
International Journal of Advanced Computer Research, Vol 8(38)

ISSN (Print): 2249-7277 ISSN (Online): 2277-7970

http://dx.doi.org/10.19101/IJACR.2018.838012

285

The approaches to quantify web application security scanners quality: a

review

Lim Kah Seng
1*

, Norafida Ithnin
2
 and Syed Zainudeen Mohd Said

3

PhD Research Scholar, Department of Computer Science, University of Technology, Johor Bahru, Malaysia
1

Associate Professor, Department of Computer Science, University of Technology, Johor Bahru, Malaysia
2

Assistant Professor, Department of Computer Science, University of Technology, Johor Bahru, Malaysia
3

Received: 15-July-2018; Revised: 17-September-2018; Accepted: 20-September-2018

©2018 ACCENTS

1.Introduction
Automated web application penetration testing is

becoming ubiquitous with the development of

computer programs that capable of simulating tester

activities of web application penetration testing.

Computer programs like HTTrack [1] or Maltego [2]

were invented to aid penetration tester in intelligent

information gathering. The invented web application

security scanners like Acunetix [3] scanned web

applications for vulnerability assessment. In the

meanwhile, exploitation tools like Metasploit and

WFuzz are created to compromise web application

confidentiality, integrity, and availability.

The web application penetration testing methodology

of [4] showed web application security scanner

always has a critical role in scanning the web

application for vulnerability detection.

*Author for correspondence

Web application security scanner simulates the

actions of penetration tester of inspecting the target

web application security. Subsequently, penetrating

the security of web application attack vectors with

selected attack strings. The web application is

vulnerable if it responds positively towards the

injected attack strings, or otherwise. The texts of [5]

and [6] showed automated web application

penetration testing is beneficial to pen-testers, which

the scanner not only reduced resources, times, labour

work, and costs required for conducting a web

application penetration testing, the scanner also

eliminates pen-tester reliance on human knowledge.

Moreover, the web application security scanner

preserved the human knowledge of web application

penetration testing by converting them into an

executable computer program.

The invention of web application security scanners

has made automated web application penetration

Review Article

Abstract
The web application security scanner is a computer program that assessed web application security with penetration

testing technique. The benefit of automated web application penetration testing is huge, which web application security

scanner not only reduced the time, cost, and resource required for web application penetration testing but also eliminate

test engineer reliance on human knowledge. Nevertheless, web application security scanners are possessing weaknesses

of low test coverage, and the scanners are generating inaccurate test results. Consequently, experimentations are

frequently held to quantitatively quantify web application security scanner's quality to investigate the web application

security scanner's strengths and limitations. However, there is a discovery that neither a standard methodology nor

criterion is available for quantifying the web application security scanner's quality. Hence, in this paper systematic review

is conducted and analysed the methodology and criterion used for quantifying web application security scanners' quality.

In this survey, the experiment methodologies and criterions that had been used to quantify web application security

scanner's quality is classified and review using the preferred reporting items for systematic reviews and meta-analyses

(PRISMA) protocol. The objectives are to provide practitioners with the understanding of methodologies and criterions

that available for measuring web application security scanners’ test coverage, attack coverage, and vulnerability detection

rate, while provides the critical hint for development of the next testing framework, model, methodology, or criterions, to

measure web application security scanner quality.

Keywords
Web application security scanner, Penetration testing, Quality criteria, PRISMA.

Seng et al.

286

testing a popular research trend. In this research field,

practitioners have translated the web application

penetration testing's testing techniques into

executable programs, to enhance weak algorithms to

detect new web application vulnerability, or to

address the challenge of scanning modern web

application that continuously expanding in both size

and complexity.

A computer is merely a dummy machine that

performs the calculation based on the written

algorithm. Therefore, writing a sophisticated

algorithm to achieve the objective of automated web

application penetration testing is important in this

research field. Unfortunately, humans tend to make

mistakes. Moreover, the process of translating web

application penetration testing's testing techniques

into the executable computer program is tedious and

error-prone. Hence, the designed algorithms are not

always perfect, and the issue of false positives and

false negatives are common for automated web

application penetration testing. The false positives

are consumed pen-tester extra effort and times to

eliminate the fake vulnerability, while the false

negatives are impaired pen-tester judgement in

deciding an under-test web application security.

Consequently, documents such as [6−10] are

labelling web application security scanners as

inaccurate and untrustworthy. This elaborate the

phenomena of why experimentations are often held to

quantify the web application security scanner‟s

quality.

An intriguing discovery is that the methodology and

criteria used for measuring web application security

scanner's quality are varying in existing publishing

manuscripts. Moreover, there is neither a standard

nor a technical document by authorized parties that

defined the approach for quantifying web application

security scanner's quality. Although web application

security consortium (WASC) did publish web

application security scanner evaluation criteria

(WASSEC) [11] in the year of 2009. However,

WASSEC has been just a checklist that described the

features of the web application security scanner.

Moreover, the corresponding checklist has never

received any update for the year it was published.

The NIST special publication 500-269 [12] published

by the NIST SAMATE project is another out-dated

technical document that contained the similar

content. Therefore, in this paper, preferred reporting

items for systematic reviews and meta-analyses

(PRISMA) protocol is used to classify and review the

experiment methodology of published conference

proceedings and journal papers that had the quality of

web application security scanner quantified, to

convey the compelling approach of measuring web

application security scanner's quality.

The remaining part of the survey is consists of

following sections. Section 2 defines the web

application security scanners. Section 3 elaborates the

concept of quantifying the web application security

scanner‟s quality. Section 4 presents the literature

review's methodology. Subsequently, section 5

reviews the published methodologies. Section 6

classifies the manuscripts based on the selected

indices. Finally, section 7 concluded the survey paper

with the conclusion remarked.

2.Understanding of web application

security scanner
Web application security scanner is a computer

program that assesses web application security via

simulating the pen-tester action of penetrating the

web application security selected attack strings

[13−16]. Figure 1 showed the general architecture of

the web application security scanner.

The white box, black box, and hybrid web

application security scanner are created to

automatically assess web application security in

either black box or white box testing environment.

The black box testing environment is a testing

environment that web application codes are not

reachable, while white box testing environment has

the total opposite meaning. Therefore, white box web

application security scanners perform the

vulnerability assessment by inspecting the

propagation of malicious data on web application

codes via a control flow graph (CFG) or data flow

graph (DFG) [17−21]. On the other hand, black box

web application security scanner assesses web

application security by inspecting the web application

execution behaviours for anomalies detection

[22−26].

Hybrid web application security scanners are unique

in such a way that both software static and dynamic

testing techniques are used to assess the web

application security scanner. The hybrid web

application security scanner parsed the code and also

examines the web application execution behaviours.

According to [27] and [28], the software static and

dynamic testing techniques are integrated to improve

the test coverage and to reduce the possibility of

producing the false positive and false negatives.

International Journal of Advanced Computer Research, Vol 8(38)

287

Web application security scanners scan a web

application security with passive and active scanning.

In the passive scanning, the scanner collects

information of under-test web application with

reconnaissance algorithm. Then, in active scanning,

exploitation is performed to compromise web

application confidentiality, integrity, or availability

using the security penetration algorithm. This include

performs the vulnerability detection with information

flow analysis or anomaly detection. Therefore, a web

application security scanner generally contains a

reconnaissance component, security penetration

component, and vulnerability detection component

[20, 29–31].

Figure 1 The general architecture of web application security scanner

3.The web application security scanner’s

quality quantification

The web application security scanner‟s quality is

often quantified to investigate strengths and

limitations of existing algorithms, or to evaluate web

application security scanner or recently designed

algorithm. According to the literature of [9, 32−34],

quantification of web application security scanner's

quality is achievable by challenging web application

security scanner‟s features with test-beds. The

practised experiment methodology usually consists of

preparation, execution, and reporting phases. The

preparation phase defined the experiment's objectives

and scopes. The preparation phase also includes

having the selected test-beds and web application

security scanners configured and installed. Then, in

the execution phase, web application security

scanners are configured to scan the test-beds. Lastly,

collected experimental results are charted and filed in

the reporting phase. The virtualization is common in

existing experiment methodologies for reducing both

the complexity and cost required, to set up a web

application penetration testing lab. The guideline to

set up a virtual penetration lab is available in [35].

4.The methodology
The paper conducts the survey based on the PRISMA

protocol of [36]. The completeness and transparency

of PRISMA protocol have made PRISMA protocol

the methodology of this survey. Figure 2 showed the

flow diagram of PRISMA protocol.

PRISMA protocol has an intriguing subject

systematically reviewed with these four activities,

namely identification, screening, eligibility, and

included.

Identification: International conference proceedings

and journal papers of six major publishers, which are

The Institute of Electrical and Electronic Engineers

Exploits injection

State flow

graph

Vulnerability analysis

component

Exploitation

component

Web application source files.

Web page .URLs

 Sources files

or

URL

processing

Potential

attack vector

generation

Generation of data flow,

control flow, navigation

graphs

Information gathering

component

Attack vectors

Test cases generation
Vulnerability detection

Reporting

component

Vulnerability

reporting

Active web

elements

Seng et al.

288

(IEEE), Emerald Insight, Association for Computing

Machinery (ACM), ScienceDirect, Springer, and

Google Scholar, were surveyed in this survey paper.

Manuscripts of this area of interest were collected

from these publishers using the keywords of „web

application penetration testing‟, „automated web

application penetration testing‟, „web application

security scanner‟, „web application security testing‟,

„web vulnerability scanner‟, and „web pen-test‟.

Overall, 290 manuscripts were retrieved with

keywords stated above.

Screening: In this screening process, 114

manuscripts were discarded to eliminate the

duplication. In the meanwhile, the remaining 144

manuscripts were carried forward for full-text

reading.

Eligibility: In this phase, full-text of 144 manuscripts

were comprehensively reviewed, to define their

eligibility. The process had 54 manuscripts

discarded, because of the poorly executed experiment

methodology.

Included: Finally, experimental methodologies of

elected manuscripts are qualitatively and

quantitatively synthesized.

Figure 2 Flow diagram of PRISMA protocol

4.1Data quantification
The final stage of the survey quantitatively

synthesizes collected data according to selected

indices. The survey categorizes the data based on

indices of the year of publication, publisher, web

application vulnerability, test-beds, measurement

metric, and web application security scanner. This

data are quantified to deliver practitioners with the

compelling approach of quantifying web application

security scanner‟s quality. In addition to that, it is to

provide future works with critical hints of designing

next testing framework, measurement metric, test-

bed, or model to quantify web application security

scanner‟s quality.

