Introduced in 1995 [24], the algorithm

has seen various applications and advancements since then.

Basically, the algorithm mimics the behavior of particles in

swarm with randomly assigned initial position that moves

together towards the most optimum position. Each of the

particles will have the memory of its own best position,

pbest and the overall swarm best position, gbest based on

the optimum fitness value. The memories will be consid-

ered in determining particle’s motion for its next position.

This is to ensure that the agents are not too quick to move

towards the new position which can avoid entrapment in

local optimum solutions. Over several iterations, the whole

swarm will find an optimum position (solution). The

algorithm by Eberhart, Kennedy [24] was improved by Shi,

Eberhart [25] by considering the inertial weight of each

particle. To further ensure that the solution will not trap

within a local optimum, near-neighbor interactionve has

been introduced [26] by considering best position within a

sub-swarm of neighbors ‘‘near’’ the particle.

The main aim of this study is to develop an automatic

steering controller for an autonomous light armoured

vehicle (LAV) to guide the vehicle along a pre-defined

path. It is aimed to have a simple and robust controller with

minimum computational cost due to the nature of armoured

vehicle’s environment with limited capability in storing

high computational power on board. Due to the proven

effectiveness and simpler mechanism [3, 18], Stanley

Controller is chosen for implementation on the LAV.

Further modifications are proposed to ensure the controller

to operate properly with the armoured vehicle system. The

controller is tuned using PSO algorithm in order to find the

optimum set of parameters. Then, six trajectories are cho-

sen to test the controller capabilities in guiding the

autonomous LAV.

Besides the proposed controller and the optimization

procedure, the main contribution of this paper is on the

analysis of the controller on different type of trajectories.

Most controllers catered large curvature roads. Previous

studies have proven that controller might face problem

with sharp corners and have to rely on path planner to

provide smooth curvature [3, 18, 27]. On tracking con-

troller, most studies have considered straight [28] and large

curvature roads [18] where the sharpness of the path is still

a problem to solve [29]. In this study, the road trajectories

used are considering long roads with large curvature as

well as roads with sharp maneuverings to evaluate the

optimized controllers. Also, the controllers are applied on

an armoured vehicle model, instead of a normal passenger

vehicle which is a minor contribution of this paper.

This paper is organized based on the works undertaken

in this study. First, introduction section covers brief

background on previous works on the field. Then, Sect. 2

explains the vehicle model used to simulate the vehicle’s

behavior and the road courses used to test the controller.

Then, the proposed controller is explained in Sect. 3. The

next section describes the optimization procedure for all

the controller’s parameters followed by results and dis-

cussions in Sect. 5. Conclusion for this work and future

recommendation are presented in the next section. The last

few sections present all supplementary information for this

paper such as acknowledgement and nomenclature.

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:104 Page 3 of 17 104

123



2 Vehicle and path modeling

2.1 Vehicle model development

Previous work from authors [30] has demonstrated the

mathematical derivation, development, and verification of

a nonlinear full armoured vehicle model aimed mainly for

lateral simulation studies. This model is equipped with

7DOF handling model, engine model, tyre model, kine-

matic model, calculation of lateral and longitudinal slips,

and load distribution model, which has been used for active

front steering study [31]. The same armoured vehicle

model also has been used for path tracking control previ-

ously [9]. Figure 1 shows the armoured vehicle model

where all symbols are explained in nomenclature section. It

is worth noting that extra caution should be given on the

axes notation, x, y, and z which represent the moving local

coordinate for vehicle with origin at vehicle’s centre of

gravity. This should not be confused with the fixed global

coordinate axes, X and Y which are usually associated with

the Earth’s latitude or longitude.

Figure 2 shows the basic configuration of the armoured

vehicle model. In order to limit the length of this section,

only main equations are shown herewith. Detailed

descriptions and full vehicle parameters can be found in

Aparow et al. [30].

2.1.1 Handling model (7DOF)

Handling model describes the dynamics of the vehicle in

longitudinal plane as depicted in Fig. 3. Newton–Euler

method was used to derive the equations of motion for

longitudinal motions in x-direction, lateral motions in y-

direction and yaw rotational motions about z-axis which

shown in Eqs. (1), (2), and (3), respectively.
X

Fx ¼maxFxrrþFxrlþFxfl cosd�Fyfl sind

þFxfr cosd�Fyfr sindþmgsinh�Fd�FR cosu¼mbax

ð1Þ

Here, Fd is the drag force which considers the air

resistance, Fair with air density, q, frontal cross-sectional
area, A, and vehicle’s drag coefficient, Cd, as well as rolling

resistance, Fd, with tire rolling resistance, Cd.

