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1.Introduction 
Automated web application penetration testing is 

becoming ubiquitous with the development of 

computer programs that capable of simulating tester 

activities of web application penetration testing. 

Computer programs like HTTrack [1] or Maltego [2] 

were invented to aid penetration tester in intelligent 

information gathering. The invented web application 

security scanners like Acunetix [3] scanned web 

applications for vulnerability assessment. In the 

meanwhile, exploitation tools like Metasploit and 

WFuzz are created to compromise web application 

confidentiality, integrity, and availability.  

 

The web application penetration testing methodology 

of [4] showed web application security scanner 

always has a critical role in scanning the web 

application for vulnerability detection. 

 
*Author for correspondence 

 

 

Web application security scanner simulates the 

actions of penetration tester of inspecting the target 

web application security. Subsequently, penetrating 

the security of web application attack vectors with 

selected attack strings. The web application is 

vulnerable if it responds positively towards the 

injected attack strings, or otherwise. The texts of [5] 

and [6] showed automated web application 

penetration testing is beneficial to pen-testers, which 

the scanner not only reduced resources, times, labour 

work, and costs required for conducting a web 

application penetration testing, the scanner also 

eliminates pen-tester reliance on human knowledge. 

Moreover, the web application security scanner 

preserved the human knowledge of web application 

penetration testing by converting them into an 

executable computer program. 

  

The invention of web application security scanners 

has made automated web application penetration 
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testing a popular research trend. In this research field, 

practitioners have translated the web application 

penetration testing's testing techniques into 

executable programs, to enhance weak algorithms to 

detect new web application vulnerability, or to 

address the challenge of scanning modern web 

application that continuously expanding in both size 

and complexity. 

 

A computer is merely a dummy machine that 

performs the calculation based on the written 

algorithm. Therefore, writing a sophisticated 

algorithm to achieve the objective of automated web 

application penetration testing is important in this 

research field. Unfortunately, humans tend to make 

mistakes. Moreover, the process of translating web 

application penetration testing's testing techniques 

into the executable computer program is tedious and 

error-prone. Hence, the designed algorithms are not 

always perfect, and the issue of false positives and 

false negatives are common for automated web 

application penetration testing.  The false positives 

are consumed pen-tester extra effort and times to 

eliminate the fake vulnerability, while the false 

negatives are impaired pen-tester judgement in 

deciding an under-test web application security. 

Consequently, documents such as [6−10] are 

labelling web application security scanners as 

inaccurate and untrustworthy. This elaborate the 

phenomena of why experimentations are often held to 

quantify the web application security scanner‟s 

quality. 

 

An intriguing discovery is that the methodology and 

criteria used for measuring web application security 

scanner's quality are varying in existing publishing 

manuscripts. Moreover, there is neither a standard 

nor a technical document by authorized parties that 

defined the approach for quantifying web application 

security scanner's quality. Although web application 

security consortium (WASC) did publish web 

application security scanner evaluation criteria 

(WASSEC) [11] in the year of 2009. However, 

WASSEC has been just a checklist that described the 

features of the web application security scanner. 

Moreover, the corresponding checklist has never 

received any update for the year it was published. 

The NIST special publication 500-269 [12] published 

by the NIST SAMATE project is another out-dated 

technical document that contained the similar 

content.  Therefore, in this paper, preferred reporting 

items for systematic reviews and meta-analyses 

(PRISMA) protocol is used to classify and review the 

experiment methodology of published conference 

proceedings and journal papers that had the quality of 

web application security scanner quantified, to 

convey the compelling approach of measuring web 

application security scanner's quality. 

 

The remaining part of the survey is consists of 

following sections. Section 2 defines the web 

application security scanners. Section 3 elaborates the 

concept of quantifying the web application security 

scanner‟s quality. Section 4 presents the literature 

review's methodology.  Subsequently, section 5 

reviews the published methodologies. Section 6 

classifies the manuscripts based on the selected 

indices. Finally, section 7 concluded the survey paper 

with the conclusion remarked.   

 

2.Understanding of web application 

security scanner  
Web application security scanner is a computer 

program that assesses web application security via 

simulating the pen-tester action of penetrating the 

web application security selected attack strings 

[13−16]. Figure 1 showed the general architecture of 

the web application security scanner. 

 

The white box, black box, and hybrid web 

application security scanner are created to 

automatically assess web application security in 

either black box or white box testing environment. 

The black box testing environment is a testing 

environment that web application codes are not 

reachable, while white box testing environment has 

the total opposite meaning. Therefore, white box web 

application security scanners perform the 

vulnerability assessment by inspecting the 

propagation of malicious data on web application 

codes via a control flow graph (CFG) or data flow 

graph (DFG) [17−21]. On the other hand, black box 

web application security scanner assesses web 

application security by inspecting the web application 

execution behaviours for anomalies detection 

[22−26].   

 

Hybrid web application security scanners are unique 

in such a way that both software static and dynamic 

testing techniques are used to assess the web 

application security scanner. The hybrid web 

application security scanner parsed the code and also 

examines the web application execution behaviours. 

According to [27] and [28], the software static and 

dynamic testing techniques are integrated to improve 

the test coverage and to reduce the possibility of 

producing the false positive and false negatives. 
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Web application security scanners scan a web 

application security with passive and active scanning.  

In the passive scanning, the scanner collects 

information of under-test web application with 

reconnaissance algorithm. Then, in active scanning, 

exploitation is performed to compromise web 

application confidentiality, integrity, or availability 

using the security penetration algorithm. This include 

performs the vulnerability detection with information 

flow analysis or anomaly detection. Therefore, a web 

application security scanner generally contains a 

reconnaissance component, security penetration 

component, and vulnerability detection component 

[20, 29–31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The general architecture of web application security scanner 

 

3.The web application security scanner’s 

quality quantification 

The web application security scanner‟s quality is 

often quantified to investigate strengths and 

limitations of existing algorithms, or to evaluate web 

application security scanner or recently designed 

algorithm. According to the literature of [9, 32−34], 

quantification of web application security scanner's 

quality is achievable by challenging web application 

security scanner‟s features with test-beds. The 

practised experiment methodology usually consists of 

preparation, execution, and reporting phases. The 

preparation phase defined the experiment's objectives 

and scopes.  The preparation phase also includes 

having the selected test-beds and web application 

security scanners configured and installed.  Then, in 

the execution phase, web application security 

scanners are configured to scan the test-beds. Lastly, 

collected experimental results are charted and filed in 

the reporting phase. The virtualization is common in 

existing experiment methodologies for reducing both 

the complexity and cost required, to set up a web 

application penetration testing lab. The guideline to 

set up a virtual penetration lab is available in [35]. 

 

4.The methodology  
The paper conducts the survey based on the PRISMA 

protocol of [36]. The completeness and transparency 

of PRISMA protocol have made PRISMA protocol 

the methodology of this survey. Figure 2 showed the 

flow diagram of PRISMA protocol. 

 

PRISMA protocol has an intriguing subject 

systematically reviewed with these four activities, 

namely identification, screening, eligibility, and 

included.  
 

Identification: International conference proceedings 

and journal papers of six major publishers, which are 
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(IEEE), Emerald Insight, Association for Computing 

Machinery (ACM), ScienceDirect, Springer, and 

Google Scholar, were surveyed in this survey paper. 

Manuscripts of this area of interest were collected 

from these publishers using the keywords of „web 

application penetration testing‟, „automated web 

application penetration testing‟, „web application 

security scanner‟, „web application security testing‟, 

„web vulnerability scanner‟, and „web pen-test‟. 

Overall, 290 manuscripts were retrieved with 

keywords stated above. 