5.Approaches for scanner’s quality

quantification
The quality of web application security scanner is

quantified to achieve these four objectives, which

are:

a. To compare the white box and black box web

application security scanners' quality.

Identification

Full-text articles exclude

with reasons

(n = 55)

Studies included in qualitative synthesis

(n = 90)

Full-text articles assessed for eligibility

(n = 90) Eligibility

Records screened

(n = 144)

Screening

Records identified through database

searching

(n = 290)

Records after duplication removed

(n = 257)

Records excluded

(n = 114)

Included

International Journal of Advanced Computer Research, Vol 8(38)

289

b. To clarify web application security scanners‟

strengths and limitations.

c. To benchmark a recently proposed algorithm.

d. To clarify the web application security scanner's

test coverage.

In this section, the corresponding experimentations

are reviewed to show their findings and

methodologies.

5.1White box and black box scanners comparison

The experiment distinguishes the state-of-the-art of

white box and black box web application security

scanner. It is also to clarify the strengths and

limitations of white box and black box web

application security scanners in vulnerability

detection. The experiments were conducted by

having both scanners scanned the same vulnerable

web applications.

Subsequently, the obtained experimental results were

compared, to clarify their performance. According to

experimental results of [9] and [33], white box web

application security scanners achieve better test

coverage than black box web application security

scanners because of the code visibility. Therefore,

black box web application security scanner tends to

generate the false negatives. However, white box web

application security scanners are susceptible to false

positives.

5.2Clarifying scanners strengths and limitations

The web application security scanners are quantified

to clarify their test coverage, scanning efficiency,

attack coverage, and the capability to detect a class of

web application vulnerability. The experiment was

conducted by configured the scanners to scan

selected vulnerable web applications. Summing up

experimental results of [6, 7, 18, 22, 23, 26, 30, 34,

37–46], web application security scanners not only

tends to generate false alarm, the coverage issue is

quite concerning in automated web application

penetration testing. Besides this, web application

security scanners are exceptionally good in detecting

reflected cross-site scripting and SQL injection.

Unfortunately, hard work is still required to make

web application security scanners detect the advance

web application vulnerabilities. Moreover, the

coverage issue is yielded, because of the challenge to

scan, modern web applications that has rich media.

5.3Benchmarking the algorithms

Experiments are also conducted to validate the

recently designed algorithms. The objective is to

ensure the algorithm had addressed the targeted

research problem. The experiment has the algorithm

scan the selected vulnerable web applications. Then,

the algorithm is validated by comparing the collected

experimental results with those obtained with

existing algorithms. [47–49] experimental results

showed the proposed code parsing and reverse

engineering algorithms are efficient in scraping data

entry points (DEPs) and attack vectors from under-

test web applications. In the meanwhile, [50–60]‟s

experimental results showed leveraging of search-

based testing technique, mutation testing technique,

and genetic algorithm are effective in improving the

attack coverage. Moreover, anomaly detection and

information flow analysis by [8, 9, 27, 28, 31], and

[61–79] are proven effective in detecting the web

application vulnerability in either black box or white

box testing environment. Besides this, the developed

prototypes are validated in [5, 20, 25, 29], and [80−

99].

5.4Scanner coverage clarification

These experiments quantify web application security

scanners by configured the scanners to crawl selected

web applications. Experiment results of [80−82]

showed the authors‟ information knowledge manager

(IKM) and topic model manages to increase the

number of visited web pages by 28%. In the

meanwhile, [100] experimental result showed test

coverage is expandable by hooking JavaScript API

onto dynamic analysis, to detect registered events,

URLs, and web forms.

5.5Related works

Several testing frameworks were proposed by

practitioners to quantify web application security

scanner‟s quality. Authors of [101−103] introduced a

testing framework that quantifies web application

security scanner's quality with fault injection

technique. These frameworks defined a web

application security scanner‟s quality by measuring

the capability of web application security scanner to

detect the faults introduced with fault injection

technique. Besides this, [104, 105], and [106] have

proposed the alternative measurement metrics to rank

web application security scanner‟s quality. [104]

introduced true duplication and false duplication to

describe web application security scanner's duplicate

results, while [105] proposed the sensitive data flow

coverage with an attempt to replace conventional

branch coverage and statement coverage. In the

meanwhile, [106] introduced the web application

security scanner grading system to grade web

Seng et al.

290

application security scanner's quality with the fuzzy

classifier.

6.Classification of the methodologies

This section classifies methodologies of publishing

manuscripts based on selected indices. The selected

indices are the type of manuscript, the manuscript‟s

year of publication, the manuscript‟s publisher, the

testing technique of web application security scanner,

the web application vulnerability, the test-beds, and

measurement metrics used to describe web

application security scanner‟s quality.

6.1The assortment of academic manuscripts

The section classifies collected academic manuscripts

to convey publishers that have a high interest in this

subject of automated web application penetration

testing. Then, this section classifies the manuscripts

based on how this area of research is delivered to

public. The data showed the relevant area of research

were frequently published in six publishers of

ScienceDirect, IEEE, ACM, Emerald Insight, Google

Scholar, and Springer, which well-known for

publishing books, ebooks, and peer-reviewed journals

in science, engineering, and computer science.

Amongst these publishers, IEEE, Springer, and the

ACM have the highest publication rate of 47.8%,

18.9%, and 14.4% respectively. However, only a

manuscript is from Emerald Insight, since the

publisher is specialist more in fields like business and

management, education, and marketing, with only

several books series and journals covered the

engineering. Unfortunately, relevant researches were

frequently published as conference proceedings or

symposiums, instead of journal papers with

frequencies of 23.3% and 76.7% respectively. The

Figure 3 and Figure 4 classify manuscripts by

publisher and manuscripts' type.

6.2 The assortment of manuscript by publication

year

The section classifies related academic manuscripts

by their year of publication to convey the research

trend of automated web application penetration

testing. As depicted in Figure 5, this research topic is

continuously gaining its popularity, begin from the

year of 2000 to 2018. The research topic‟s popularity

is reaching its peak in the year 2014, which 16.7% of

the manuscripts were published in that year.

Nowadays, the trend of automated web application

penetration testing remains attractive with an average

of 5 manuscripts were published in the year 2015,

2016, and 2017.

6.3 The assortment of web application security

scanners

The section classifies web application security

scanners involved in the experiments with their

testing technique and licensing to convey web

application security scanners that available for

automatically assessing web application security,

while to deliver those most accessible for

benchmarking purpose. Overall, the experiments had

quantified 93 web application security scanners,

which 87 of them are black box web application

security scanners, while 8 of them are white box web

application security scanners. The 87 black box web

application security scanners showed 29 of them are

open-source, 10 of them are closed software while

remaining 48 web application security scanners are

from academia. On the other hand, the manuscripts

only had eight white box web application security

scanners' quality quantified, which 5 of them are

open-source, and 3 of them are developed in

academia. Table 1 showed the tested web application

security scanners.

Figure 6 showed quantification of black box web

application security scanners' quality were more often

than white box web application security scanners.

The reason is collected manuscripts are often

describe automated web application penetration

testing as a kind of black box software testing

technique. In fact, manuscripts have a term called a

static analyser to describe the automated white box

web application testing. Consequently, the quality of

black box web application security scanners called an

Acunetix web vulnerability scanner, WebInspect and

AppScan are often quantified with frequencies of

11.5%, 6.3%, and 9.9% respectively. In addition to

that, 17.8% of manuscripts were tested web

application security scanners developed in academia.

International Journal of Advanced Computer Research, Vol 8(38)

291

Figure 3 The division of academic manuscripts by publisher

Figure 4 The division of academic manuscripts by the type of document

Figure 5 The division of academic manuscript by publication year

0

5

10

15

20

25

30

35

40

45

50

Springer IEEE Emerald Insight ScienceDirect Google Scholar ACM

N
u

m
b

er

Publisher

0

10

20

30

40

50

60

70

80

Journal Conference paper

N
u

m
b

er

Type of academic manuscript

0

2

4

6

8

10

12

14

16

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

N
u

m
b

er

Year

Seng et al.

292

Figure 6 Frequencies “web application security scanner” was evaluated

Table 1 The assortment of web application security scanners by the licensing and testing approach

Licencing Testing approach Items The web application security scanner/ web spider/ parser

Commercialized Black box S1 Acunetix Web Vulnerability Scanner

S2 HailStorm

S3 WebInspect

S4 Appscan

S5 McAfee SECURE

S6 Qualysguard

S7 NeXPose

S8 BurpSuite

S9 N-Sparker

S10 Retina

Open source Black box S11 Teleport

S12 Wapiti

S13 W3af

S14 WebCruiser

S15 Wasapy

S16 PowerFuzz

S17 WebXSSDetector

S18 wget

S19 Skipfish

S20 Harvest

S21 Vega

S22 PownMe

S23 N-Stalker

S24 Mikito

S25 WebScarab

S26 WebRavor

S27 WebSPHNIX

S28 Larbin

S29 Websecurity

S30 Web-Glimpse

S31 SQLfast

S32 SQLmap

S33 ARDILLA

S34 Arachni

S35 NTOSpider

S36 ZAP

0

10

20

30

40

50

60

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1

0

S
1

1

S
1

2

S
1

3

S
1

4

S
1

5

S
1

6

S
1

7

S
1

8

S
1

9

S
2

0

S
2

1

S
2

2

S
2

3

S
2

4

S
2

5

S
2

6

S
2

7

S
2

8

S
2

9

S
3

0

S
3

1

S
3

2

S
3

3

S
3

4

S
3

5

S
3

6

S
3

7

S
3

8

S
3

9

S
4

0

S
4

1

S
4

2

S
4

3

S
4

4

S
4

5

S
4

6

N
u

m
b

er

Web application security scanner

International Journal of Advanced Computer Research, Vol 8(38)

293

Licencing Testing approach Items The web application security scanner/ web spider/ parser

S37 Nikto

S38 Wikto

S39 Paros

White box S40 Grep

S41 FindBugs

S42 Yasca

S43 IntellJIDEA

S44 PHPMinerII

Academia Black box S45 WAVES, Saner, VS. WS., CIVS-WS, WebSSARI, Andromeda,

Multi-agent scanner, Attack injection tool, RWSS, Wasapy, WASC,

PAPAS, PIUIVT, Sania, Secubat, ARDILLA, MUBOT, MUSIC,

MUTEC, MUFORMAT, XSS analyser, Sign-WS, WS-Attacker,

Vulnerability & Injection Tool, WASAPY, Confleagle, SOA-

scanner, SQLIVDT, LigRE, ETSSDetector, NVS, WebGuardia,

SQLfast, Idea, Volcano, ANOVA, PMVT, THAPS, XquerryFuzzer,

JÄK, WAPTT, BIOFUZZ, KamaleonFuzz, CRS, XSSPeeker,

Inferential, XiParam, DetLogic

White box S46 ITS4, Pixy, WAP

6.4 The assortment of web application

vulnerability

The section delivers web application vulnerabilities

that detectable with automated web application

penetration testing. Table 2 showed 54 web

application vulnerabilities that detectable with

automated web application penetration testing. Table

2 grouped relevant web application vulnerabilities,

according to open web application security project

(OWASP) Top 10 [107], with brief descriptions are

provided to elaborate each class of web application

vulnerability. Web application vulnerabilities are left

unclassified if it doesn‟t fit the OWASP top 10.