Fd ¼ Fair þ Froll ¼
1

2
qACd v2x

� �
þ mgCr vxð Þ

X
Fy ¼ mayFyrr þ Fyrl þ Fxfl sin dþ Fxfr sin dþ Fyfl cos d

þ Fyfr cos d� FR sinu ¼ mbay; ð2Þ

Next, considering yaw motion with yaw displacement, w
about z-axis,

Fig. 2 Configuration of

armoured vehicle model
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X
Mz ¼ ICG €w

X
Mzij þ �Fyrr � Fyrl

� �
lr

þ Fxfl sin dþ Fyfl cos dþ Fxfr sin dþ Fyfr cos d
� �

lf

þ FR sinu½ �cR þ Fxfr cos d� Fxfl cos dþ Fyfl sin d
�

�Fyfr sin d� Fxrl þ Fxrr

� t
2
¼ ICG €w ð3Þ

Here, Mzij denotes the self-aligning moments on each

wheel where i = front, rear and j = left, right and ICG is

the moment of inertia of the sprung mass about z-axis.

Another 4DOFs are from the rotational motion of each

separate wheels about its y-axis, each with rotational speed,

x.
X

My;ij ¼ Iy;ij _xij

seij þ srij � sbij � sdij ¼ Iy;ij _xij

ð4Þ

Here, subscripts ij corresponds to the notation before. sr is
the reaction torque due to traction force generated from lon-

gitudinal force and sd is the friction torque for awheel. sb is the
braking torque and se is the engine torque supplied to driving
wheels. Determining sb and se requires one to develop engine
and brake system model. Full derivation of these two models

can be found in studies by Aparow et al. [32] and [30].

2.1.2 Tire modeling and vertical load distribution model

In this study, an established tire model namely Pacejka

model or Magic Equation [33, 34] is used to determine tire

contact forces, Fx and Fy, and self-aligning moment, Mz.

General function for Fx and Fy, and Mz is shown in Eq. (5)

where Fz, a, and r are the tire vertical force, lateral and

longitudinal slips, respectively, and D, C, B, / and Sv
represent the properties of the function, respectively.

P Fz; a; rð Þ ¼ D sin C arctan B/ð Þð Þ þ Sv ð5Þ

Vertical forces acting on each tire are estimated using

vertical load distribution model as described in Eq. (6), and

outlined by earlier studies [30, 35, 36]. The notations are as

described in Figs. 1 and 2.

Fz;f j¼
mg

2t
lr coshþhsinhð Þ

h i
� may

h

t

� �
lf

l

� �� 	
� max

2

h

l

� �� 	

Fz;rj¼
mg

2t
lf coshþhsinh
� �h i

� may
h

t

� �
lr

l

� �� 	
þ max

2

h

l

� �� 	

ð6Þ

Meanwhile, lateral slip angle, a and longitudinal slips

for the vehicle, r are determined by Eqs. (7) and (8),

respectively. All notations are based on Fig. 1 and 2,

j = left/right and for non-steerable wheels, drl = drr = 0.

For longitudinal slip, xij is the rotational speed of each

tyre, respectively, and Rij is the tyre radius. Detail model

and derivations can be found in [30, 35, 36].

Lateral slips; afj ¼ tan�1 vy þ lf _w

vx þ t
2

� �
_w

" #
� dfj

arj ¼ tan�1 vy � lr _w

vx þ t
2

� �
_w

" #
� drj

ð7Þ

Longitudinal slips; rij ¼
vx � xij � Rij

� �

maxðvx;xijRijÞ
ð8Þ

2.1.3 Vehicle kinematic model

This model is to determine the vehicle position with respect

to the global coordinate axes, X–Y [35, 37] by considering

the velocity component in local coordinate axes, x–y and

instantaneous yaw rotation, w. Detail explanation of this

model can be found in Amer et al. [38].

X ¼
Z X0

0

vx cosw� vy sinw
� �

dt

Y ¼
Z Y0

0

vx sinwþ vy cosw
� �

dt

ð9Þ

Fig. 3 Lateral model in

longitudinal plane [9, 30]
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2.1.4 Validation of vehicle model

As stated before, model used in this study has been

described in detail by Aparow et al. [30]. The vehicle

responses have been validated by verifying the simulated

results with CARSIM software. Several verification tests

were carried out namely Step Steer test, Double Lane

Change, and Slalom tests in various speeds to evaluate the

model’s validity. The vehicle model was proven to be valid

and details on the results can be found in the publication.

2.2 Road courses and path development

In any control system development, one should consider

the disturbance to the system and come up with a control

strategy that will stabilize the system under these distur-

bances. In path tracking system, disturbances are in terms

of variation in road courses and trajectories to be under-

taken by the vehicle. In this study, several road courses

were used to test the tracking control. Different from pre-

vious studies that include path planning module that

focused on defining a specific path for the vehicle to follow

based on a specified destination and task specific functions

[39, 40], this study focuses on development of the path

tracking control with pre-defined trajectories without

relying on an advanced path planner. Each of the road

courses were modeled as a set of points on a global coor-

dinate axes, X and Y which in real life, may represent

specific latitude and longitude or vice versa. Series of

coordinate points are recorded along the road to represent

the road courses. During maneuvering, real-time position

of the vehicle on the global axes will be compared along-

side these points and the subsequent lateral error and path

states will be determined.