Screening: In this screening process, 114 

manuscripts were discarded to eliminate the 

duplication. In the meanwhile, the remaining 144 

manuscripts were carried forward for full-text 

reading. 

Eligibility: In this phase, full-text of 144 manuscripts 

were comprehensively reviewed, to define their 

eligibility.  The process had 54 manuscripts 

discarded, because of the poorly executed experiment 

methodology. 

Included: Finally, experimental methodologies of 

elected manuscripts are qualitatively and 

quantitatively synthesized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Flow diagram of PRISMA protocol 

 

4.1Data quantification 
The final stage of the survey quantitatively 

synthesizes collected data according to selected 

indices. The survey categorizes the data based on 

indices of the year of publication, publisher, web 

application vulnerability, test-beds, measurement 

metric, and web application security scanner. This 

data are quantified to deliver practitioners with the 

compelling approach of quantifying web application 

security scanner‟s quality. In addition to that, it is to 

provide future works with critical hints of designing 

next testing framework, measurement metric, test-

bed, or model to quantify web application security 

scanner‟s quality. 

 

5.Approaches for scanner’s quality 

quantification  
The quality of web application security scanner is 

quantified to achieve these four objectives, which 

are: 

a. To compare the white box and black box web 

application security scanners' quality.  

Identification 
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searching  
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b. To clarify web application security scanners‟ 

strengths and limitations. 

c. To benchmark a recently proposed algorithm. 

d. To clarify the web application security scanner's 

test coverage. 

 

In this section, the corresponding experimentations 

are reviewed to show their findings and 

methodologies.   

 

5.1White box and black box scanners comparison 

The experiment distinguishes the state-of-the-art of 

white box and black box web application security 

scanner. It is also to clarify the strengths and 

limitations of white box and black box web 

application security scanners in vulnerability 

detection. The experiments were conducted by 

having both scanners scanned the same vulnerable 

web applications. 

 

Subsequently, the obtained experimental results were 

compared, to clarify their performance. According to 

experimental results of [9] and [33], white box web 

application security scanners achieve better test 

coverage than black box web application security 

scanners because of the code visibility. Therefore, 

black box web application security scanner tends to 

generate the false negatives. However, white box web 

application security scanners are susceptible to false 

positives. 

  

5.2Clarifying scanners strengths and limitations 

The web application security scanners are quantified 

to clarify their test coverage, scanning efficiency, 

attack coverage, and the capability to detect a class of 

web application vulnerability. The experiment was 

conducted by configured the scanners to scan 

selected vulnerable web applications. Summing up 

experimental results of [6, 7, 18, 22, 23, 26, 30, 34, 

37–46], web application security scanners not only 

tends to generate false alarm, the coverage issue is 

quite concerning in automated web application 

penetration testing. Besides this, web application 

security scanners are exceptionally good in detecting 

reflected cross-site scripting and SQL injection. 

Unfortunately, hard work is still required to make 

web application security scanners detect the advance 

web application vulnerabilities. Moreover, the 

coverage issue is yielded, because of the challenge to 

scan, modern web applications that has rich media. 
 

5.3Benchmarking the algorithms 

Experiments are also conducted to validate the 

recently designed algorithms. The objective is to 

ensure the algorithm had addressed the targeted 

research problem. The experiment has the algorithm 

scan the selected vulnerable web applications. Then, 

the algorithm is validated by comparing the collected 

experimental results with those obtained with 

existing algorithms. [47–49] experimental results 

showed the proposed code parsing and reverse 

engineering algorithms are efficient in scraping data 

entry points (DEPs) and attack vectors from under-

test web applications. In the meanwhile, [50–60]‟s 

experimental results showed leveraging of search-

based testing technique, mutation testing technique, 

and genetic algorithm are effective in improving the 

attack coverage. Moreover, anomaly detection and 

information flow analysis by [8, 9, 27, 28, 31], and 

[61–79] are proven effective in detecting the web 

application vulnerability in either black box or white 

box testing environment. Besides this, the developed 

prototypes are validated in [5, 20, 25, 29], and [80− 

99]. 
 

5.4Scanner coverage clarification 

These experiments quantify web application security 

scanners by configured the scanners to crawl selected 

web applications. Experiment results of [80−82] 

showed the authors‟ information knowledge manager 

(IKM) and topic model manages to increase the 

number of visited web pages by 28%. In the 

meanwhile, [100] experimental result showed test 

coverage is expandable by hooking JavaScript API 

onto dynamic analysis, to detect registered events, 

URLs, and web forms. 
 

5.5Related works 

Several testing frameworks were proposed by 

practitioners to quantify web application security 

scanner‟s quality. Authors of [101−103] introduced a 

testing framework that quantifies web application 

security scanner's quality with fault injection 

technique. These frameworks defined a web 

application security scanner‟s quality by measuring 

the capability of web application security scanner to 

detect the faults introduced with fault injection 

technique. Besides this, [104, 105], and [106] have 

proposed the alternative measurement metrics to rank 

web application security scanner‟s quality. [104] 

introduced true duplication and false duplication to 

describe web application security scanner's duplicate 

results, while [105] proposed the sensitive data flow 

coverage with an attempt to replace conventional 

branch coverage and statement coverage. In the 

meanwhile, [106] introduced the web application 

security scanner grading system to grade web 
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application security scanner's quality with the fuzzy 

classifier. 

 

6.Classification of the methodologies 

This section classifies methodologies of publishing 

manuscripts based on selected indices. The selected 

indices are the type of manuscript, the manuscript‟s 

year of publication, the manuscript‟s publisher, the 

testing technique of web application security scanner, 

the web application vulnerability, the test-beds, and 

measurement metrics used to describe web 

application security scanner‟s quality. 

 

6.1The assortment of academic manuscripts 

The section classifies collected academic manuscripts 

to convey publishers that have a high interest in this 

subject of automated web application penetration 

testing. Then, this section classifies the manuscripts 

based on how this area of research is delivered to 

public. The data showed the relevant area of research 

were frequently published in six publishers of 

ScienceDirect, IEEE, ACM, Emerald Insight, Google 

Scholar, and Springer, which well-known for 

publishing books, ebooks, and peer-reviewed journals 

in science, engineering, and computer science. 

Amongst these publishers, IEEE, Springer, and the 

ACM have the highest publication rate of 47.8%, 

18.9%, and 14.4% respectively.  However, only a 

manuscript is from Emerald Insight, since the 

publisher is specialist more in fields like business and 

management, education, and marketing, with only 

several books series and journals covered the 

engineering. Unfortunately, relevant researches were 

frequently published as conference proceedings or 

symposiums, instead of journal papers with 

frequencies of 23.3% and 76.7% respectively.  The 

Figure 3 and Figure 4 classify manuscripts by 

publisher and manuscripts' type.   

 

6.2 The assortment of manuscript by publication 

year 

The section classifies related academic manuscripts 

by their year of publication to convey the research 

trend of automated web application penetration 

testing. As depicted in Figure 5, this research topic is 

continuously gaining its popularity, begin from the 

year of 2000 to 2018. The research topic‟s popularity 

is reaching its peak in the year 2014, which 16.7% of 

the manuscripts were published in that year. 

Nowadays, the trend of automated web application 

penetration testing remains attractive with an average 

of 5 manuscripts were published in the year 2015, 

2016, and 2017.  

 

6.3 The assortment of web application security 

scanners   

The section classifies web application security 

scanners involved in the experiments with their 

testing technique and licensing to convey web 

application security scanners that available for 

automatically assessing web application security, 

while to deliver those most accessible for 

benchmarking purpose. Overall, the experiments had 

quantified 93 web application security scanners, 

which 87 of them are black box web application 

security scanners, while 8 of them are white box web 

application security scanners. The 87 black box web 

application security scanners showed 29 of them are 

open-source, 10 of them are closed software while 

remaining 48 web application security scanners are 

from academia. On the other hand, the manuscripts 

only had eight white box web application security 

scanners' quality quantified, which 5 of them are 

open-source, and 3 of them are developed in 

academia. Table 1 showed the tested web application 

security scanners. 