Table 2 Classification of web application vulnerabilities by OWASP Top 10

OWASP Top 10 Items Vulnerability Description (Deriving from OWASP)

Injection attacks V1 SQL injection Insertion of SQL queries to modify integrity,

availability, confidentiality of database data.

V2 XPath injection Compromising of integrity, availability, or

confidentiality of data in XML.

V3 OS command injection Execution of arbitrary commands in the host

operating system through the vulnerable web

application.

V4 Code injection Execution/interpretation of injected code in the

web application.

V5 Command injection Execution of command on the host system

through a vulnerable web application.

V6 Script injection Arbitrary scripts execution.

V7 XQuery injection Incorporation of malicious data into XQuery

pattern to alter the XQuery logic.

V8 SSI injection Manipulation of the file system and process of

web server process.

File inclusion V9 Remote file inclusion The remote inclusion of file that could bring harm

to the target application.

V10 Local file inclusion Inclusion local harmful files to the target web

application.

V11 Arbitrary file upload Upload of the malicious file that can bring harm to

the target application.

V12 Arbitrary file inclusion The inclusion of malicious file that can bring

harm to the target application.

Session related vulnerability V13 Session fixation The hijacking of the valid user session.

V14 Session prediction Prediction of the session ID values.

V15 Session hijacking Exploitation of web session control mechanism.

Broken authentication V16 Authentication bypass Bypass web application's authentication scheme.

Seng et al.

294

OWASP Top 10 Items Vulnerability Description (Deriving from OWASP)

V17 Insufficient authentication Usage of weak passwords or poorly protected

application.

Broken authorization V18 Broken access control Weakly enforced restrictions for authenticated

users.

V19 Insufficient password discovery Bypass password authentication schemes with

weak password recovery mechanism.

V20 Insufficient authorization Authorized users have loosely configured

restriction.

Security misconfiguration V21 SSL misconfiguration Misconfiguration of the server to force the usage

of cryptographic options.

V22 Insecure temporary file Creation and usage of insecure temporary files

that lead to compromising of application security.

V23 Predictable resource location Uncover hidden web content and functionality of

target application.

V24 misconfiguration Misconfigured application stack.

Using component with known

vulnerabilities

V25 Input sanitization Inappropriate input sanitization functions.

Sensitive data exposure V26 Path traversal Accessing files and directories that stored outside

the web root directory.

V27 Error message disclosure Accidentally reveals of error codes.

V28 Username/ password disclosure Reveals of username or password.

V29 Server path disclosure Reveals of server‟s path.

V30 Information leakage Reveals of the internal state of the application.

V31 Insecure object reference Direct access to protected objects by the user's

supplied input.

Insecure deserialization V32 Code vulnerability Leveraged of insecure codes.

V33 Code execution Execution of injection code by the application.

HTTP manipulation V34 HTTP response splitting The inclusion of malicious characters in HTTP

response header without being validated.

V35 Parameter tampering Manipulation of the value of HTTP parameter.

V36 Parameter pollution Supplying of HTTP parameter with the similar

name to alter the way application is interpreting

the parameter value.

V37 HTTP request smuggling Tamper HTTP requests or responses with

malformed HTTP requests.

Spoofing V38 Content spoofing Defacement of the web application with text

injection.

V39 SOAP spoofing Defacement of HTTP header element known as

SOAPAction.

V40 WS-addressing spoofing Adding of routing information to the SOAP

header to allow asynchronous communication.

Poisoning V41 Cache poisoning Duplicate headers in a single header field.

V42 Cookie poisoning Filling in the cookie attribute to make browser

send the cookie within the cross-site request.

Uncategorized V43 Abuse use of functionality Misused of application functions and features.

V44 Cross-site scripting Injection and sending of malicious scripts to the

other end user.

V45 Clickjacking Transparent or opaque layer for malicious web

browsing.

V46 Buffer overflow Submission of malicious data to corrupt web

application execution stack.

V47 Cross-site request forgery Force execution of malicious actions by the web

application.

V48 SOAP/ AJAX attack Injection of malicious data to

alter XMLHttpRequest logic.

V49 Denial of service Making resources of web application unavailable.

V50 Hidden field manipulation Disabling resources of a web application.

V51 Drive-by download Injection of a legitimate web page with malicious

code to infect legitimate web page.

International Journal of Advanced Computer Research, Vol 8(38)

295

OWASP Top 10 Items Vulnerability Description (Deriving from OWASP)

V52 Format string bug Injection of the input string for evaluating as a

command by the web application.

V53 Unvalidated redirect Injection of malicious input to trigger malicious

URL redirect.

V54 Insufficient process validation Failure in enforcing application business logic.

 V55 Logic vulnerabilities Fault in application logic.

In summary, the manuscripts had quantified web

application security scanners' capability in detecting

eight injection-based attacks, four file inclusion, three

session related vulnerabilities, two broken

authentication, three broken authorization, four

security misconfiguration, one usage of component

with known vulnerability, six data exposure

vulnerability, two insecure deserialization, four

HTTP manipulation, three spoofing, and eight

uncategorized web application vulnerability. In

existing manuscripts, the study of SQL injection and

cross-site scripting are the most common with

frequencies of 32.6% and 22.4% respectively, while

34.8% of the academic manuscripts covered both

SQL injection and cross-site scripting. Unfortunately,

evaluation of web application security scanners'

quality for others web application vulnerabilities is

rare as elaborated in Figure 7.

Figure 7 Frequencies “web application vulnerability” was evaluated

6.5 The assortment of test-bed

The section delivers the test-beds that available for

benchmarking web application security scanner‟s

quality and their pros and cons. Test-bed is a very

vulnerable web application that contained a finite

number of vulnerabilities or challenges [26, 37, 41,

103]. The test-bed is having a critical role in

benchmarking web application security scanner‟s

quality. Existing experiment methodologies often

quantify web application security scanners‟ quality

by configuring the scanners to scan selected test-

beds. Then, web application security scanners'

vulnerability detection rate or what that most relevant

are measured to define their quality. Table 3 showed

four test-beds are available to benchmark web

application security scanner quality.

Figure 8 showed 45.6% of experiment methodologies

benchmark web application security scanner‟s quality

with open-source web application framework, while

17.3% and 16.3% of experimental methodologies

evaluate web application security scanner's quality

with educational vulnerable web applications and

web application security scanner test sites

respectively. Only 5.4% experiment methodologies

use custom-made web application developed by

students or teaching assistant due to their validity is

questionable.

0

10

20

30

40

50

60

70

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
1
0

V
1
1

V
1
2

V
1
3

V
1
4

V
1
5

V
1
6

V
1
7

V
1
8

V
1
9

V
2
0

V
2
1

V
2
2

V
2
3

V
2
4

V
2
5

V
2
6

V
2
7

V
2
8

V
2
9

V
3
0

V
3
1

V
3
2

V
3
3

V
3
4

V
3
5

V
3
6

V
3
7

V
3
8

V
3
9

V
4
0

V
4
1

V
4
2

V
4
3

V
4
4

V
4
5

V
4
6

V
4
7

V
4
8

V
4
9

V
5
0

V
5
1

V
5
2

V
5
3

V
5
4

V
5
5

N
u

m
b

er

Web application vulnerability

Seng et al.

296

Table 3 Test-beds for benchmarking web application security scanner‟s quality

Items Category Description Pros Cons Test-beds

W1 Custom-made web

 application

Practitioners developed

vulnerable web

applications.

No concern for

committing the

cybercrime.

Never validated.

Manual testing is

required to

validate results

validity.

Not well

documented.

Custom web

applications

developed by a

group of teaching

assistants,

researchers, or

students

W2 Educational vulnerable

web application

Very vulnerable web

applications that for

educational purpose.

Web application

vulnerabilities are

known.

Well

documented.

No concern for

committing the

cybercrime.

Manual testing is

not required.

Limited web

application

vulnerabilities.

Limited

challenges.

Only well-known

web application

vulnerabilities are

testable.

Damn Vulnerable

Web Application

(DVWA), online

bookstore,

WebGoat,

Gryyere,

P0wnMe!,

Multillidae,

YAVWA, WIVET

W3 Web application

security scanner test

sites

Test-site that specifically

for benchmarking web

application security

scanner.

Web applications

vulnerability is

known.

Well

documented.

No concern for

committing the

cybercrime.

Manual testing is

not required.

Limited web

application

vulnerabilities.

Limited

challenges.

Only well-known

web application

vulnerabilities are

testable.

WackoPicko, PCI,

MatchIt, W-VST,

Scan-bed

W4 Open-source web

application framework

The open-access framework

that supports web

application development.

No concern for

committing the

cybercrime.

 Not well

documented.

 Manual

testing is required

to validate result

validity.

Drupal, phpBB,

WordPress,

Django, SatchMo,

Vanilla, Gallery,

SCARF,

Reference,

PHPFusion,

PHPBlog,

PHPNuke,

PHPMyAdmin,

TikiWiki, PHP

Gallery, MyBB,

Moodle, TestLink,

SquirrelMail,

Elgg, FeedSearch,

RssReader,

LampCMS,

Joomla, PhpNN,

MediaWiki,

OwnCloud, Tidio,

Nibbleblog,

Modx-CMS

W5 Real-world web

application

Web application live on the

World Wide Web.
Web application

security scanner's

capability can

genuinely reveal.

Cybercrime may

be conducted.

Not well

documented.

Manual testing is

required to

validate result

validity.

Alexa top ranking

sites.