Figure 4 shows the six roads used to test the controllers

in this study with each of them named according to the

nature and shape of the road. They are (from left to right);

Straight Road, Multiple Lane Change, Double Lane

Change, Hook, S, And Curve. The first three courses on the

top of the figure represent shorter roads with sharp turns

and small curvature. Meanwhile, the lower three graphs

show roads with larger curvature and further range. The

Straight road used in this study was taken from the same

path used in Amer et al. [9].

3 Path tracking control strategies

In this study, several variants of Stanley controller are

developed, optimized and analyzed. Stanley steering con-

troller was the controller on the Stanford University

autonomous vehicle that won the DARPA Challenge in

2005 [17, 41]. Two variants of the Stanley controller,

namely Stanley with yaw compensation (St-Yaw) and

Modified Stanley (Mod-St) are studied by modifying the

original Stanley controller.

3.1 Stanley controller (St)

In the original work, the controller consists of a steering

command which will determine correctional steering input

of wheel angle, d, in guiding the vehicle to follow the

desired path. The original steering command is shown in

0 100 200 300
0

20

40

60

Straight Road

Y 
- P

os
iti

on
 (m

)

0 200 400 600
-5

0

5

Multiple Lane Change

0 200 400 600
0

1

2

3

Lane Change

0 200 400
0

50

100

Large Curvature Road

Y 
- P

os
iti

on
 (m

)

0 500 1000
0

200

400

S Road

X - Position (m)
0 500 1000

0

200

400

Curved Highway Road

Fig. 4 Road courses for

controller testing
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Eq. (10). It contains two terms depending on several errors

between the vehicle’s and path’s states as shown in Fig. 5,

which are: heading error between the vehicle direction of

motion and path direction, /, where / = w - wtraj; and

lateral error, e, measured from the centre of steering wheel

axle to the nearest point on path, where v is the vehicle

speed, and k is a tuneable gain, associated with the second

term.

The full development and stability analysis were pre-

sented byHoffmann et al. [17]. For this controller, Snider [3]

has demonstrated the tuning and concluded that k = 10 is the

best value for the controller. Current vehicle’s position is

denoted by the X and Y position of the vehicle on the global

axes. This will be the reference to get the nearest point on

path which is used to determine the instantaneous path yaw

rate and direction. These will be compared against vehicle’s

states to calculate the error for the controller.

d ¼ /þ tan�1 ke tð Þ
v tð Þ

� �
ð10Þ

3.2 Stanley controller with yaw compensation
(St-yaw)

An extended version of the controller was proposed by

Hoffmann et al. [17] with an additional yaw term to

compensate the vehicle and path yaw rates which act as

dampers, providing reaction forces to sideways motions.

The steering command now consists of one additional term,

the error between instantaneous path and vehicle’s yaw

rate, _w� _wtraj


 �
, which associated with a tuneable gain, kw.

In this study, another tuneable gain, k/, is added to the first

term. Full steering command for the Stanley Controller

with yaw compensation is shown in Eq. (11) with symbols

and variables are as defined in Fig. 5 and nomenclature.

d tð Þ ¼ k//þ arctan
ke tð Þ

1þ v tð Þ

� �
þ kw _w� _wtraj


 �
ð11Þ

3.3 Modified Stanley controller (Mod St)

This is the proposed controller for the armoured vehicle.

The full controller formula from Hoffmann et al. [17] and

Eq. (11) is modified by adding another tuneable gain, k1,

associated with the arctan function in second term to pro-

vide more sensitivity to the term in tuning the controller.

Therefore, the full steering command for this study now

contains four tuneable parameters for its three terms, as

presented in Eq. (12). Full configuration of the control

structure and state feedbacks required are shown in Fig. 6.

d tð Þ ¼ k//þ k1 arctan
ke tð Þ

1þ v tð Þ

� �
þ kw _w� _wtraj


 �
ð12Þ

Each term in Eq. (12) plays a significant role in deter-

mining the automatic steering input. The first term with

heading error, /, will observe the vehicle’s direction with

respect to path’s direction. The second term with lateral

error, e, will observe the vehicle’s position with respect to

the path. These two terms will stabilize the direction of the

vehicle and guide vehicle towards intended path. In large

errors, the vehicle will be steered with maximum allowable

steering angle until the lateral error diminishes and the

vehicle is facing the same direction with path. While the

first two terms will guide the vehicle to its intended path,

the third term with the yaw rate error stabilizes the yaw

response of the vehicle. Negative feedback on yaw rate will

dampen the unwanted yaw motions due to rapid steering

actions demanded by the first two terms [17].