 

Figure 6 showed quantification of black box web 

application security scanners' quality were more often 

than white box web application security scanners. 

The reason is collected manuscripts are often 

describe automated web application penetration 

testing as a kind of black box software testing 

technique.  In fact, manuscripts have a term called a 

static analyser to describe the automated white box 

web application testing.  Consequently, the quality of 

black box web application security scanners called an 

Acunetix web vulnerability scanner, WebInspect and 

AppScan are often quantified with frequencies of 

11.5%, 6.3%, and 9.9% respectively.  In addition to 

that, 17.8% of manuscripts were tested web 

application security scanners developed in academia. 
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Figure 3 The division of academic manuscripts by publisher 

 

 
Figure 4 The division of academic manuscripts by the type of document 

 

 
Figure 5 The division of academic manuscript by publication year 
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Figure 6 Frequencies “web application security scanner” was evaluated 

 

Table 1 The assortment of web application security scanners by the licensing and testing approach 

Licencing  Testing approach Items The web application security scanner/ web spider/ parser 

Commercialized Black box S1 Acunetix Web Vulnerability Scanner 

S2 HailStorm 

S3 WebInspect 

S4 Appscan 

S5 McAfee SECURE 

S6 Qualysguard 

S7 NeXPose 

S8 BurpSuite 

S9 N-Sparker 

S10 Retina 

Open source Black box S11 Teleport 

S12 Wapiti 

S13 W3af 

S14 WebCruiser 

S15 Wasapy 

S16 PowerFuzz 

S17 WebXSSDetector 

S18 wget 

S19 Skipfish 

S20 Harvest 

S21 Vega 

S22 PownMe 

S23 N-Stalker 

S24 Mikito 

S25 WebScarab 

S26 WebRavor 

S27 WebSPHNIX 

S28 Larbin 

S29 Websecurity 

S30 Web-Glimpse 

S31 SQLfast 

S32 SQLmap 

S33 ARDILLA 

S34 Arachni 

S35 NTOSpider 

S36 ZAP 
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Licencing  Testing approach Items The web application security scanner/ web spider/ parser 

S37 Nikto 

S38 Wikto 

S39 Paros 

White box S40 Grep 

S41 FindBugs 

S42 Yasca 

S43 IntellJIDEA 

S44 PHPMinerII 

Academia Black box S45 WAVES, Saner, VS. WS., CIVS-WS, WebSSARI, Andromeda, 

Multi-agent scanner, Attack injection tool, RWSS, Wasapy, WASC, 

PAPAS, PIUIVT, Sania, Secubat, ARDILLA, MUBOT, MUSIC, 

MUTEC, MUFORMAT, XSS analyser, Sign-WS, WS-Attacker, 

Vulnerability & Injection Tool, WASAPY, Confleagle, SOA-

scanner, SQLIVDT, LigRE, ETSSDetector, NVS, WebGuardia, 

SQLfast, Idea, Volcano, ANOVA, PMVT, THAPS, XquerryFuzzer, 

JÄK, WAPTT, BIOFUZZ, KamaleonFuzz, CRS, XSSPeeker, 

Inferential, XiParam, DetLogic 

White box S46 ITS4, Pixy, WAP 

 

6.4 The assortment of web application 

vulnerability 

The section delivers web application vulnerabilities 

that detectable with automated web application 

penetration testing. Table 2 showed 54 web 

application vulnerabilities that detectable with 

automated web application penetration testing. Table 

2 grouped relevant web application vulnerabilities, 

according to open web application security project 

(OWASP) Top 10 [107], with brief descriptions are 

provided to elaborate each class of web application 

vulnerability. Web application vulnerabilities are left 

unclassified if it doesn‟t fit the OWASP top 10. 

 

 

Table 2 Classification of web application vulnerabilities by OWASP Top 10 

OWASP Top 10 Items Vulnerability Description (Deriving from OWASP) 

Injection attacks V1 SQL injection Insertion of SQL queries to modify integrity, 

availability, confidentiality of database data. 

V2 XPath injection Compromising of integrity, availability, or 

confidentiality of data in XML.  

V3 OS command injection Execution of arbitrary commands in the host 

operating system through the vulnerable web 

application. 

V4 Code injection Execution/interpretation of injected code in the 

web application. 

V5 Command injection Execution of command on the host system 

through a vulnerable web application. 

V6 Script injection Arbitrary scripts execution. 

V7 XQuery injection Incorporation of malicious data into XQuery 

pattern to alter the XQuery logic. 

V8 SSI injection Manipulation of the file system and process of 

web server process. 

File inclusion V9 Remote file inclusion The remote inclusion of file that could bring harm 

to the target application. 

V10 Local file inclusion Inclusion local harmful files to the target web 

application. 

V11 Arbitrary file upload Upload of the malicious file that can bring harm to 

the target application. 

V12 Arbitrary file inclusion The inclusion of malicious file that can bring 

harm to the target application. 

Session related vulnerability V13 Session fixation The hijacking of the valid user session. 

V14 Session prediction Prediction of the session ID values. 

V15 Session hijacking Exploitation of web session control mechanism. 

Broken authentication V16 Authentication bypass Bypass web application's authentication scheme. 
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OWASP Top 10 Items Vulnerability Description (Deriving from OWASP) 

V17 Insufficient authentication Usage of weak passwords or poorly protected 

application. 

Broken authorization V18 Broken access control Weakly enforced restrictions for authenticated 

users. 

V19 Insufficient password discovery Bypass password authentication schemes with 

weak password recovery mechanism. 

V20 Insufficient authorization Authorized users have loosely configured 

restriction. 

Security misconfiguration V21 SSL misconfiguration Misconfiguration of the server to force the usage 

of cryptographic options. 

V22 Insecure temporary file Creation and usage of insecure temporary files 

that lead to compromising of application security. 

V23 Predictable resource location Uncover hidden web content and functionality of 

target application. 

V24 misconfiguration Misconfigured application stack. 

Using component with known 

vulnerabilities 

V25 Input sanitization Inappropriate input sanitization functions. 

Sensitive data exposure V26 Path traversal Accessing files and directories that stored outside 

the web root directory. 

V27 Error message disclosure Accidentally reveals of error codes. 

V28 Username/ password disclosure Reveals of username or password. 

V29 Server path disclosure Reveals of server‟s path. 

V30 Information leakage Reveals of the internal state of the application. 

V31 Insecure object reference Direct access to protected objects by the user's 

supplied input. 

Insecure deserialization   V32 Code vulnerability Leveraged of insecure codes. 

V33 Code execution Execution of injection code by the application. 

HTTP manipulation V34 HTTP response splitting The inclusion of malicious characters in HTTP 

response header without being validated. 

V35 Parameter tampering Manipulation of the value of HTTP parameter.  

V36 Parameter pollution Supplying of HTTP parameter with the similar 

name to alter the way application is interpreting 

the parameter value. 

V37 HTTP request smuggling Tamper HTTP requests or responses with 

malformed HTTP requests. 

Spoofing V38 Content spoofing Defacement of the web application with text 

injection. 

V39 SOAP spoofing Defacement of HTTP header element known as 

SOAPAction. 

V40 WS-addressing spoofing Adding of routing information to the SOAP 

header to allow asynchronous communication. 

Poisoning V41 Cache poisoning Duplicate headers in a single header field. 