International Journal of Advanced Computer Research, Vol 8(38)

297

Figure 8 Frequencies the test-bed was leveraged for benchmarking purpose

6.6 The assortment of measurement metrics

The section delivers measurement metrics available

for quantifying web application security scanner‟s

quality. Overall, practitioners have 13 measurement

metrics to scale web application security scanner's

test coverage; 7 measurement metrics to compute

web application security scanner's attack coverage;

18 measurement metrics to measure web application

security scanner's vulnerability detection rate; 5

measurement metrics to measure web application

security scanner's scanning efficiency. The test

coverage described the part of a web application that

successfully scanned by a web application security

scanner. In the meanwhile, attack coverage explains

DEP that had been penetrated with attack payloads,

while vulnerability detection rate elaborate web

application vulnerability that successfully detected by

a web application security scanner. On the other

hand, scanning efficiency elaborates the time

required to complete a vulnerability scanning session.

Table 4 showed the stated measurement metrics used

to quantify web application security scanner's quality.

Table 4 Measurement metrics to quantify web application security scanner quality

Criteria Items Metrics Description (By the authors)

Test coverage M1 Number of URLs The number of URLs that a web application security scanner had

visited.

M2 Number of networks

generated

The number of networks produced by a web application security

scanner in a vulnerability scanning session.

M3 Number of web pages

visited

The number of web pages visited by a web application security

scanner in a vulnerability scanning session.

M4 Code coverage The degree of web application source code that is tested by a web

application security scanner.

M5 Test coverage The degree of a web application that had been successfully tested by

a web application security scanner.

M6 Number of links The number of links that a web application security scanner had

successfully retrieved.

M7 Surface coverage Surface and sink coverage retrieved by a web application security

scanner.

M8 Testing level Description of the testing approach, either in a black box or white

box manner.

M9 Number of data extracted The number of data that successfully extracted.

M10 Capability to bypass

authentication scheme

Description of the ability of a web application security scanner in

provides an authentication scheme with valid data.

M11 Reachability scores The faction of retrieved entry points over the entry points of a web

application.

M12 Number of forms

retrieved

The number of web forms that a web application security scanner

manages to retrieve.

0

5

10

15

20

25

30

35

40

45

W1 W2 W3 W4 W5

N
u

m
b

er

Type of test-bed

Seng et al.

298

Criteria Items Metrics Description (By the authors)

Attack coverage M13 Number of injection point The number of entry points that retrievable by a web application

security scanner.

M14 Number of vector The number of inputs used to test a web application.

M15 Granularity of test case Description of the object that constitutes a test case.

M16 Source of test case Description of artefacts used to generate the test case.

M17 Test case generation

method

Description of approach that converts the source of test cases into a

set of test cases.

M18 Number of attack vector The number of retrievable paths.

M19 Number of test case

generated

Amount of test cases produced by a web application security scanner

in a scanning session.

Vulnerability

detection

M20 Number of vulnerability The number of vulnerability produced by a web application security

scanner.

M21 Number of false positive The number of unreal vulnerability produced by a web application

security scanner.

M22 Number of false negative The number of vulnerability missed by a web application security

scanner.

M23 Number of true positive The number of benign vulnerabilities reported by a web application

security scanner.

M24 Number of true negative The number of benign vulnerabilities that not reported by a web

application security scanner.

M25 F-measure Harmonic means of recall and precision.

M26 Recall The probability to produce a benign vulnerability.

M27 Precision The fraction of benign vulnerability from vulnerabilities reported.

M28 Detection score The fraction of vulnerability detected over vulnerabilities that

possessed by a test-bed.

M29 Number of true

vulnerability

The number of benign vulnerabilities.

M30 Number of false alarm The number of false positives and false negatives

M31 Detection rate The ratio of the found vulnerabilities.

M32 Vulnerability coverage Amount of vulnerability that detectable.

M33 Detection coverage Percentage of detectable vulnerabilities.

M34 Number of true

duplication

The number of duplicate true positives.

M35 Number of false

duplication

The number of duplicate false positives.

M36 Coverage The number of vulnerabilities detected.

M37 Fitness The number of vulnerability covered by a test case.

Efficiency M38 Scanning time Amount of time required to complete a vulnerability scanning.

M39 Parsing time Amount of time required to complete parsing a set of codes.

M40 Automation level The capability to complete a scanning session without tester

involvement.

M41 Processing overhead Amount of extra time required to complete a scanning session.

M42 Productivity Average time requited to generate a test case.

In existing academic manuscripts, it is common that

web application security scanners were quantified to

measure their vulnerability detection rate. Therefore,

Figure 9 showed measurement metrics like the

number vulnerability, the number of false positives

and the number of false negatives are the three most

common measurement metrics used to measure web

application security scanner‟s quality with

frequencies of 24.2%, 20.8%, and 5.6% respectively.

However, [33] had defined F-measure as the most

suitable measurement metrics to measure web

application security scanner‟s quality.

International Journal of Advanced Computer Research, Vol 8(38)

299

Figure 9 Frequencies “measurement metric” is used to measure web application security scanner quality

7.Conclusion and future work
Quantifying a web application security scanner's

quality with sophisticated methodology is essential

for the following reasons. Firstly, a sophisticated

methodology help in accurately defined web

application security scanner‟s strengths and

limitations, especially in locating weakly designed

algorithms. Secondly, to deliver a platform to allow

researchers scientifically and precisely present their

concept, idea, algorithm, or achievement in the field

of automated web application penetration testing to

the public. Third and the last, precise methodology

are significantly effected advancement of this

research field. Unfortunately, existing 90 academic

manuscripts, neither have a standard methodology

nor measurement metric to quantify web application

security scanner's quality, although the relevant study

is common. There is only a common practice that

web application security scanner‟s quality was

quantified by configuring the scanner to scan selected

test-beds. Then, practitioner quantified a scanner's

quality by calculating the number of vulnerabilities

detected. Consequently, the survey showed

practitioners use the diverse set of methodologies,

test-beds, web application security scanners, and

measurement metrics to quantify web application

security scanner‟s quality.

Although the survey has presented the compelling

approach to quantify the quality of web application

security scanners' quality, as well as exhibit the test-

beds, web application security scanners, and

measurement metrics to measure web application

security scanner‟s quality. However, the survey

delivers more research questions, instead of giving

the answer of providing the sophisticated

methodology to quantify web application security

scanner's quality. For instance, the suitable amount of

test-beds or web application security scanners to

benchmark a web application security scanner or

algorithm is unknown. In existing academic

manuscripts, it showed the number of web

application security scanners and test-beds used to

benchmark a web application security scanner is

ranging from the minimum number of zero to the

maximum number of a thousand. Besides this, fittest

measurement metrics to describe a web application

security scanner's test coverage, attack coverage,

vulnerability detection rate, and scanning efficiency

are also unknown. The survey showed practitioners

had quantified web application security scanner‟s

quality with less meaningful and redundant

measurement metrics. Practitioners had measured

web application security scanner's capability for

vulnerability detection with measurement metrics of

vulnerability detection rate and the number of

vulnerabilities, which carries the same definition. In

the meanwhile, measurement metrics of surface

coverage and the number of links are too ambiguous

to define web application security scanner‟s test

coverage. Since the scope of surface coverage is

difficult to define, meantime the number of links

cannot represent a web application's coverage

because modern web applications not only consist of

links but also other web elements that critical for

vulnerability assessment. Therefore, there is an

assuring future work for this area of this research. It

is about producing a compelling methodology and

metric system to quantify web application security

scanner‟s quality, to precisely deliver the findings of

related research field to practitioners.

0

5

10

15

20

25

30

35

40

45

50

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

M
1
1

M
1
2

M
1
3

M
1
4

M
1
5

M
1
6

M
1
7

M
1
8

M
1
9

M
2
0

M
2
1

M
2
2

M
2
3

M
2
4

M
2
5

M
2
6

M
2
7

M
2
8

M
2
9

M
3
0

M
3
1

M
3
2

M
3
3

M
3
4

M
3
5

M
3
6

M
3
7

M
3
8

M
3
9

M
4
0

M
4
1

M
4
2

N
u

m
b

er

Measurement metric for quantifying scanners quality

Seng et al.

300

Appendix

The assortment of methodologies by objectives
Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

B
en

ch
m

ar
k

in
g
 r

ec
en

tl
y
 d

es
ig

n
ed

 a
lg

o
ri

th
m

s.

WebSSARI 230 random open-source web

applications of SourceForge.
 SQL injection

 Cross-site scripting

Not clearly defined. [80−81]

Name unknown  Burp Suite

 W3af

 Acunetix web

vulnerability scanner

 Django basic blog

 Django forum

 Satchmo online shop

 Reflected cross-site

scripting

 Persistent cross-site

scripting

 The number of

injection points.

[98]

Secubat  100 random web applications  SQL injection.

 Cross-site scripting

 The number of

web pages.

 The number of

forms visited.

 The number of

vulnerabilities.

[85]

Name unknown  Wget

 W3af

 Skipfish

 Gallery

 WordPress V.2

 WordPress V.3

 SCARF

 Vanilla Forum

 WackoPicko

 SQL injection

 Cross-site scripting

 Code coverage.

 The number of

vulnerabilities.

 The number of

false alarms.

 The number of

true

vulnerabilities.

[99]

ITS4  Grep  I-pay  C++ and C code

vulnerabilities

 Elapsed scanning

time.

[86]

Saner  Jetbox

 MyEasyMarket

 PBL GuestBook

 PHP-Fusion

 SendCard

 Input sanitization

function

 The number of

vulnerabilities.

[87]

VS. WS  WebInspect

 AppScan

 Acunetix Web

Vulnerability

Scanner

 300 random web applications  SQL injection  The number of

true

vulnerabilities.

 The number of

false positives.

[8]

CIVS-WS  Acunetix web

vulnerability scanner

 AppScan

 WebInspect

 FindBugs

 Yasca

 IntelliJIDEA

 ProductDetail

 NewProducts

 NewCustomer

 ChangePaymentMethod

 JamesSmith

 PhoneDir

 Bank

 Bank3

 Xoperation

 SQL injection

 XPath injection

 The number of

true

vulnerabilities.

 The number of

false positives.

[61, 9]

Name unknown  WebScarab

 Webravor

 Acunetix web

vulnerability scanner

 RenRen

 Kaixin001

 163.com

 SQL injection  The number of

visited web pages.

 The number of

true positives.

 The number of

false positives.

[49]

Andromeda  AJAXChat

 Altorol

 App. A

 Blojsom

 BlueBlog

 Contineo

 Dlog

 Friki

 GestCV

 Ginp

 JBoard

 JpetStore

 JugJobs

 Photov

 StrutsArticle

 WebGoat

 Cross-site scripting

 SQL injection

 The number of

false positives.

 The number of

true positives.