For stability, the steering command should be saturated

at ± dmax. Preliminary study in Hoffmann et al. [17] have

evaluated the stability of the controller within operating

region � p
2
� d� p

2
. However, in this study, due to the

limitation of the steering system, the operating region for

the wheel angle was limited to 10 degrees which equivalent

to � p
18

� d� p
18
.

4 Optimization of controller parameters
using particle swarm optimization

In this study, the optimization procedure is aimed to find a

set of controller parameters which will produce the best

controller action and optimum path tracking performance,

as suggested by Amer et al. [9], Khairuddin et al.

[21],Jaafar et al. [22]. Position of each particle corresponds

to the number of variables to be optimized, e.g., in this

case, (St-Yaw), 3 (k/, k, and kw), and (Mod St), 4 (k/, k1, k,

and kw). To evaluate the agent’s fitness on any givenFig. 5 Parameters for Stanley controller
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position, fitness function was chosen to be the controller

performance. The PSO algorithm will vary each of the

controller parameters independently until the optimum

performance, i.e., minimum fitness value, is found. To

facilitate faster convergence, fitness function was chosen

carefully as well as the choice of parameters search space.

In this study, average lateral error throughout the maneu-

vering was chosen since it is the best indicator for the path

tracking performance. Thus, fitness function for the control

system was chosen to be the root mean square (RMS) value

of lateral error, e between vehicle’s and path lateral posi-

tions shown in Eq. (13). Figure 7 shows the overall pro-

cedure to optimize Stanley Controllers using PSO.

Fitness Function; f ðkf ; k1; k; kyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e tð Þ½ �2

n

s

ð13Þ

Selection of PSO parameters itself poses a well-known

field of study which has sparked many researches specifi-

cally in choosing the right parameter values [42–45]. The

main three parameters in the PSO algorithm are Social

coefficient, s, Cognitive coefficient, c, and inertial weight,

iw. In this paper, the same PSO configuration and param-

eter values as proposed by previous researchers [21, 22, 26]

are used as shown in Table 1. No. of dimensions, Nd was

chosen based on the number of variables to be optimized.

Also, search space for each parameter was defined to be as

small as possible by the lower and upper limits. In this

study, the limits for each parameter were found after series

of sensitivity analysis (with the same procedure from Amer

et al. [9]) which indicate the controller’s response under

different parameter values. Apart from ensuring faster

convergence, these limits are important in order to avoid

the controller from entering unstable region which will

terminate the overall optimization procedure. Lastly, no. of

particles, Np and iterations, Ni are chosen by try and error

method by observing the number of iterations it takes for

the solution to converge. In this case, convergence always

occurs within ten iterations. Therefore, the number of

iterations was set to be 100% more than this to allow

convergence even if there is any divergence from solution.

Upon carrying out the optimization process, a set of

values for k/, k1, k, and kw for the proposed controller are

determined for each of the road courses. This translates to 6

sets of parameters corresponding to all 6 road course tra-

jectories. Optimized parameters for Stanley with yaw

compensation (St-Yaw) and modified Stanley (Mod St)

controllers are shown in Table 2, respectively. With these

parameters, simulations are carried out for each road

course.

5 Results and discussions

Simulations were carried out within MATLAB/SIMU-

LINK environment using Heun ODE2 solver with fixed

0.001 s step size. The effectiveness of the proposed con-

troller from Eq. (12) was evaluated on the validated

armoured vehicle model as explained in Sect. 2 with con-

stant speed of 6 m/s, where the vehicle is assumed to enter

the path with the initial 6 m/s speed and kept at the con-

stant speed with zero throttle, brake setting, and firing

force. The controller performance was compared against

original Stanley controller (St) as proposed by Hoffmann

et al. [17], and shown in Eq. (10) and the Stanley controller

with yaw compensator (St-Yaw) from Eq. (11) which were

simulated using the same simulation parameters. All the

controllers’ gains were optimized earlier with PSO algo-

rithm using similar procedures as in Sect. 4.

In evaluating the effectiveness of the controller, few

responses were chosen, namely the Y-Position of vehicle

with respect to path to show the tracking performance;

cross-track lateral error, e to quantify tracking perfor-

mance; the steering angle to denote the controller’s effort;

and yaw rate responses to observe the maneuvering effect

throughout driving. The respective dynamic responses

corresponding to each path for each controller are shown in

Figs. 8, 9, 10, 11, 12 and 13.