V42 Cookie poisoning Filling in the cookie attribute to make browser 

send the cookie within the cross-site request. 

Uncategorized V43 Abuse use of functionality Misused of application functions and features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V44 Cross-site scripting Injection and sending of malicious scripts to the 

other end user. 

V45 Clickjacking Transparent or opaque layer for malicious web 

browsing. 

V46 Buffer overflow Submission of malicious data to corrupt web 

application execution stack. 

V47 Cross-site request forgery Force execution of malicious actions by the web 

application. 

V48 SOAP/ AJAX attack Injection of malicious data to 

alter  XMLHttpRequest logic. 

V49 Denial of service Making resources of web application unavailable. 

V50 Hidden field manipulation Disabling resources of a web application. 

V51 Drive-by download Injection of a legitimate web page with malicious 

code to infect legitimate web page. 
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OWASP Top 10 Items Vulnerability Description (Deriving from OWASP) 

 

 

 

 

 

V52 Format string bug Injection of the input string for evaluating as a 

command by the web application. 

V53 Unvalidated redirect Injection of malicious input to trigger malicious 

URL redirect. 

V54 Insufficient process validation Failure in enforcing application business logic. 

 V55 Logic vulnerabilities Fault in application logic. 

 

In summary, the manuscripts had quantified web 

application security scanners' capability in detecting 

eight injection-based attacks, four file inclusion, three 

session related vulnerabilities, two broken 

authentication, three broken authorization, four 

security misconfiguration, one usage of component 

with known vulnerability, six data exposure 

vulnerability, two insecure deserialization, four 

HTTP manipulation, three spoofing, and eight 

uncategorized web application vulnerability. In 

existing manuscripts, the study of SQL injection and 

cross-site scripting are the most common with 

frequencies of 32.6% and 22.4% respectively, while 

34.8% of the academic manuscripts covered both 

SQL injection and cross-site scripting. Unfortunately, 

evaluation of web application security scanners' 

quality for others web application vulnerabilities is 

rare as elaborated in Figure 7.  
 

 

 
Figure 7 Frequencies “web application vulnerability” was evaluated 

 

6.5 The assortment of test-bed 

The section delivers the test-beds that available for 

benchmarking web application security scanner‟s 

quality and their pros and cons. Test-bed is a very 

vulnerable web application that contained a finite 

number of vulnerabilities or challenges [26, 37, 41, 

103]. The test-bed is having a critical role in 

benchmarking web application security scanner‟s 

quality. Existing experiment methodologies often 

quantify web application security scanners‟ quality 

by configuring the scanners to scan selected test-

beds. Then, web application security scanners' 

vulnerability detection rate or what that most relevant 

are measured to define their quality. Table 3 showed 

four test-beds are available to benchmark web 

application security scanner quality.  

Figure 8 showed 45.6% of experiment methodologies 

benchmark web application security scanner‟s quality 

with open-source web application framework, while 

17.3% and 16.3% of experimental methodologies 

evaluate web application security scanner's quality 

with educational vulnerable web applications and 

web application security scanner test sites 

respectively. Only 5.4% experiment methodologies 

use custom-made web application developed by 

students or teaching assistant due to their validity is 

questionable. 
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Table 3 Test-beds for benchmarking web application security scanner‟s quality 

Items Category Description Pros Cons Test-beds 

W1 Custom-made web 

 application 

Practitioners developed 

vulnerable web 

applications. 

 

No concern for 

committing the 

cybercrime. 

Never validated. 

Manual testing is 

required to 

validate results 

validity. 

Not well 

documented. 

Custom web 

applications 

developed by a 

group of teaching 

assistants, 

researchers, or 

students 

W2 Educational vulnerable 

web application 

Very vulnerable web 

applications that for 

educational purpose. 

Web application 

vulnerabilities are 

known. 

Well 

documented. 

No concern for 

committing the 

cybercrime. 

Manual testing is 

not required. 

Limited web 

application 

vulnerabilities. 

Limited 

challenges. 

Only well-known 

web application 

vulnerabilities are 

testable. 

Damn Vulnerable 

Web Application 

(DVWA), online 

bookstore, 

WebGoat, 

Gryyere, 

P0wnMe!, 

Multillidae, 

YAVWA, WIVET 

W3 Web application 

security scanner test 

sites 

Test-site that specifically 

for benchmarking web 

application security 

scanner. 

Web applications 

vulnerability is 

known. 

Well 

documented. 

No concern for 

committing the 

cybercrime. 

Manual testing is 

not required. 

Limited web 

application 

vulnerabilities. 

Limited 

challenges. 

Only well-known 

web application 

vulnerabilities are 

testable. 

WackoPicko, PCI, 

MatchIt, W-VST, 

Scan-bed 

W4 Open-source web 

application framework 

The open-access framework 

that supports web 

application development. 

No concern for 

committing the 

cybercrime. 

 Not well 

documented. 

 Manual 

testing is required 

to validate result 

validity. 

Drupal, phpBB, 

WordPress, 

Django, SatchMo, 

Vanilla, Gallery, 

SCARF, 

Reference, 

PHPFusion, 

PHPBlog, 

PHPNuke, 

PHPMyAdmin, 

TikiWiki, PHP 

Gallery, MyBB, 

Moodle, TestLink, 

SquirrelMail, 

Elgg, FeedSearch, 

RssReader, 

LampCMS, 

Joomla, PhpNN, 

MediaWiki, 

OwnCloud, Tidio, 

Nibbleblog, 

Modx-CMS 

W5 Real-world web 

application 

Web application live on the 

World Wide Web. 
Web application 

security scanner's 

capability can 

genuinely reveal.  

Cybercrime may 

be conducted. 

Not well 

documented. 

Manual testing is 

required to 

validate result 

validity.  

Alexa top ranking 

sites. 
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Figure 8 Frequencies the test-bed was leveraged for benchmarking purpose 

 

6.6 The assortment of measurement metrics 

The section delivers measurement metrics available 

for quantifying web application security scanner‟s 

quality. Overall, practitioners have 13 measurement 

metrics to scale web application security scanner's 

test coverage; 7 measurement metrics to compute 

web application security scanner's attack coverage; 

18 measurement metrics to measure web application 

security scanner's vulnerability detection rate; 5 

measurement metrics to measure web application 

security scanner's scanning efficiency. The test 

coverage described the part of a web application that 

successfully scanned by a web application security 

scanner. In the meanwhile, attack coverage explains 

DEP that had been penetrated with attack payloads, 

while vulnerability detection rate elaborate web 

application vulnerability that successfully detected by 

a web application security scanner. On the other 

hand, scanning efficiency elaborates the time 

required to complete a vulnerability scanning session. 

Table 4 showed the stated measurement metrics used 

to quantify web application security scanner's quality. 

 

 

Table 4 Measurement metrics to quantify web application security scanner quality 

Criteria Items Metrics Description (By the authors) 

Test coverage M1 Number of URLs The number of URLs that a web application security scanner had 

visited. 

M2 Number of networks 

generated 

The number of networks produced by a web application security 

scanner in a vulnerability scanning session. 

M3 Number of web pages 

visited 

The number of web pages visited by a web application security 

scanner in a vulnerability scanning session. 

M4 Code coverage The degree of web application source code that is tested by a web 

application security scanner. 

M5 Test coverage The degree of a web application that had been successfully tested by 

a web application security scanner. 

M6 Number of links The number of links that a web application security scanner had 

successfully retrieved. 

M7 Surface coverage Surface and sink coverage retrieved by a web application security 

scanner. 

M8 Testing level Description of the testing approach, either in a black box or white 

box manner. 

M9 Number of data extracted The number of data that successfully extracted. 