 The number of

vulnerabilities.

 Elapsed scanning

time.

[88]

XSS analyser  15552 server defences  Cross-site scripting  The number of

vulnerabilities.

[50]

Pixy  PHPBlog

 PHPNuke

 Gallery

 PhpMyAdmin

 Cross-site scripting  The number of

false positives.

 The number of

vulnerabilities.

[5]

International Journal of Advanced Computer Research, Vol 8(38)

301

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

 Serendipity

 Yapig

Multi-agent

scanner

  Drupal  Stored cross-site

scripting

 The number of

vulnerabilities.

[89]

Attack Injection

Tool
 AppScan

 WebInspect

 TikiWiki

 phpBB

 MyReferences

 SQL injection  The number of

vulnerabilities.

[101]

Name unknown  Timeclock-software

 RoomPHPlaning

 PHP inventory

 Green Desktiny

 Meshoutbox

 SQL injection

 Cross-site scripting

 The number of

false positives.

 The number of

false negatives.

 The number of

web pages visited.

 The number of

attack vectors.

 The number of

vulnerabilities

[20]

RWSS  AppScan

 WebInspect

 Open-source blogging platform

 Open-source customer

management

 Not clearly defined  The number of

false positives.

 The number of

vulnerabilities.

 The number of

links.

 Surface coverage.

[90]

Name unknown  Employee directory

 Bookstore

 Events

 Classified

 Portal

 Command injection

attack

 Precision. [65]

Wasapy  Skipfish

 W3af

 Wapiti

 phpBB

 SecurePage

 Hardware Store

 Insecure

 Damn vulnerable web application

 SQL injection  The number of

vulnerabilities.

[66]

Wasapy.  6 self-developed web applications  SQL injection  The number of

false positives.

 The number of

false negative.

 Detection rate.

[70]

WASC  PHP-Post

 Jupiter CMS

 PHP Gallery

 Absolute path traversal

 MyBBoard

 SQL injection

 Script injection

 Parsing processing

time.

[69]

PAPAS 50000 unique URLs from public

database of Alexa
 Parameter pollution  The number of

vulnerabilities.

[29]

Name unknown  WebScarab  WebGoat  SQL injection

 Cross-site scripting

 Cross-site request

forgery

 Predictable resource

location

 HTTP request

smuggling

 HTTP response

splitting

 Cache poisoning

 Denial of service

 Content spoofing

 Hidden field

manipulation

 Driver-by download

 Information leakage

 Session fixation

 Insufficient

authentication

 Insufficient

authorization

 Brute force

 The number of

false positives.

 The number of

false negatives.

 The number of

attack vectors,

 Detection rate.

 False alarm rate.

[91]

PIUIVT  Nikto2

 Wikto

 MvnForum  SQL injection

 Cross-site scripting

 The number of

vulnerabilities.

[51]

Sania  Paros  E-learning  SQL injection  The number of [52]

Seng et al.

302

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

 Bookstore

 Portal

 Event

 Classified

 Employee directory

false positives.

 The number of

vulnerabilities.

Sign-WS  WebInspect

 Rational AppScan

 Acunetix web

vulnerability scanner

 TPC-APP

 TPC –C

 TPC-W

 SQL injection  Detection

coverage.

 The number of

false positives.

[62]

WS-Attacker  Apache Axis

 JBossWS Native

 JBossWS CXF

 .NET web service

 SOAP action

spoofing

 WS-addressing

spoofing

 The number of

vulnerabilities.

[92]

Name unknown  Top 1000 websites from Alexa  Clickjacking attack  Detection rate.

 The number of

true positives.

 The number of

false positives.

[93]

Vulnerability &

injection tool

  TikiWiki

 phpBB

 MyReferences

 SQL injection  Test coverage.

 The number of

false positives.

[102]

Name unknown 3 custom web applications  SQL injection

 Cross-site scripting

 Cookie poisoning

 Iframe session

 Session hijacking

Not clearly defined. [94]

Confleagle  W3af

 Skipfish

 WebSecurity

 SquirrelMail

 Gallery

 myBB

 TestLink

 phpMyAdmin

 Elgg

 Moodle

 SugarCRM

 MediaWiki

 Misconfiguration  The number of

vulnerabilities.

[95]

SOA-Scanner  TV-Shows

 FeedRegistry

 TvHelper

 FeedSearch

 RssFeeder

 SQL injection

 XPath injection

 The number of

false positives.

 Test coverage.

[71]

SQLIVDT  W3af

 Nikto

 Wapiti

 Vega

 ZAP

 Acunetix web

vulnerability scanner

 3 self-developed web application

by 7master students and 2

teaching assistant

 SQL injection  The number of

vulnerabilities.

[72]

LiGRE  PownMe

 Wapiti

 W3af

 Skipfish

 WebGoat

 Gruyere

 WordPres

 Elgg

 phpBB

 E-Health

 P0wnMe!

 Cross-site scripting  The number of

vulnerabilities.

 The number of

false positive.

 The number of

false negative.

[53]

ETSSDetector  Acunetix web

vulnerability scanner

 N-Stalker

 WebCruisher

 PowerFuzz

 WebSecurify

 WebXSSDetector

 Testphp

 Webscantest

 Cross-site scripting  The number of

vulnerabilities.

 Elapsed scanning

time.

 The number test

generates.

[54]

Name unknown  W3af

 Wapiti

 LampCMS  Crawling AJAX

web application

 The number of

web pages.

 Elapsed scanning

time.

[47]

NVS  Acunetix Web

Vulnerability

Scanner

 NetSparker

 Web Cruiser

 Karnel Travel

 Online Real State

 ICC World Cup II

 Online tutorial

 Graphics

 Travel

 SQL injection  The number of

false positives.

 The number of

vulnerabilities.

 Elapsed scanning

time.

[73]

International Journal of Advanced Computer Research, Vol 8(38)

303

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

 Jobsite

 Education

Name unknown  Acunetix web

vulnerability scanner

 WebInspect

 AppScan

 TPC-App

 TPC-C

 TPC-W

 SQL injection

 XPath injection

 The number of

false positives.

 Test coverage.

[63]

Name unknown  Vega

 ZAP Proxy

 Mikito

 Wapiti

 Acunetix web

vulnerability scanner

 W3af

 AppScan

 HR

 Farm

 News

 SQL injection  The number of

vulnerabilities.

[31]

WebGuardia Not clearly defined  WackoPicko  SQL injection

 Cross-site scripting

 Unvalidated

redirect

 Secure direct object

references

 Security

misconfiguration

 The number of

vulnerabilities.

 The number of

false positives.

 The number of

false negatives.

[96]

WAP  Pixy

 PhpMinerII

 phpMyAdmin

 Multillidae

 SQL injection

 Cross-site scripting

 The number of

vulnerabilities.

 The number of

false positives.

 Elapsed scanning

time.

[27]

Name unknown  WebInspect

 AppScan

 ProductDetail

 NewProducts

 NewCustomer

 ChangePayment Method

 SQL injection  Detection

coverage.

 The number of

false positives.

[64]

Name unknown  Wasapy

 Skipfish

 W3af

 Wapiti

 AppScan

 Acunetix Web

Vulnerability

Scanner

 WebInspect

 phpBB-3

 SecurePage

 HardwareStore

 Insecure

 Damn vulnerable web application

(DVWA)

 Cyphor

 Seagull

 Ftss

 Rioptx

 Pligg

 SQL injection  The number of

vulnerabilities,

 The number of

false positives.

[68]

 WebSSARI

 WAVES

 Teleport

 WebSpnix

 Larbin

 Web-Glimpse

 230 random web applications of

SourceForge

 SQL injection

 Cross-site scripting

 The number of

vulnerabilities.

[84]

SQLfast  WebGoat

 Damn vulnerable web application

(DVWA)

 Joomla!

 Yet another vulnerable web

application (YAVWA)

 SQL injection  The number of

data extracted.

 Capability to

bypass

authentication

scheme.

[79]

Idea  SQLfast  WAVSEP  SQL injection  The number of

false positives.

 The number of

vulnerabilities.

[55]

Name unknown  FindBugs  ChangePaymentMethod

 NewCustomer

 NewProducts

 ProductDetail

 SQL injection

 XPath injection

 The number of

vulnerabilities.

 The number of

false positives.

[97]

Volcano  Web applications from cyber

security bulletin

 SQL injection  The number of

vulnerabilities.

[105]

ANOVA  APhpKb

 PhpPlanner

 Yapig

 Mantis

 Cross-site scripting  Coverage.

 Fitness.

 Time.

 Productivity.

[74]

PMVT  Rational AppScan

 NTOSpider

 W3af

 Skipfish

 Arachni

 Stud-e  Multi-step cross-

site scripting

 Coverage.

 Fitness.

 Time.

 Productivity.

[74]

Seng et al.

304

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

jÄk  Skipfish

 W3af

 Wget

 State-aware crawler

 Crawljax

 WIVET

 Joomla

 Modx-CMS

 Nibbleblog

 WordPress

 Tidio

 myBB

 phpNN

 Gallery

 Piwigo

 OwnCloud

 MediaWiki

 SQL injection

 Cross-site scripting

 The number of

tests.

[100]

THAPS  WordPress  SQL injection

 Cross-site scripting

 The number of

false positives.

 The number of

vulnerabilities.

[48]

Name unknown  Acunetix web

vulnerability scanner

 WatchFire AppScan

 WebInspect

 MyReferences  SQL injection

 Cross-site scripting

 The number of

vulnerabilities.

[103]

XqueryFuzzer  ZAP Attack Proxy  Bookstore

 Classified

 WIVET

 XQuery injection  The number of

vulnerabilities.

[57]

Name unknown.  Acunetix web

vulnerability scanner

 NetSparker

Not clearly defined  SQL injection

 Buffer overflow

 Cross-site scripting

 Cross-site request

forgery

 The number of

false positives.

 The number of

false negatives.

 Elapsed scanning

time.

[75]

Name unknown  Nikto

 Wikto

 phpBB Not clearly defined  Detection rate.

 The number of

false positives.

[76]

WAPTT  W3af

 Nikto

 Wapiti

 Vega

 ZAP Proxy

 Acunetix web

vulnerability scanner

3 vulnerable web application from

postgraduate students and teaching

assistants.

 SQL injection

 Cross-site scripting

 Buffer overflow

 The number of

vulnerabilities.

[28]

BIOFUZZ  ARDILLA

 SQLmap

 WebChess

 Schoolmate

 FaqForge

 geccBBlite

 phpMyAddressBook

 Elemate

 SQL injection  The number of

vulnerabilities.