Fig. 6 Structure for Modified

Stanley path tracking control
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The results are organized as follows. There are six tra-

jectories each with four results. Each of the six fig-

ures corresponds to each path from Fig. 4 and contains four

graphs in the figure which corresponds to each result

namely tracking performance, lateral error, steering angle,

and vehicle’s yaw rate, respectively. All graphs are using

the same line representations where the original Stanley, St

is denoted by the dashed lines, solid grey lines for the St-

Fig. 7 Procedure for PSO

optimization

Table 1 PSO Parameters used

for Stanley controller variants
Parameter St-Yaw Mod-St

Social coefficient, s 1.42 1.42

Cognitive coefficient, c 1.42 1.42

Inertial weight, iw 0.9 0.9

No. of dimensions, Nd 3 (k/, k, and kw) 4 (k1, k/, k, and kw)

Upper bound limit [10;10;10] [10;10;10;10]

Lower bound limit [- 10; - 10; - 10] [- 10; - 10; - 10; - 10]

No. of particles, Np 150 150

No. of iterations, Ni 20 20

Table 2 Optimised parameter

values for St-Yaw and Mod-St

controllers

St-Yaw Mod-St

k kw k/ k1 k kw k/

Straight 10 - 0.0242 0.4495 10 10 - 2.964 0.7719

Multiple lane change 10 0.3577 0.6732 10 10 0.3046 1.892

Double lane change 10 0.2987 0.4215 10 9.689 0.0901 0.819

Hook 10 0.2299 0.0221 10 10 0.0423 - 0.058

S 10 - 0.0242 0.4495 10 9.757 0.0642 0.0199

Curve 9.4343 0.2634 - 0.0158 10 10 0.1762 - 0.0051

Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:104 Page 9 of 17 104

123



0 50 100 150 200 250 300
0

10

20

30

40

50

60

Straight Road

Y 
- P

os
iti

on
 (m

)

X - Position (m)

Trajectory Stanley Controller (St) Stanley Controller with Yaw Compensation (St-Yaw) Modified Stanley Controller (Mod St)

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

St RMS = 7.13e-02     
St-Yaw RMS = 6.01e-02 
Mod St RMS = 5.43e-02 

La
te

ra
l E

rr
or

 (m
)

X - Position (m)

0 50 100 150 200 250 300
-10

-5

0

5

10

St RMS = 1.78e+00     
St-Yaw RMS = 1.91e+00 
Mod St RMS = 2.05e+00 

St
ee

ri
ng

 A
ng

le
 (d

eg
)

X - Position (m)
0 50 100 150 200 250 300

-10

-5

0

5

10

15

St RMS = 2.75e+00     
St-Yaw RMS = 2.95e+00 
Mod St RMS = 2.98e+00 

Ya
w

 R
at

e 
(d

eg
/s

)

X - Position (m)

62.9182 62.9186

13.12

13.16

50 60
-6
-4
-2
0

186 194
-6

0
2

Fig. 8 Performance comparison between Stanley controllers for straight road

0 100 200 300 400 500 600 700

-4

-2

0

2

4

6
Multiple Lane Change

Y 
- P

os
iti

on
 (m

)

X - Position (m)

Trajectory Stanley Controller (St) Stanley Controller with Yaw Compensation (St-Yaw) Modified Stanley Controller (Mod St)

0 100 200 300 400 500 600 700
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

St RMS = 1.48e-02     
St-Yaw RMS = 1.06e-02 
Mod St RMS = 2.94e-03 

La
te

ra
l E

rr
or

 (m
)

X - Position (m)

0 100 200 300 400 500 600 700
-10

-5

0

5

10

St RMS = 9.85e-01     
St-Yaw RMS = 1.30e+00 
Mod St RMS = 1.43e+00 

St
ee

ri
ng

 A
ng

le
 (d

eg
)

X - Position (m)
0 100 200 300 400 500 600 700

-15

-10

-5

0

5

10

St RMS = 1.54e+00     
St-Yaw RMS = 1.90e+00 
Mod St RMS = 1.73e+00 

Ya
w

 R
at

e 
(d

eg
/s

)

X - Position (m)

300 304
-0.02

0

0.04

300 310

-10

0

300 310

-6

0
2

Fig. 9 Performance comparison between Stanley controllers for multiple lane change maneuvering

104 Page 10 of 17 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2018) 40:104

123



0 100 200 300 400 500 600 700
0

1

2

3

Lane Change

Y 
- P

os
iti

on
 (m

)

X - Position (m)

Trajectory Stanley Controller (St) Stanley Controller with Yaw Compensation (St-Yaw) Modified Stanley Controller (Mod St)

0 100 200 300 400 500 600 700
-0.03

-0.02

-0.01

0

0.01

0.02

St RMS = 6.17e-03     
St-Yaw RMS = 4.17e-03 
Mod St RMS = 7.99e-04 

La
te

ra
l E

rr
or

 (m
)

X - Position (m)

0 100 200 300 400 500 600 700

-5

0

5

St RMS = 3.49e-01     
St-Yaw RMS = 4.86e-01 
Mod St RMS = 5.97e-01 

St
ee

ri
ng

 A
ng

le
 (d

eg
)