M10 Capability to bypass 

authentication scheme 

Description of the ability of a web application security scanner in 

provides an authentication scheme with valid data. 

M11 Reachability scores The faction of retrieved entry points over the entry points of a web 

application. 

M12 Number of forms 

retrieved 

The number of web forms that a web application security scanner 

manages to retrieve. 
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Criteria Items Metrics Description (By the authors) 

Attack coverage M13 Number of injection point The number of entry points that retrievable by a web application 

security scanner. 

M14 Number of vector The number of inputs used to test a web application. 

M15 Granularity of test case Description of the object that constitutes a test case. 

M16 Source of test case Description of artefacts used to generate the test case. 

M17 Test case generation 

method 

Description of approach that converts the source of test cases into a 

set of test cases. 

M18 Number of attack vector The number of retrievable paths. 

M19 Number of test case 

generated 

Amount of test cases produced by a web application security scanner 

in a scanning session. 

Vulnerability 

detection 

M20 Number of vulnerability The number of vulnerability produced by a web application security 

scanner. 

M21 Number of false positive The number of unreal vulnerability produced by a web application 

security scanner. 

M22 Number of false negative The number of vulnerability missed by a web application security 

scanner. 

M23 Number of true positive The number of benign vulnerabilities reported by a web application 

security scanner. 

M24 Number of true negative The number of benign vulnerabilities that not reported by a web 

application security scanner. 

M25 F-measure Harmonic means of recall and precision. 

M26 Recall The probability to produce a benign vulnerability. 

M27 Precision The fraction of benign vulnerability from vulnerabilities reported. 

M28 Detection score The fraction of vulnerability detected over vulnerabilities that 

possessed by a test-bed. 

M29 Number of true 

vulnerability 

The number of benign vulnerabilities. 

M30 Number of false alarm The number of false positives and false negatives 

M31 Detection rate The ratio of the found vulnerabilities. 

M32 Vulnerability coverage Amount of vulnerability that detectable. 

M33 Detection coverage Percentage of detectable vulnerabilities. 

M34 Number of true 

duplication 

The number of duplicate true positives. 

M35 Number of false 

duplication 

The number of duplicate false positives. 

M36 Coverage The number of vulnerabilities detected. 

M37 Fitness The number of vulnerability covered by a test case. 

Efficiency M38 Scanning time Amount of time required to complete a vulnerability scanning. 

M39 Parsing time Amount of time required to complete parsing a set of codes. 

M40 Automation level The capability to complete a scanning session without tester 

involvement. 

M41 Processing overhead Amount of extra time required to complete a scanning session. 

M42 Productivity Average time requited to generate a test case. 

 

In existing academic manuscripts, it is common that 

web application security scanners were quantified to 

measure their vulnerability detection rate. Therefore, 

Figure 9 showed measurement metrics like the 

number vulnerability, the number of false positives 

and the number of false negatives are the three most 

common measurement metrics used to measure web 

application security scanner‟s quality with 

frequencies of 24.2%, 20.8%, and 5.6% respectively. 

However, [33] had defined F-measure as the most 

suitable measurement metrics to measure web 

application security scanner‟s quality. 
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Figure 9 Frequencies “measurement metric” is used to measure web application security scanner quality 

 

7.Conclusion and future work 
Quantifying a web application security scanner's 

quality with sophisticated methodology is essential 

for the following reasons. Firstly, a sophisticated 

methodology help in accurately defined web 

application security scanner‟s strengths and 

limitations, especially in locating weakly designed 

algorithms. Secondly, to deliver a platform to allow 

researchers scientifically and precisely present their 

concept, idea, algorithm, or achievement in the field 

of automated web application penetration testing to 

the public. Third and the last, precise methodology 

are significantly effected advancement of this 

research field. Unfortunately, existing 90 academic 

manuscripts, neither have a standard methodology 

nor measurement metric to quantify web application 

security scanner's quality, although the relevant study 

is common. There is only a common practice that 

web application security scanner‟s quality was 

quantified by configuring the scanner to scan selected 

test-beds. Then, practitioner quantified a scanner's 

quality by calculating the number of vulnerabilities 

detected. Consequently, the survey showed 

practitioners use the diverse set of methodologies, 

test-beds, web application security scanners, and 

measurement metrics to quantify web application 

security scanner‟s quality. 

 

Although the survey has presented the compelling 

approach to quantify the quality of web application 

security scanners' quality, as well as exhibit the test-

beds, web application security scanners, and 

measurement metrics to measure web application 

security scanner‟s quality. However, the survey 

delivers more research questions, instead of giving 

the answer of providing the sophisticated 

methodology to quantify web application security 

scanner's quality. For instance, the suitable amount of 

test-beds or web application security scanners to 

benchmark a web application security scanner or 

algorithm is unknown. In existing academic 

manuscripts, it showed the number of web 

application security scanners and test-beds used to 

benchmark a web application security scanner is 

ranging from the minimum number of zero to the 

maximum number of a thousand. Besides this, fittest 

measurement metrics to describe a web application 

security scanner's test coverage, attack coverage, 

vulnerability detection rate, and scanning efficiency 

are also unknown. The survey showed practitioners 

had quantified web application security scanner‟s 

quality with less meaningful and redundant 

measurement metrics. Practitioners had measured 

web application security scanner's capability for 

vulnerability detection with measurement metrics of 

vulnerability detection rate and the number of 

vulnerabilities, which carries the same definition. In 

the meanwhile, measurement metrics of surface 

coverage and the number of links are too ambiguous 

to define web application security scanner‟s test 

coverage. Since the scope of surface coverage is 

difficult to define, meantime the number of links 

cannot represent a web application's coverage 

because modern web applications not only consist of 

links but also other web elements that critical for 

vulnerability assessment. Therefore, there is an 

assuring future work for this area of this research.  It 

is about producing a compelling methodology and 

metric system to quantify web application security 

scanner‟s quality, to precisely deliver the findings of 

related research field to practitioners.  
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Appendix 

The assortment of methodologies by objectives 
Objective Prototype 

scanners  

The scanners Test-beds Vulnerabilities Metrics Authors 

B
en

ch
m

ar
k

in
g
 r

ec
en

tl
y
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es
ig

n
ed

 a
lg

o
ri

th
m

s.
 

WebSSARI  230 random open-source web 

applications of SourceForge. 
 SQL injection 

 Cross-site scripting 

Not clearly defined. [80−81] 

Name unknown  Burp Suite 

 W3af 

 Acunetix web 

vulnerability scanner 

 Django basic blog 

 Django forum 

 Satchmo online shop 

 Reflected cross-site 

scripting 

 Persistent cross-site 

scripting 

 The number of 

injection points. 

[98] 

Secubat   100 random web applications  SQL injection. 

 Cross-site scripting 

 The number of 

web pages. 

 The number of 

forms visited. 

 The number of 

vulnerabilities. 

[85] 

Name unknown  Wget 

 W3af 

 Skipfish 

 Gallery 

 WordPress V.2 

 WordPress V.3 

 SCARF 

 Vanilla Forum 

 WackoPicko 

 SQL injection 

 Cross-site scripting 

 Code coverage. 

 The number of 

vulnerabilities. 

 The number of 

false alarms. 

 The number of 

true 

vulnerabilities. 

[99] 

ITS4  Grep  I-pay  C++ and C code 

vulnerabilities 

 Elapsed scanning 

time. 

[86] 

Saner   Jetbox 

 MyEasyMarket 

 PBL GuestBook 

 PHP-Fusion 

 SendCard 

 Input sanitization 

function 

 The number of 

vulnerabilities. 

[87] 

VS. WS  WebInspect 

 AppScan 

 Acunetix Web 

Vulnerability 

Scanner 

 300 random web applications  SQL injection  The number of 

true 

vulnerabilities. 