[58]

KamaleonFuzz  P0wnMe

 W3af

 Wapiti

 Skipfish

 P0wnMe!

 WebGoat

 Gruyer

 WordPress

 Elgg

 phpBB

 E-Health

 Cross-site scripting  The number of

false positives.

 The number of

vulnerabilities.

[59]

Cross-request

scanner (CRS)

  HSBC

 BEA

 BOC

 HSB

 CitiBank

 Webjet

 JetStar

 Parameter

tampering

 The number of

true positives.

 The number of

true negatives.

 The number of

false positives.

 The number of

false negatives.

[25]

XSS Peeker  Acunetix web

vulnerability scanner

 NetSparker

 N-Stalker

 NTOSpider

 Skipfish

 W3af

 WackoPicko.

 Custom developed web

applications.

 Cross-site scripting.  The number of

vulnerabilities.

 The number of

attack payloads.

[23]

Inferential  Acunetix web

vulnerability scanner

 SQLMap

 AppScan

 WAVSEP  SQL injection  The number of

false positives.

 The number of

true positives.

 The number of

[77]

International Journal of Advanced Computer Research, Vol 8(38)

305

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

URLs.

 False positive rate.

XiParam  5 web applications from

GotoCode

 Custom developed web

applications

 XQuery injection

 Parameter

tampering

 The number of

vulnerabilities.

 The number of

attack requests.

 The number of

successful attacks.

 The number of

vulnerable forms.

 The number of

false positives.

 The number of

false negatives.

[60]

Not clearly

defined

 1854 PHP projects on Github  SQL injection

 Command injection

 Code injection

 Arbitrary file read/

write

 Cross-site scripting

 Session fixation

 The number of

sinks.

 The number of

calls.

[78]

DetLogic  LogicScope  WackoPicko

 Scarf

 OpenIT

 Puzzlemall

 Logic flaws  The number of

URLs.

 The number of

Forms.

 The number of

vulnerabilities.

 The number of

false positives.

 The number of

false negatives.

[108]

Q
u

an
ti

fi
ca

ti
o

n
 o

f
sc

an
n
er

s
q
u
al

it
y
.

  Acunetix web

vulnerability scanner

 HailStorm

 WebInspect

 Rational AppScan

 McAfee SECURE

 QualysGuard.PCI

 NeXPose

 Drupal

 phpBB

 WordPress

 SQL injection

 Cross-site scripting

 Arbitrary file

upload

 Remote file

inclusion

 OS command

injection

 Code injection

 Session fixation

 Session prediction

 Authentication

bypass

 Cross-site request

forgery

 SSL

misconfiguration

 Insecure HTTP

methodologies

 Insecure temporary

file

 Path traversal

 Source code

disclosure

 Error message

disclosure

 Elapsed scanning

time.

 The number of

generated

network.

 The number of

vulnerabilities.

 The number of

false positives.

[37]

 Not clearly defined  WackoPicko  SQL injection

 Cross-site scripting

 Code injection

 Broken access

control

 Elapsed scanning

time.

 Detection score.

 Reachability

score.

[46]

  Acunetix web

vulnerability scanner

 AppScan

 WebInspect

 Qualys

 27 custom developed web

applications

 SQL injection.

 Cross-site scripting

 Information leakage

 Cross-site request

forgery

 The number of

vulnerabilities.

 The number of

false positives.

[38]

  AppScan

 Acunetix web

vulnerability scanner

 WebInspect

 300 random web applications  SQL injection

 XPath injection

 Code execution

 Buffer overflow

 Username/

password disclosure

 The number of

vulnerabilities.

 The number of

false positives.

 Test coverage.

[7]

Seng et al.

306

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

 Server path

disclosure

  Acunetix web

vulnerability scanner

 AppScan

 BurpSuite

 HailStorm

 Retina

 Qualys

 WebInspect

 Vendor‟s test sites  SQL injection

 Cross-site scripting

 Authentication

bypass

 Command injection

 XPath injection

 SOAP/ AJAX

attack

 Cross-site request

forgery

 HTTP response

splitting

 Arbitrary file

upload

 Remote file

inclusion

 The number of

vulnerabilities.

 Elapsed scanning

time.

 The number of

false positives.

 The number of

false negatives.

[6]

  AppScan

 HailStorm.

 Acunetix web

vulnerability scanner

 Hackme

 OWASP Site Generator Project.

 WebGoat

 File inclusion

 SQL injection

 Cross-site scripting

 The number of

false positives.

 The number of

vulnerabilities.

[34]

  Splat

 WAVES

 Secubat

 ARDILLA

 MUBOT

 MUSIC

 Wilela‟s prototype

 Tappenden‟s

prototype

 Salas‟s prototype

 Breech‟s prototype

 Offutt‟s prototype

 McAllister‟s

prototype

 MUFORMAT

 MUTEC

 Not defined  Buffer overflow

 SQL injection

 Format string bug

 Cross-site scripting

 Vulnerability

coverage.

 Test automation

level.

 Testing level.

 Granularity of test

cases.

 Source of test

case.

 Test case

generation

method.

[39]

  Acunetix web

vulnerability scanner

 AppScan

 QualysGuard

 PCI

 WackoPicko

 MatchIt

 Stored SQL

injection

 Traffic of

scanners.

[40]

  AppScan

 WebInspect

 Paros

 Acunetix web

vulnerability scanner

 W-VST  Not clearly defined  F-measure.

 Precision.

 Recall.

[18]

  Acunetix web

vulnerability scanner

 AppScan

 ZAP

 WackoPicko

 Scan-bed

 Stored SQL

injection

 Stored cross-site

scripting

 The number of

attack vectors.

[41]

 Not clearly defined  W-VST Not clearly defined  The number of

true duplication.

 The number of

false duplication.

[104]

  Zap attack proxy.

 Skipfish.

 Damn vulnerable web application

(DVWA)

 Web application scanner

evaluation project (WAVSEP)

 Cross-site scripting

 SQL injection

 File inclusion

 Precision

 The number of

false positives.

[30‟]

  SAMATE  CBMC

 K8-sight

 Pcline

 Prevent

 SCA

 Gianna

 Cx-enterprise

 Codesonar

Not clearly defined  Precision.

 Recall.

 F-measure.

[42]

  Acunetix Web

Vulnerability

Scanner.

 AppScan.

 QualysGuard.

 MatchIt

 PCI

 WackoPicko

 Persistent SQL

injection

 The number of

vulnerabilities.

[26]

International Journal of Advanced Computer Research, Vol 8(38)

307

Objective Prototype

scanners

The scanners Test-beds Vulnerabilities Metrics Authors

  BurpSuite

 ZAP Proxy

 WebGoat

 Multillidae II

 Damn vulnerable web application

(DVWA)

 Bodgeit

 Gruyere

 Cross-site scripting  Coverage. [43]

  Arachni

 Wapiti

 Skipfish

 WAVSEP

 AltoroMutual

 Web scanner test site

 WIVET

 Acunetix test sites

 SQL injection

 Cross-site scripting

 Crawler coverage.

 True positive rate.

 True negative rate.

 False positive rate.

 False negative

rate.

 Positive predictive

values.

 Negative

predictive values.

 False omission

rate.

 Accuracy.

 F-measure.

 Scanning speed.

 Vulnerability

detection

accuracy.

[44]

  Acunetix web

vulnerability scanner

 BurpSuite

 ZAP Proxy

 NetSparker

 AppSpider

 Arachni

 Vega

 Wapiti

 Skipfish

 ironWASP

 W3af

 WAVSEP  SQL injection

 Cross-site scripting

 Remote file

inclusion

 Path traversal /

local file inclusion

 Precision.

 Recall.

 F-measure.

 The number of

false positives.

 The number of

false negatives.

 The number of

true positives.

[45]

  Vega

 Arachni

 ZAP Proxy

 Multillidae II

 Butterfly project

 WackoPicko

 DVWA

 Juice hop

 Null byte

 SQL injection

 Insufficient

password recovery

 Code injection

 SSI injection

 Abuse of

functionality

 XPath injection

 Insufficient process

validation

 Detection rate. [22]

W
eb

 a
p

p
li

ca
ti

o
n

se
cu

ri
ty

 c
an

n
er

s

co
m

p
ar

is
o

n
.

  WebInspect

 AppScan

 Acunetix web

vulnerability scanner

 FindBugs

 Yasca

 IntellijIDEA

 TPC-APP service

 TPC-C web service

 TPC-W web service

 SQL injection  Precision.

 Recall.

 F-measure.

[33]

Q
u
an

ti
fi

ca
ti

o
n
 o

f
sc

an
n
er

 c
o
v
er

ag
e.

WAVES  Teleport

 Web Sphnix

 Harvest

 Larbin

 Web-Glimpse

 Google

 NAI

 Lucent

 Trend Macro

 Palm

 Olympic

 Apache

 Verisign

 Ulead

 Cert

 Maxtor

 Mazda

 Linux Journal

 Cadillac

 Web500

 SQL injection

 Cross-site scripting

 The number of

webpage.

[82, 83]

Seng et al.

308

Acknowledgment
We would like to express our gratitude to Dr Nilashi

Mesbah for his contribution in sharing the knowledge.

Besides this, we would also like to express our appreciation

to Miss Hazinah Kutty Mammi upon her help in improving

the paper quality and readability.

Conflicts of interest
The authors have no conflicts of interest to declare.

References
[1] Roche X. Httrack website copier. Citato a. 2012.

[2] Hai-Jew S. Conducting surface web-based research

with maltego carbon. Retrieve from:

http://scalar.usc.edu/works/conducting-surface-web-

based-research-with-maltego-carbon/index. Accessed

15 May 2018.

[3] https://www.acunetix.com/Websitesecurity/Cros%20s-

Site-Scripting. Accessed 15 May 2018.

[4] Meucci M, Keary E, Cuthbert D. The OWASP testing

guide v2. OWASP Foundation 2008.

[5] Jovanovic N, Kruegel C, Kirda E. Pixy: a static

analysis tool for detecting web application

vulnerabilities (short paper). Symposium on security

and privacy 2006 (pp.258-63). IEEE.

[6] Suto L. Analyzing the accuracy and time costs of web

application security scanners. San Francisco. 2010.

[7] Vieira M, Antunes N, Madeira H. Using web security

scanners to detect vulnerabilities in web services. In

international conference on dependable systems &

networks 2009 (pp. 566-71). IEEE.

[8] Antunes N, Vieira M. Detecting SQL injection

vulnerabilities in web services. In Latin-American

symposium on dependable computing 2009 (pp. 17-

24). IEEE.