X - Position (m)
0 100 200 300 400 500 600 700

-6

-4

-2

0

2

4

6

St RMS = 5.41e-01     
St-Yaw RMS = 7.01e-01 
Mod St RMS = 6.35e-01 

Ya
w

 R
at

e 
(d

eg
/s

)

X - Position (m)

300.54 300.64
0.71

0.73

280 340

0

20
x 10

-3

300 310 320

0

2

4

300 350
-1

0

1

360 368
3.39

3.43

Fig. 10 Performance comparison between Stanley controllers for double lane change manoeuvring

0 100 200 300 400
0

20

40

60

80

100

120

Hook Road

Y 
- P

os
iti

on
 (m

)

X - Position (m)

Trajectory Stanley Controller (St) Stanley Controller with Yaw Compensation (St-Yaw) Modified Stanley Controller (Mod St)

0 100 200 300 400

0

0.05

0.1

0.15

0.2

0.25

0.3

St RMS = 1.42e-01     
St-Yaw RMS = 1.27e-02 
Mod St RMS = 2.59e-03 

La
te

ra
l E

rr
or

 (m
)

X - Position (m)

0 100 200 300 400
-10

-5

0

5

10

St RMS = 1.05e+00     
St-Yaw RMS = 1.21e+00 
Mod St RMS = 1.34e+00 

St
ee

ri
ng

 A
ng

le
 (d

eg
)

X - Position (m)
0 100 200 300 400

-5

0

5

10

St RMS = 1.72e+00     
St-Yaw RMS = 1.89e+00 
Mod St RMS = 1.81e+00 

Ya
w

 R
at

e 
(d

eg
/s

)

X - Position (m)

334.4334.406

51.6

52

355 360 365

-2
0
2
4

355360 365

-2

0

2

334.4035334.4036
51.875

51.895

Fig. 11 Performance comparison between Stanley controllers for hook road
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Yaw controller, and solid black lines for the proposed

Mod-St controller. RMS values of the data are used to

quantify these results for comparison purposes between the

two controllers.

Figure 8 shows the vehicle’s performance with all three

variants for Stanley Controllers on the straight road. The

Y-Position graphs denote the path tracking performance

which proved that the three controllers managed to guide

the armoured vehicle to follow the desired path. Upon

zooming the graph, one can see the better performance by

Mod-St controller which managed to steer the vehicle

closer to the path. This can be further proven by looking at

the second graph showing lateral error results. Modified

Stanley controller achieved better lateral error compared to

its predecessors most of the time which can be seen from

the transient graph and the RMS value with 9.7%

improvement compared to the St-Yaw controller.

The excellent performance in lateral error was caused by

the increase in controller’s effort which can be seen in the

steering angle graph. An increase of 7.3% was recorded by

the proposed controller compared to its predecessor, St-

Yaw. This caused an evident increase in yaw rate values

which can be seen in the yaw rate graph with 1% increase

of RMS values.

Figure 9 shows the results for multiple lane change

maneuver. Comparing the three Stanley controllers for this

road yields same improvement in terms of path tracking

performance. The proposed controller, modified Stanley

managed to guide the vehicle closer to the path at all times.

This is proven by the lateral error data which shows less

lateral error at all times for the Mod St controller with less

oscillations, showing more stable behavior during path

tracking. In average, modified Stanley controller achieved

about 0.003 m lateral error which is 72.3 and 80% less than

the St-Yaw and St Controllers, respectively.

It is easier to understand that the increase in lateral error

is caused by better steering actions throughout maneuver-

ing. From the steering angle data, the proposed controller

was capable to provide faster and larger steering input with

RMS of 10% more than its predecessors. In terms of yaw

rate, less overall readings were recorded by the vehicle

with proposed controller with 1.9 deg/s which is 8.9% less

than yaw rate response from vehicle with Stanley con-

troller. This can be attributed to the vehicle’s oscillation in

following path from tracking graph in the top-left graph.

In Fig. 10, results for double lane change maneuver are

shown similarly. From left to right, first graph showed the

tracking performance from Y-Position between path and

vehicle, followed by lateral error, steering angle in bottom

left and lastly, vehicle’s yaw rate response. In the first

graph, all Stanley controllers yield good tracking perfor-

mance with the modified Stanley managed to guide the

vehicle closer to the path in the close-up result. This is

proven by the lateral error data which shows less lateral

error at all times for the modified Stanley controller. In

average, modified Stanley controller achieved about

0.004 m lateral error RMS which is 80.8% less than the St-

yaw controller and 87% less than the original Stanley

controller. Also, from the close-up result, less oscillations

and overshoot were recorded for the proposed controller

where the vehicle tracked the path with more

stable behavior.