 The number of 

false positives. 

[8] 

CIVS-WS  Acunetix web 

vulnerability scanner 

 AppScan 

 WebInspect 

 FindBugs 

 Yasca 

 IntelliJIDEA 

 ProductDetail 

 NewProducts 

 NewCustomer 

 ChangePaymentMethod 

 JamesSmith 

 PhoneDir 

 Bank 

 Bank3 

 Xoperation 

 SQL injection 

 XPath injection 

 The number of 

true 

vulnerabilities. 

 The number of 

false positives. 

[61, 9] 

Name unknown  WebScarab 

 Webravor 

 Acunetix web 

vulnerability scanner 

 RenRen 

 Kaixin001 

 163.com 

 SQL injection  The number of 

visited web pages. 

 The number of 

true positives. 

 The number of 

false positives. 

[49] 

Andromeda   AJAXChat 

 Altorol 

 App. A 

 Blojsom 

 BlueBlog 

 Contineo 

 Dlog 

 Friki 

 GestCV 

 Ginp 

 JBoard 

 JpetStore 

 JugJobs 

 Photov 

 StrutsArticle 

 WebGoat 

 Cross-site scripting 

 SQL injection 

 The number of 

false positives. 

 The number of 

true positives. 

 The number of 

vulnerabilities. 

 Elapsed scanning 

time. 

[88] 

XSS analyser   15552 server defences  Cross-site scripting  The number of 

vulnerabilities. 

[50] 

Pixy   PHPBlog 

 PHPNuke 

 Gallery 

 PhpMyAdmin 

 Cross-site scripting  The number of 

false positives. 

 The number of 

vulnerabilities. 

[5] 
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Objective Prototype 

scanners  

The scanners Test-beds Vulnerabilities Metrics Authors 

 Serendipity 

 Yapig 

Multi-agent 

scanner 

  Drupal  Stored cross-site 

scripting 

 The number of 

vulnerabilities. 

[89] 

Attack Injection 

Tool 
 AppScan 

 WebInspect 

 TikiWiki 

 phpBB 

 MyReferences 

 SQL injection  The number of 

vulnerabilities. 

[101] 

Name unknown   Timeclock-software 

 RoomPHPlaning 

 PHP inventory 

 Green Desktiny 

 Meshoutbox 

 SQL injection 

 Cross-site scripting 

 The number of 

false positives. 

 The number of 

false negatives. 

 The number of 

web pages visited. 

 The number of 

attack vectors. 

 The number of 

vulnerabilities 

[20] 

RWSS  AppScan 

 WebInspect 

 Open-source blogging platform 

 Open-source customer 

management 

 Not clearly defined  The number of 

false positives. 

 The number of 

vulnerabilities. 

 The number of 

links. 

 Surface coverage. 

[90] 

Name unknown   Employee directory 

 Bookstore 

 Events 

 Classified 

 Portal 

 Command injection 

attack 

 Precision. [65] 

Wasapy  Skipfish 

 W3af 

 Wapiti 

 phpBB 

 SecurePage 

 Hardware Store 

 Insecure 

 Damn vulnerable web application 

 SQL injection  The number of 

vulnerabilities. 

[66] 

Wasapy.   6 self-developed web applications  SQL injection  The number of 

false positives. 

 The number of 

false negative.  

 Detection rate. 

[70] 

WASC   PHP-Post 

 Jupiter CMS 

 PHP Gallery 

 Absolute path traversal 

 MyBBoard 

 SQL injection 

 Script injection 

 Parsing processing 

time. 

[69] 

PAPAS  50000 unique URLs from public 

database of Alexa 
 Parameter pollution  The number of 

vulnerabilities. 

[29] 

Name unknown  WebScarab  WebGoat  SQL injection 

 Cross-site scripting 

 Cross-site request 

forgery 

 Predictable resource 

location 

 HTTP request 

smuggling 

 HTTP response 

splitting 

 Cache poisoning 

 Denial of service 

 Content spoofing 

 Hidden field 

manipulation 

 Driver-by download 

 Information leakage 

 Session fixation 

 Insufficient 

authentication 

 Insufficient 

authorization 

 Brute force 

 The number of 

false positives. 

 The number of 

false negatives. 

 The number of 

attack vectors, 

 Detection rate. 

 False alarm rate. 

[91] 

PIUIVT  Nikto2 

 Wikto 

 MvnForum  SQL injection 

 Cross-site scripting 

 The number of 

vulnerabilities. 

[51] 

Sania  Paros  E-learning  SQL injection  The number of [52] 
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Objective Prototype 

scanners  

The scanners Test-beds Vulnerabilities Metrics Authors 

 Bookstore 

 Portal 

 Event 

 Classified 

 Employee directory 

false positives. 

 The number of 

vulnerabilities. 

Sign-WS  WebInspect 

 Rational AppScan 

 Acunetix web 

vulnerability scanner 

 TPC-APP 

 TPC –C 

 TPC-W 

 SQL injection  Detection 

coverage. 

 The number of 

false positives. 

[62] 

WS-Attacker   Apache Axis 

 JBossWS Native 

 JBossWS CXF 

 .NET web service 

 SOAP action 

spoofing 

 WS-addressing 

spoofing 

 The number of 

vulnerabilities. 

[92] 

Name unknown   Top 1000 websites from Alexa  Clickjacking attack  Detection rate. 

 The number of 

true positives. 

 The number of 

false positives. 

[93] 

Vulnerability & 

injection tool 

  TikiWiki 

 phpBB 

 MyReferences 

 SQL injection  Test coverage. 

 The number of 

false positives. 

[102] 

Name unknown  3 custom web applications  SQL injection 

 Cross-site scripting 

 Cookie poisoning 

 Iframe session 

 Session hijacking 

Not clearly defined. [94] 

Confleagle  W3af 

 Skipfish 

 WebSecurity 

 SquirrelMail 

 Gallery 

 myBB 

 TestLink 

 phpMyAdmin 

 Elgg 

 Moodle 

 SugarCRM 

 MediaWiki 

 Misconfiguration  The number of 

vulnerabilities. 

[95] 

SOA-Scanner   TV-Shows 

 FeedRegistry 

 TvHelper 

 FeedSearch 

 RssFeeder 

 SQL injection 

 XPath injection 

 The number of 

false positives. 

 Test coverage. 

[71] 

SQLIVDT  W3af 

 Nikto 

 Wapiti 

 Vega 

 ZAP 

 Acunetix web 

vulnerability scanner 

 3 self-developed web application 

by 7master students and 2 

teaching assistant 

 SQL injection  The number of 

vulnerabilities. 

[72] 

LiGRE  PownMe 

 Wapiti 

 W3af 

 Skipfish 

 WebGoat 

 Gruyere 

 WordPres 

 Elgg 

 phpBB 

 E-Health 

 P0wnMe! 

 Cross-site scripting  The number of 

vulnerabilities. 

 The number of 

false positive. 

 The number of 

false negative. 

[53] 

ETSSDetector  Acunetix web 

vulnerability scanner 

 N-Stalker 

 WebCruisher 

 PowerFuzz 

 WebSecurify 

 WebXSSDetector 

 Testphp 

 Webscantest 

 Cross-site scripting  The number of 

vulnerabilities. 

 Elapsed scanning 

time. 

 The number test 

generates. 

[54] 

Name unknown  W3af 

 Wapiti 

 LampCMS  Crawling AJAX 

web application 

 The number of 

web pages. 

 Elapsed scanning 

time. 

[47] 

NVS  Acunetix Web 

Vulnerability 

Scanner 

 NetSparker 

 Web Cruiser 

 Karnel Travel 

 Online Real State 

 ICC World Cup II 

 Online tutorial 

 Graphics 

 Travel 

 SQL injection  The number of 

false positives. 