[9] Antunes N, Vieira M. Comparing the effectiveness of

penetration testing and static code analysis on the

detection of SQL injection vulnerabilities in web

services. In international symposium on dependable

computing 2009 (pp. 301-6). IEEE.

[10] Antunes N, Vieira M. Defending against web

application vulnerabilities. Computer. 2012; 45(2):66-

72.

[11] http://projects.webappsec.org/w/page/13246986/Web

%20Application%20Security%20Scanner%20Evaluati

on%20Criteria. Accessed 25 February 2018.

[12] Black PE, Fong E, Okun V, Gaucher R. Software

assurance tools: web application security scanner

functional specification version 1.0. Special

Publication, National Institute of Standards and

Technology. 2008.

[13] Qianqian W, Xiangjun L. Research and design on web

application vulnerability scanning service. In

international conference on software engineering and

service science 2014 (pp. 671-4). IEEE.

[14] Baral P. Web application scanners: a review of related

articles [Essay]. IEEE Potentials. 2011; 30(2):10-4.

[15] Fong E, Okun V. Web application scanners:

definitions and functions. In annual Hawaii

international conference on system sciences 2007.

IEEE.

[16] Curphey M, Arawo R. Web application security

assessment tools. IEEE Security & Privacy. 2006;

4(4):32-41.

[17] Tian-yang G, Yin-Sheng S, You-yuan F. Research on

software security testing. World Academy of Science,

Engineering and Technology. 2010; 4(9):1446-50.

[18] Tung YH, Tseng SS, Shih JF, Shan HL. W-VST: a

testbed for evaluating web vulnerability scanner. In

international conference on quality software 2014 (pp.

228-33). IEEE.

[19] Gol D, Shah N. Detection of web application

vulnerability based on RUP model. In national

conference on recent advances in electronics &

computer engineering 2015 (pp. 96-100). IEEE.

[20] Chen JM, Wu CL. An automated vulnerability scanner

for injection attack based on injection point. In

international computer symposium 2010 (pp. 113-8).

IEEE.

[21] Alssir FT, Ahmed M. Web security testing

approaches: comparison framework. In proceedings of

the international congress on computer applications

and computational science 2012 (pp. 163-9). Springer,

Berlin, Heidelberg.

[22] Muñoz FR, Cortes II, Villalba LJ. Enlargement of

vulnerable web applications for testing. The Journal of

Supercomputing. 2017:1-20.

[23] Bazzoli E, Criscione C, Maggi F, Zanero S. XSS

peeker: a systematic analysis of cross-site scripting

vulnerability scanners. arXiv preprint

arXiv:1410.4207. 2014.

[24] Patil S, Marathe N, Padiya P. Design of efficient web

vulnerability scanner. In international conference on

inventive computation technologies 2016 (pp. 1-6).

IEEE.

[25] Fung AP, Wang T, Cheung KW, Wong TY. Scanning

of real-world web applications for parameter

tampering vulnerabilities. In proceedings of the ACM

symposium on information, computer and

communications security 2014 (pp. 341-52). ACM.

[26] Khoury N, Zavarsky P, Lindskog D, Ruhl R. Testing

and assessing web vulnerability scanners for persistent

SQL injection attacks. In proceedings of the first

international workshop on security and privacy

preserving in e-societies 2011 (pp. 12-8). ACM.

[27] Medeiros I, Neves NF, Correia M. Automatic

detection and correction of web application

vulnerabilities using data mining to predict false

positives. In proceedings of the international

conference on world wide web 2014 (pp. 63-74).

ACM.

[28] ÐURIĆ Z. WAPTT-Web application penetration

testing tool. Advances in Electrical and Computer

Engineering. 2014; 14(1):93-102.

[29] Balduzzi M, Gimenez CT, Balzarotti D, Kirda E.

Automated discovery of parameter pollution

vulnerabilities in web applications. In NDSS 2011.

[30] Makino Y, Klyuev V. Evaluation of web vulnerability

scanners. In international conference on intelligent

International Journal of Advanced Computer Research, Vol 8(38)

309

data acquisition and advanced computing systems:

technology and applications 2015 (pp. 399-402).

IEEE.

[31] Aliero MS, Ghani I. A component based SQL

injection vulnerability detection tool. In Malaysian

software engineering conference 2015 (pp. 224-9).

IEEE.

[32] Auronen L. Tool-based approach to assessing web

application security. Helsinki University of

Technology. 2002 (pp. 1-20).

[33] Antunes N, Vieira M. Benchmarking vulnerability

detection tools for web services. In international

conference on web services 2010 (pp. 203-10). IEEE.

[34] Fong E, Gaucher R, Okun V, Black PE, Dalci E.

Building a test suite for web application scanners. In

proceedings of the Hawaii international conference on

system sciences 2008 (pp. 1-8). IEEE.

[35] Cardwell K. Building virtual pentesting labs for

advanced penetration testing. Packt Publishing Ltd;

2014.

[36] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred

reporting items for systematic reviews and meta-

analyses: the PRISMA statement. Annals of Internal

Medicine. 2009; 151(4):264-9.

[37] Bau J, Bursztein E, Gupta D, Mitchell J. State of the

art: automated black-box web application vulnerability

testing. In symposium on security and privacy 2010

(pp. 332-45). IEEE.

[38] Bau J, Wang F, Bursztein E, Mutchler P, Mitchell JC.

Vulnerability factors in new web applications: audit

tools, developer selection & languages. Stanford,

Tech. Rep. 2012.

[39] Shahriar H, Zulkernine M. Automatic testing of

program security vulnerabilities. In international

conference on computer software and applications

2009 (pp. 550-5). IEEE.

[40] Khoury N, Zavarsky P, Lindskog D, Ruhl R. An

analysis of black-box web application security

scanners against stored SQL injection. In third

international conference on privacy, security, risk and

trust (PASSAT) and social computing (SocialCom)

2011 (pp. 1095-101). IEEE.

[41] Parvez M, Zavarsky P, Khoury N. Analysis of

effectiveness of black-box web application scanners in

detection of stored SQL injection and stored XSS

vulnerabilities. In international conference for internet

technology and secured transactions 2015 (pp. 186-

91). IEEE.

[42] Díaz G, Bermejo JR. Static analysis of source code

security: assessment of tools against SAMATE tests.

Information and Software Technology. 2013;

55(8):1462-76.

[43] Garn B, Kapsalis I, Simos DE, Winkler S. On the

applicability of combinatorial testing to web

application security testing: a case study. In

proceedings of the workshop on joining AcadeMiA

and industry contributions to test automation and

model-based testing 2014 (pp. 16-21). ACM.

[44] Alsaleh M, Alomar N, Alshreef M, Alarifi A, Al-

Salman A. Performance-based comparative

assessment of open source web vulnerability scanners.

Security and Communication Networks. 2017:1-14.

[45] Idrissi SE, Berbiche N, Guerouate F, Shibi M.

Performance evaluation of web application security

scanners for prevention and protection against

vulnerabilities. International Journal of Applied

Engineering Research. 2017; 12(21):11068-76.

[46] Doupé A, Cova M, Vigna G. Why Johnny can‟t

pentest: An analysis of black-box web vulnerability

scanners. In international conference on detection of

intrusions and malware, and vulnerability assessment

2010 (pp. 111-31). Springer, Berlin, Heidelberg.

[47] Huiyao A, Yang S, Tao Y, Hui L, Peng Z, Jun Z. A

new architecture of AJAX web application security

crawler with finite-state machine. In international

conference on cyber-enabled distributed computing

and knowledge discovery 2014 (pp. 112-7). IEEE.

[48] Jensen T, Pedersen H, Olesen MC, Hansen RR. Thaps:

automated vulnerability scanning of PHP applications.

In Nordic conference on secure IT systems 2012 (pp.

31-46). Springer, Berlin, Heidelberg.

[49] Wang X, Wang L, Wei G, Zhang D, Yang Y. Hidden

web crawling for SQL injection detection. In

international conference on broadband network and

multimedia technology 2010 (pp. 14-8). IEEE.

[50] Tripp O, Weisman O, Guy L. Finding your way in the

testing jungle: a learning approach to web security

testing. In proceedings of the international symposium

on software testing and analysis 2013 (pp. 347-57).

ACM.

[51] Li N, Xie T, Jin M, Liu C. Perturbation-based user-

input-validation testing of web applications. Journal of

Systems and Software. 2010; 83(11):2263-74.

[52] Kosuga Y, Kono K, Hanaoka M, Hishiyama M,

Takahama Y. Sania: syntactic and semantic analysis

for automated testing against SQL injection. In

computer security applications conference 2007 (pp.

107-17). IEEE.

[53] Duchene F, Rawat S, Richier JL, Groz R. LigRE:

reverse-engineering of control and data flow models

for black-box XSS detection. In working conference

on reverse engineering 2013 (pp. 252-61). IEEE.

[54] Rocha TS, Souto E. ETSSDetector: a tool to

automatically detect cross-site scripting

vulnerabilities. In international symposium on network

computing and applications 2014 (pp. 306-9). IEEE.

[55] Dao TB, Shibayama E. Idea: automatic security

testing for web applications. In international

symposium on engineering secure software and

systems 2009 (pp. 180-4). Springer, Berlin,

Heidelberg.

[56] Avancini A, Ceccato M. Comparison and integration

of genetic algorithms and dynamic symbolic execution

for security testing of cross-site scripting

vulnerabilities. Information and Software Technology.

2013; 55(12):2209-22.

[57] Palsetia N, Deepa G, Khan FA, Thilagam PS, Pais

AR. Securing native XML database-driven web

applications from XQuery injection vulnerabilities.

Journal of Systems and Software. 2016; 122:93-109.

Seng et al.

310

[58] Thomé J, Gorla A, Zeller A. Search-based security

testing of web applications. In proceedings of the

international workshop on search-based software

testing 2014 (pp. 5-14). ACM.

[59] Duchene F, Rawat S, Richier JL, Groz R.

KameleonFuzz: evolutionary fuzzing for black-box

XSS detection. In proceedings of the conference on

data and application security and privacy 2014 (pp.

37-48). ACM.

[60] Deepa G, Thilagam PS, Khan FA, Praseed A, Pais

AR, Palsetia N. Black-box detection of XQuery

injection and parameter tampering vulnerabilities in

web applications. International Journal of Information

Security. 2018:17(1):105-20.

[61] Antunes N, Laranjeiro N, Vieira M, Madeira H.