The improvement in lateral error is caused by better

steering efforts throughout maneuvering. From the steering

angle data, the proposed controller generated faster and

larger steering input with RMS of 0.06�, 22.8% more than

St-yaw’s result. Despite saturated at only 10� wheel angle,
the vehicle managed to follow the desired path excellently.

In terms of yaw rate, the vehicle with proposed controller

recorded 0.064 deg/s yaw rate RMS which is 9.4% less

than St-Yaw’s controller and 17% more RMS compared to

original St controller. This can be attributed to the vehicle’s

oscillation in following path from tracking graph in the top-

left graph. High yaw rate was experienced by the vehicle at

cornering due to faster and larger steering angle. Overall,

the Mod St controller managed to significantly improve the

lateral error (87%) with a small increase in yaw rate

response (17%) compared to the original Stanley

controller.

Figure 11 shows the results for the Hook road with the

same template and arrangement as previous results. Path

tracking performance in the first graph showed excellent

tracking performance by all controllers with no visible

error present. Lateral error data in second graph clarified

this result and showed that the modified Stanley controller

performed significantly better with smaller lateral error at

all times. Overall, the proposed controller recorded

0.0026 m RMS value, 79.6% less than its predecessor, St-

Yaw and a 98% less compared to the original St.

The controllers’ effort from steering angle data showed

the steered angle of vehicle’s wheel throughout maneu-

vering. From the close-up result, it can be seen that the

modified Stanley controller managed to provide faster

steering actions compared to the unmodified Stanley con-

troller. In terms of overall RMS, the proposed controller

recorded 1.34� steering angle which is 10.7 and 27% more

than the St-Yaw and original St controllers, respectively.

This is the contributing factor that the proposed controller

shown better performance in path tracking.

The last graph on bottom-right showed the vehicle’s

yaw rate data which displayed oscillating yaw rate expe-

rienced by the vehicle with modified Stanley. St-Yaw

controller, on the other hand showed that larger yaw rate

experienced by the vehicle. However, the RMS was

determined to be nearly the same with 1.72, 1.89 and

1.81 deg/s for St, St-Yaw and Mod St, respectively. This
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translates into 4.2% decrease and 5.2% increase in yaw rate

response by the Mod St controller compared to St-Yaw and

original St, respectively. Therefore, the proposed controller

managed to improve the lateral error and path tracking

performance by 98% compared to only 5% increase in yaw

rate responses.

In Fig. 12, simulation data for S road is presented.

Similarly, tracking performance in the first graph showed

excellent performance by all controllers with the modified

Stanley controller performed better in steering the vehicle

towards desired path. This can be further clarified by

observing the lateral error data in the next graph. The

modified controller logged less lateral error at all times

throughout the maneuvering with overall RMS value of

0.0063 m, 62.6% less than the 0.017 m recorded by the St-

Yaw controller and 96% less than the original St controller.

The excellent path tracking performance is mainly

attributed to the faster and higher steering action provided

by the modified Stanley controller. In terms of RMS value,

the modified controller provided 1.28� of steered wheel

angle compared to 0.952� from the St-Yaw controller and

0.873� from the original Stanley controller. This is 35%

and 47% increase of RMS wheel angle values, respec-

tively. However, the rapid steering actions caused an

increase in the overall yaw rate response experienced by

the vehicle. 1.62 deg/s of yaw rate was recorded by the

vehicle with modified Stanley controller which was 5.9%

and 13.3% more than that recorded by St-Yaw and St

controllers, respectively. Therefore, it can be said that the

proposed controller managed to record significant

improvement in lateral error of 96% to the expense of an

increase in yaw rate response of only 13%.

Figure 13 shows the results for the final simulation test

with the curved highway road. The results exhibited similar

pattern to other roads with good performance from all

controllers in terms of path tracking. In terms of lateral

error, the proposed controller recorded the RMS cross-

track error of 0.063 m, which is 58.5 and 97% less com-

pared to St-yaw and St controllers, respectively. Similarly,

larger wheel angles were recorded throughout the maneu-

vering with noticeable faster controller action. 1.46� of

wheel angle RMS were recorded by the modified Stanley

controller which are 11.5% higher compared to the

unmodified Stanley controller. In terms of vehicle yaw rate,

the proposed controller managed to guide the vehicle with

9% less yaw rate RMS value compared to St-yaw’s with

2.01 deg/s.

Looking at the overall performance by all three con-

trollers for all trajectories, one can conclude that the three

approaches yield good results in following desired path for

all roads. However, the original Stanley controller recorded

significantly high cross track errors, especially in larger

longer road courses where the lateral error was seen to

achieve as high as 0.4 m. The modified controllers (St-Yaw

and Mod St), on the other hand, managed to keep the lateral

errors well within 0.1 m. This is due to the fact that both

controllers were used with properly tuned parameters.