 The number of 

vulnerabilities. 

 Elapsed scanning 

time. 

[73] 
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The scanners Test-beds Vulnerabilities Metrics Authors 

 Jobsite 

 Education 

Name unknown  Acunetix web 

vulnerability scanner 

 WebInspect 

 AppScan 

 TPC-App 

 TPC-C 

 TPC-W 

 SQL injection 

 XPath injection 

 The number of 

false positives. 

 Test coverage. 

[63] 

Name unknown  Vega 

 ZAP Proxy 

 Mikito 

 Wapiti 

 Acunetix web 

vulnerability scanner 

 W3af 

 AppScan 

 HR 

 Farm 

 News 

 SQL injection  The number of 

vulnerabilities. 

[31] 

WebGuardia Not clearly defined  WackoPicko  SQL injection 

 Cross-site scripting 

 Unvalidated 

redirect 

 Secure direct object 

references 

 Security 

misconfiguration 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

 The number of 

false negatives. 

[96] 

WAP  Pixy 

 PhpMinerII 

 phpMyAdmin 

 Multillidae 

 SQL injection 

 Cross-site scripting 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

 Elapsed scanning 

time. 

[27] 

Name unknown  WebInspect 

 AppScan 

 ProductDetail 

 NewProducts 

 NewCustomer 

 ChangePayment Method 

 SQL injection  Detection 

coverage. 

 The number of 

false positives. 

[64] 

Name unknown  Wasapy 

 Skipfish 

 W3af 

 Wapiti 

 AppScan 

 Acunetix Web 

Vulnerability 

Scanner 

 WebInspect 

 phpBB-3 

 SecurePage 

 HardwareStore 

 Insecure 

 Damn vulnerable web application 

(DVWA) 

 Cyphor 

 Seagull 

 Ftss 

 Rioptx 

 Pligg 

 SQL injection  The number of 

vulnerabilities, 

 The number of 

false positives. 

[68] 

 WebSSARI 

 WAVES 

 Teleport 

 WebSpnix 

 Larbin 

 Web-Glimpse 

 230 random web applications of 

SourceForge 

 SQL injection 

 Cross-site scripting 

 The number of 

vulnerabilities. 

[84] 

SQLfast   WebGoat 

 Damn vulnerable web application 

(DVWA) 

 Joomla! 

 Yet another vulnerable web 

application (YAVWA) 

 SQL injection  The number of 

data extracted. 

 Capability to 

bypass 

authentication 

scheme. 

[79] 

Idea  SQLfast  WAVSEP  SQL injection  The number of 

false positives. 

 The number of 

vulnerabilities. 

[55] 

Name unknown  FindBugs  ChangePaymentMethod 

 NewCustomer 

 NewProducts 

 ProductDetail 

 SQL injection 

 XPath injection 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

[97] 

Volcano   Web applications from cyber 

security bulletin 

 SQL injection  The number of 

vulnerabilities. 

[105] 

ANOVA   APhpKb 

 PhpPlanner 

 Yapig 

 Mantis 

 Cross-site scripting  Coverage. 

 Fitness. 

 Time. 

 Productivity. 

[74] 

PMVT  Rational AppScan 

 NTOSpider 

 W3af 

 Skipfish 

 Arachni 

 Stud-e  Multi-step cross-

site scripting 

 Coverage. 

 Fitness. 

 Time. 

 Productivity. 

[74] 
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jÄk  Skipfish 

 W3af 

 Wget 

 State-aware crawler 

 Crawljax 

 WIVET 

 Joomla 

 Modx-CMS 

 Nibbleblog 

 WordPress 

 Tidio 

 myBB 

 phpNN 

 Gallery 

 Piwigo 

 OwnCloud 

 MediaWiki 

 SQL injection 

 Cross-site scripting 

 The number of 

tests. 

[100] 

THAPS   WordPress  SQL injection 

 Cross-site scripting 

 The number of 

false positives. 

 The number of 

vulnerabilities. 

[48] 

Name unknown  Acunetix web 

vulnerability scanner 

 WatchFire AppScan 

 WebInspect 

 MyReferences  SQL injection 

 Cross-site scripting 

 The number of 

vulnerabilities. 

[103] 

XqueryFuzzer  ZAP Attack Proxy  Bookstore 

 Classified 

 WIVET 

 XQuery injection  The number of 

vulnerabilities. 

[57] 

Name unknown.  Acunetix web 

vulnerability scanner 

 NetSparker 

Not clearly defined  SQL injection 

 Buffer overflow 

 Cross-site scripting 

 Cross-site request 

forgery 

 The number of 

false positives. 

 The number of 

false negatives. 

 Elapsed scanning 

time. 

[75] 

Name unknown  Nikto 

 Wikto 

 phpBB Not clearly defined  Detection rate. 

 The number of 

false positives. 

[76] 

WAPTT  W3af 

 Nikto 

 Wapiti 

 Vega 

 ZAP Proxy 

 Acunetix web 

vulnerability scanner 

3 vulnerable web application from 

postgraduate students and teaching 

assistants. 

 SQL injection 

 Cross-site scripting 

 Buffer overflow 

 The number of 

vulnerabilities. 

[28] 

BIOFUZZ  ARDILLA 

 SQLmap 

 WebChess 

 Schoolmate 

 FaqForge 

 geccBBlite 

 phpMyAddressBook 

 Elemate 

 SQL injection  The number of 

vulnerabilities. 

[58] 

KamaleonFuzz  P0wnMe 

 W3af 

 Wapiti 

 Skipfish 

 P0wnMe! 

 WebGoat 

 Gruyer 

 WordPress 

 Elgg 

 phpBB 

 E-Health 

 Cross-site scripting  The number of 

false positives. 

 The number of 

vulnerabilities. 

[59] 

Cross-request 

scanner (CRS) 

  HSBC 

 BEA 

 BOC 

 HSB 

 CitiBank 

 Webjet 

 JetStar 

 Parameter 

tampering 

 The number of 

true positives. 

 The number of 

true negatives. 

 The number of 

false positives. 

 The number of 

false negatives. 

[25] 

XSS Peeker  Acunetix web 

vulnerability scanner 

 NetSparker 

 N-Stalker 

 NTOSpider 

 Skipfish 

 W3af 

 WackoPicko. 

 Custom developed web 

applications. 

 Cross-site scripting.  The number of 

vulnerabilities. 

 The number of 

attack payloads. 

[23] 

Inferential  Acunetix web 

vulnerability scanner 

 SQLMap 

 AppScan 

 WAVSEP  SQL injection  The number of 

false positives. 

 The number of 

true positives. 

 The number of 

[77] 



International Journal of Advanced Computer Research, Vol 8(38) 

305          
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scanners  

The scanners Test-beds Vulnerabilities Metrics Authors 

URLs. 

 False positive rate. 

XiParam   5 web applications from 

GotoCode 

 Custom developed web 

applications 

 XQuery injection 

 Parameter 

tampering 

 The number of 

vulnerabilities. 

 The number of 

attack requests. 

 The number of 

successful attacks. 

 The number of 

vulnerable forms. 

 The number of 

false positives. 

 The number of 

false negatives. 

[60] 

Not clearly 

defined 

 1854 PHP projects on Github  SQL injection 

 Command injection 

 Code injection 

 Arbitrary file read/ 

write 

 Cross-site scripting 

 Session fixation 

 The number of 

sinks. 

 The number of 

calls. 

[78] 

DetLogic  LogicScope  WackoPicko 

 Scarf 

 OpenIT 

 Puzzlemall 

 Logic flaws  The number of 

URLs. 