Looking at the lateral errors data, significant distinction can

be seen between both controllers. The modified Stanley

controller revealed lower cross track errors for all trajec-

tories with improvements ranging from 9.7 to 80.8%

compared to the St-Yaw controller.

Evidently, these improvements were caused by better

effort from the controller. This can be seen from the

steering angle graphs which presented the correctional

wheel angle input from controllers. 7.3–34.5% increase in

controller’s effort was recorded for all trajectories. This

increase, however, was smaller than the recorded

improvement in lateral error earlier. The proposed modified

controller also produced better maneuvering with lower

yaw rate responses compared to its counterpart. All tra-

jectories were navigated by the proposed controller with

lower yaw rate responses with improvements range

4.2–9.4% except for straight and S roads with slightly

higher responses of 1 and 5.9%, respectively. This was

caused by the faster steering actions provided by the pro-

posed controller.

From presented results, the proposed controller namely

modified Stanley (Mod St) controller was proven to per-

form better compared to the basic Stanley controller with

noticeable improvement in lateral error along desired tra-

jectory. One might be curious on how the proposed con-

troller would fare against other geometric controllers

available. Snider [3] has demonstrated extensive works on

six different trajectory tracking controllers namely Pure

Pursuit, Stanley, kinematic LQR, and LQR with road pre-

view, which were tested on three different road courses.

The study proven that among all the controllers, Stanley

displayed the best tracking performance despite its simple

configuration. The study uses a standard passenger’s

vehicle available in CARSIM software, while this paper

focuses on armoured vehicle implementation. It should be

noted that the armoured vehicle considered in this study is

a 4-wheel lightweight armoured vehicle with slightly dif-

ferent parameters. However, the basic dynamics are still

the same and therefore, same observations can be expected

where Stanley can outperform the other controllers. Fur-

thermore, the proposed Mod St controller was further

enhanced from the basic Stanley with improved sensitivity

and optimization with PSO. Therefore, the proposed con-

troller is predicted to perform better than other basic con-

trollers available.

Another benefit for the modified Stanley controller can

be realized by observing the convergence behavior during

optimization process. With more tuneable parameters

compared to its predecessor, the whole controller command
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was made more sensitive to tuning which result in faster

convergence to optimum solution. Optimization conver-

gence performance between St-Yaw and Mod-St controller

for each path is shown in Fig. 14. It is apparent from these

results that the optimization procedure managed to obtain

better solution with each iteration. Also, it is noticeable

that the modified controller needed less iterations to find

the optimum solutions compared to its predecessor.

Looking properly at the results in Fig. 14, the modified

controller was optimized very well even on the first itera-

tion with 72–93% better solutions compared to the opti-

mized Stanley controller. Also, the overall convergence

was achieved within 10 iterations with better results of up

to 80% better fitness value of the solutions. Optimization

for the straight path shown in the first graph recorded the

least improvement in final solution with 9% improvement

only. However, it can be seen that the optimum solution

was achieved within only 2 iterations. These results are

indicating good optimization performance after modifying

the Stanley controller.

6 Conclusions

In this paper, a path tracking controller for an armoured

vehicle is proposed by modifying an existing geometric

controller named Stanley Controller. Three variants of

Stanley controller were compared namely St, St-Yaw, and

Mod St Controllers. Both St-Yaw and Mod St were opti-

mized using Particle Swarm Optimization. The three con-

trollers were implemented on a validated 7DOF armoured

vehicle model that includes a nonlinear tire model, longi-

tudinal and lateral slips estimator, drivetrain model, load

distribution model, and kinematic model. Then, the con-

trollers were evaluated on six different trajectories

considering large curvature roads as well as roads with

sharp maneuverings.

In general, both modified controllers performed well in

guiding the vehicle to follow the intended path. However,

the proposed controller, Mod St was proven to improve the

vehicle’s responses significantly. Three dynamic perfor-

mances were compared between the controllers, namely the

lateral cross-track error, correctional steering input, and

yaw rate responses. Overall, the proposed controller shown

significant improvement of up to 80, 35, and 9.4% for each

responses, respectively, compared with its predecessor, the

St-Yaw controller. The controller competency compared to

St-Yaw controller was also assessed in terms of its effec-

tiveness in optimization processes. With the same opti-

mization procedure, convergence for the proposed

controller was achieved within 10 iterations for all trajec-

tories which were better than St-yaw. Also, the converged

solutions were better for the proposed controller as well,

with solution fitness values of up to 93% less than that of

St-yaw controller.

In terms of recommendation for future works, it is

obvious that the performance of this controller on any

given path depends solely on how well the parameter-

tuning process was. While the proposed controller may

offer a better optimization performance, the controller still

needs to be tuned properly to achieve desirable results.

This is a known issue where the same conclusion can be

made for all geometric based controllers [3, 17, 46].

Therefore, development of a new adaptive method to

determine these parameters can be a good research

prospect.
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