 The number of 

Forms. 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

 The number of 

false negatives. 

[108] 

Q
u

an
ti

fi
ca

ti
o

n
 o

f 
sc

an
n
er

s 
q
u
al

it
y
. 

  Acunetix web 

vulnerability scanner 

 HailStorm 

 WebInspect 

 Rational AppScan 

 McAfee SECURE 

 QualysGuard.PCI 

 NeXPose 

 Drupal 

 phpBB 

 WordPress 

 SQL injection 

 Cross-site scripting 

 Arbitrary file 

upload 

 Remote file 

inclusion 

 OS command 

injection 

 Code injection 

 Session fixation 

 Session prediction 

 Authentication 

bypass 

 Cross-site request 

forgery 

 SSL 

misconfiguration 

 Insecure HTTP 

methodologies 

 Insecure temporary 

file 

 Path traversal 

 Source code 

disclosure 

 Error message 

disclosure 

 Elapsed scanning 

time. 

 The number of 

generated 

network. 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

[37] 

 Not clearly defined  WackoPicko  SQL injection 

 Cross-site scripting 

 Code injection 

 Broken access 

control 

 Elapsed scanning 

time. 

 Detection score. 

 Reachability 

score. 

[46] 

  Acunetix web 

vulnerability scanner 

 AppScan 

 WebInspect 

 Qualys 

 27 custom developed web 

applications 

 SQL injection. 

 Cross-site scripting 

 Information leakage 

 Cross-site request 

forgery 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

[38] 

  AppScan 

 Acunetix web 

vulnerability scanner 

 WebInspect 

 300 random web applications  SQL injection 

 XPath injection 

 Code execution 

 Buffer overflow 

 Username/ 

password disclosure 

 The number of 

vulnerabilities. 

 The number of 

false positives. 

 Test coverage. 

[7] 
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The scanners Test-beds Vulnerabilities Metrics Authors 

 Server path 

disclosure 

  Acunetix web 

vulnerability scanner 

 AppScan 

 BurpSuite 

 HailStorm 

 Retina 

 Qualys 

 WebInspect 

 Vendor‟s test sites  SQL injection 

 Cross-site scripting 

 Authentication 

bypass 

 Command injection 

 XPath injection 

 SOAP/ AJAX 

attack 

 Cross-site request 

forgery 

 HTTP response 

splitting 

 Arbitrary file 

upload 

 Remote file 

inclusion 

 The number of 

vulnerabilities. 

 Elapsed scanning 

time. 

 The number of 

false positives. 

 The number of 

false negatives. 

[6] 

  AppScan 

 HailStorm. 

 Acunetix web 

vulnerability scanner 

 Hackme 

 OWASP Site Generator Project. 

 WebGoat 

 File inclusion 

 SQL injection 

 Cross-site scripting 

 The number of 

false positives. 

 The number of 

vulnerabilities. 

[34] 

  Splat 

 WAVES 

 Secubat 

 ARDILLA 

 MUBOT 

 MUSIC 

 Wilela‟s prototype 

 Tappenden‟s 

prototype 

 Salas‟s prototype 

 Breech‟s prototype 

 Offutt‟s prototype 

 McAllister‟s 

prototype 

 MUFORMAT 

 MUTEC 

 Not defined  Buffer overflow 

 SQL injection 

 Format string bug 

 Cross-site scripting 

 Vulnerability 

coverage. 

 Test automation 

level. 

 Testing level. 

 Granularity of test 

cases. 

 Source of test 

case. 

 Test case 

generation 

method. 

[39] 

  Acunetix web 

vulnerability scanner 

 AppScan 

 QualysGuard 

 PCI 

 WackoPicko 

 MatchIt 

 Stored SQL 

injection 

 Traffic of 

scanners. 

[40] 

  AppScan 

 WebInspect 

 Paros 

 Acunetix web 

vulnerability scanner 

 W-VST  Not clearly defined  F-measure. 

 Precision. 

 Recall. 

[18] 

  Acunetix web 

vulnerability scanner 

 AppScan 

 ZAP 

 WackoPicko 

 Scan-bed 

 Stored SQL 

injection 

 Stored cross-site 

scripting 

 The number of 

attack vectors. 

[41] 

 Not clearly defined  W-VST Not clearly defined  The number of 

true duplication. 

 The number of 

false duplication. 

[104] 

  Zap attack proxy. 

 Skipfish. 

 Damn vulnerable web application 

(DVWA) 

 Web application scanner 

evaluation project (WAVSEP) 

 Cross-site scripting 

 SQL injection 

 File inclusion 

 Precision 

 The number of 

false positives. 

[30‟] 

  SAMATE  CBMC 

 K8-sight 

 Pcline 

 Prevent 

 SCA 

 Gianna 

 Cx-enterprise 

 Codesonar 

Not clearly defined  Precision. 

 Recall. 

 F-measure. 

[42] 

  Acunetix Web 

Vulnerability 

Scanner. 

 AppScan. 

 QualysGuard. 

 MatchIt 

 PCI 

 WackoPicko 

 Persistent SQL 

injection 

 The number of 

vulnerabilities. 

[26] 
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  BurpSuite 

 ZAP Proxy 

 WebGoat 

 Multillidae II 

 Damn vulnerable web application 

(DVWA) 

 Bodgeit 

 Gruyere 

 Cross-site scripting  Coverage. [43] 

  Arachni 

 Wapiti 

 Skipfish 

 WAVSEP 

 AltoroMutual 

 Web scanner test site 

 WIVET 

 Acunetix test sites 

 SQL injection 

 Cross-site scripting 

 Crawler coverage. 

 True positive rate. 

 True negative rate. 

 False positive rate. 

 False negative 

rate. 

 Positive predictive 

values. 

 Negative 

predictive values. 

 False omission 

rate. 

 Accuracy. 

 F-measure. 

 Scanning speed. 

 Vulnerability 

detection 

accuracy. 

[44] 

  Acunetix web 

vulnerability scanner 

 BurpSuite 

 ZAP Proxy 

 NetSparker 

 AppSpider 

 Arachni 

 Vega 

 Wapiti 

 Skipfish 

 ironWASP 

 W3af 

 WAVSEP  SQL injection 

 Cross-site scripting 

 Remote file 

inclusion 

 Path traversal / 

local file inclusion 

 Precision. 

 Recall. 

 F-measure. 

 The number of 

false positives. 

 The number of 

false negatives. 

 The number of 

true positives. 

[45] 

  Vega 

 Arachni 

 ZAP Proxy 

 Multillidae II 

 Butterfly project 

 WackoPicko 

 DVWA 

 Juice hop 

 Null byte 

 SQL injection 

 Insufficient 

password recovery 

 Code injection 

 SSI injection 

 Abuse of 

functionality 

 XPath injection 

 Insufficient process 

validation 

 Detection rate. [22] 

W
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  WebInspect 

 AppScan 

 Acunetix web 

vulnerability scanner 

 FindBugs 

 Yasca 

 IntellijIDEA 

 TPC-APP service 

 TPC-C web service 

 TPC-W web service 

 SQL injection  Precision. 

 Recall. 

 F-measure. 

[33] 

Q
u
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o
n
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f 
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n
er

 c
o
v
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ag
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WAVES  Teleport 

 Web Sphnix 

 Harvest 

 Larbin 

 Web-Glimpse 

 Google 

 NAI 

 Lucent 

 Trend Macro 

 Palm 

 Olympic 

 Apache 

 Verisign 

 Ulead 

 Cert 

 Maxtor 

 Mazda 

 Linux Journal 

 Cadillac 

 Web500 

 SQL injection 

 Cross-site scripting 

 The number of 

webpage. 

[82, 83] 
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