Effective detection of SQL/XPath injection

vulnerabilities in web services. In international

conference on services computing 2009 (pp. 260-7).

IEEE.

[62] Antunes N, Vieira M. Enhancing penetration testing

with attack signatures and interface monitoring for the

detection of injection vulnerabilities in web services.

In international conference on services computing

2011 (pp. 104-11). IEEE.

[63] Antunes N, Vieira M. Penetration testing for web

services. Computer. 2014; 47(2):30-6.

[64] Antunes N, Vieira M. Designing vulnerability testing

tools for web services: approach, components, and

tools. International Journal of Information Security.

2017; 16(4):435-57.

[65] Su Z, Wassermann G. The essence of command

injection attacks in web applications. In SIGPLAN

notices 2006 (pp. 372-82). ACM.

[66] Dessiatnikoff A, Akrout R, Alata E, Kaâniche M,

Nicomette V. A clustering approach for web

vulnerabilities detection. In Pacific Rim international

symposium on dependable computing 2011 (pp. 194-

203). IEEE Computer Society.

[67] Lounis O, Guermeche SE, Saoudi L, Benaicha SE. A

new algorithm for detecting SQL injection attack in

web application. In science and information

conference (SAI) 2014 (pp.43-51).

[68] Akrout R, Alata E, Kaaniche M, Nicomette V. An

automated black box approach for web vulnerability

identification and attack scenario generation. Journal

of the Brazilian Computer Society. 2014; 20(4):1-16.

[69] Nanda S, Lam LC, Chiueh TC. Dynamic multi-

process information flow tracking for web application

security. In proceedings of the international

conference on Middleware companion 2007. ACM.

[70] Wei K, Muthuprasanna M, Kothari S. Preventing SQL

injection attacks in stored procedures. In software

engineering conference 2006. IEEE.

[71] Antunes N, Vieira M. SOA-scanner: an integrated tool

to detect vulnerabilities in service-based

infrastructures. In international conference on services

computing 2013 (pp. 280-7). IEEE.

[72] Djuric Z. A black-box testing tool for detecting SQL

injection vulnerabilities. In international conference on

informatics and applications 2013 (pp. 216-21). IEEE.

[73] Singh AK, Roy S. A network based vulnerability

scanner for detecting SQLI attacks in web

applications. In international conference on recent

advances in information technology 2012 (pp. 585-

90). IEEE.

[74] Vernotte A, Dadeau F, Lebeau F, Legeard B, Peureux

F, Piat F. Efficient detection of multi-step cross-site

scripting vulnerabilities. In international conference on

information systems security 2014 (pp. 358-77).

Springer, Cham.

[75] Saleh AZ, Rozali NA, Buja AG, Jalil KA, Ali FH,

Rahman TF. A method for web application

vulnerabilities detection by using boyer-moore string

matching algorithm. Procedia Computer Science.

2015; 72:112-21.

[76] Lee M, Lee Y, Yoon H. An enhanced rule-based web

scanner based on similarity score. Advances in

Electrical and Computer Engineering. 2016; 16(3):9-

14.

[77] Liu L, Su G, Xu J, Zhang B, Kang J, Xu S, et a. An

inferential metamorphic testing approach to reduce

false positives in SQLIV penetration test. In computer

software and applications conference 2017 (pp. 675-

80). IEEE.

[78] Backes M, Rieck K, Skoruppa M, Stock B,

Yamaguchi F. Efficient and flexible discovery of PHP

application vulnerabilities. In European symposium on

security and privacy 2017 (pp. 334-49). IEEE.

[79] De Meo F, Rocchetto M, Viganò L. Formal analysis of

vulnerabilities of web applications based on SQL

injection. In international workshop on security and

trust management 2016 (pp. 179-95). Springer, Cham.

[80] Huang YW, Yu F, Hang C, Tsai CH, Lee DT, Kuo

SY. Securing web application code by static analysis

and runtime protection. In proceedings of the

international conference on world wide web 2004 (pp.

40-52). ACM.

[81] Huang YW, Tsai CH, Lee DT, Kuo SY. Non-

detrimental web application security scanning. In

international symposium on software reliability

engineering 2004 (pp. 219-30). IEEE.

[82] Huang YW, Huang SK, Lin TP, Tsai CH. Web

application security assessment by fault injection and

behavior monitoring. In proceedings of the

international conference on world wide web 2003 (pp.

148-59). ACM.

[83] Huang YW, Tsai CH, Lin TP, Huang SK, Lee DT,

Kuo SY. A testing framework for web application

security assessment. Computer Networks. 2005;

48(5):739-61.

[84] Huang YW, Lee DT. Web application security-past,

present, and future. In computer security in the 21st

century 2005 (pp. 183-227). Springer, Boston, MA.

[85] Kals S, Kirda E, Kruegel C, Jovanovic N. Secubat: a

web vulnerability scanner. In proceedings of the

international conference on world wide web 2006 (pp.

247-56). ACM.

[86] Viega J, Bloch JT, Kohno Y, McGraw G. ITS4: a

static vulnerability scanner for C and C++ code. In

International Journal of Advanced Computer Research, Vol 8(38)

311

annual conference on computer security applications

2000 (pp. 257-67). IEEE.

[87] Balzarotti D, Cova M, Felmetsger V, Jovanovic N,

Kirda E, Kruegel C, et al. Saner: composing static and

dynamic analysis to validate sanitization in web

applications. In symposium on security and privacy

2008 (pp. 387-401). IEEE.

[88] Tripp O, Pistoia M, Cousot P, Cousot R, Guarnieri S.

Andromeda: accurate and scalable security analysis of

web applications. In international conference on

fundamental approaches to software engineering 2013

(pp. 210-25). Springer, Berlin, Heidelberg.

[89] Galán E, Alcaide A, Orfila A, Blasco J. A multi-agent

scanner to detect stored-XSS vulnerabilities.

International conference for internet technology and

secured transactions 2010 (pp.332-7).

[90] Suto L. Analyzing the effectiveness and coverage of

web application security scanners. San Francisco.

2007.

[91] Razzaq A, Latif K, Ahmad HF, Hur A, Anwar Z,

Bloodsworth PC. Semantic security against web

application attacks. Information Sciences. 2014;

254:19-38.

[92] Mainka C, Somorovsky J, Schwenk J. Penetration

testing tool for web services security. In world

congress on services 2012 (pp. 163-70). IEEE.

[93] Balduzzi M, Egele M, Kirda E, Balzarotti D, Kruegel

C. A solution for the automated detection of

clickjacking attacks. In proceedings of the symposium

on information, computer and communications

security 2010 (pp. 135-44). ACM.

[94] Huyam AA, El-Qawasmeh E. Discovering security

vulnerabilities and leaks in ASP. NET websites. In

international conference on cyber security, cyber

warfare and digital forensic 2012 (pp. 329-33). IEEE.

[95] Eshete B, Villafiorita A, Weldemariam K, Zulkernine

M. Confeagle: automated analysis of configuration

vulnerabilities in web applications. In international

conference on software security and reliability 2013

(pp. 188-97). IEEE.

[96] Vithanage NM, Jeyamohan N. WebGuardia-an

integrated penetration testing system to detect web

application vulnerabilities. In international conference

on wireless communications, signal processing and

networking 2016 (pp. 221-7). IEEE.

[97] Laranjeiro N, Vieira M, Madeira H. Protecting

database centric web services against SQL/XPath

injection attacks. In international conference on

database and expert systems applications 2009 (pp.

271-8). Springer, Berlin, Heidelberg.

[98] McAllister S, Kirda E, Kruegel C. Leveraging user

interactions for in-depth testing of web applications. In

international workshop on recent advances in intrusion

detection 2008 (pp. 191-210). Springer, Berlin,

Heidelberg.

[99] Doupé A, Cavedon L, Kruegel C, Vigna G. Enemy of

the state: a state-aware black-box web vulnerability

scanner. In USENIX security symposium 2012.

[100]Pellegrino G, Tschürtz C, Bodden E, Rossow C. JÄk:

using dynamic analysis to crawl and test modern web

applications. In international workshop on recent

advances in intrusion detection 2015 (pp. 295-316).

Springer, Cham.

[101]Fonseca J, Vieira M, Madeira H. Vulnerability &

attack injection for web applications. In international

conference on dependable systems & networks 2009

(pp. 93-102). IEEE.

[102]Fonseca J, Vieira M, Madeira H. Evaluation of web

security mechanisms using vulnerability and attack

injection. IEEE Transactions on Dependable and

Secure Computing. 2014; 11(5):440-53.

[103]Fonseca J, Matarese F. Using vulnerability injection

to improve web security. In innovative technologies

for dependable OTS-based critical systems 2013 (pp.

145-57). Springer, Milano.

[104]Tung YH, Tseng SS, Shih JF, Shan HL. A cost-

effective approach to evaluating security vulnerability

scanner. In network operations and management

symposium 2013 (pp. 1-3). IEEE.

[105]Dao TB, Shibayama E. Security sensitive data flow

coverage criterion for automatic security testing of

web applications. In international symposium on

engineering secure software and systems 2011 (pp.

101-13). Springer, Berlin, Heidelberg.

[106]Loh PK, Subramanian D. Fuzzy classification metrics

for scanner assessment and vulnerability reporting.

IEEE Transactions on Information Forensics and

Security. 2010; 5(4):613-24.

[107]OWASP T. Application Security Risks 2017.

[108]Deepa G, Thilagam PS, Praseed A, Pais AR.

DetLogic: a black-box approach for detecting logic

vulnerabilities in web applications. Journal of

Network and Computer Applications. 2018; 109:89-

109.

Lim Kah Seng received his master

degree in Computer Science from

University of Technology, Malaysia in

2013. He is currently a doctoral student

of Department of Computer Science of

University of Technology, Malaysia.

He is currently working on the research

topic of Authentication Scheme and

Software Testing. He is also interested in the study of the

Theory of Computation and Artificial Intelligence, and

their applications for solving Computation Problem.

Email: lim0709@gmail.com

Norafida Ithnin received her PhD

degree in Computation from University

of Manchester Institute of Science and

Technology. She is currently an

Associate Professor of Department of

Computer Science of Universiti

Teknologi Malaysia. Her research

interests are data and computer

security, network security, security management, unified

threat management, and information hiding & forensics.

Email: afida@utm.my

mailto:afida@utm.my

Seng et al.

312

Syed Zainudeen Mohd Shaid received

his PhD in computer science from

Universiti Teknologi Malaysia in 2013.

He is currently a lecturer at University

of Technology, Malaysia. He is also a

Certified Penetration Testing

Professional (CPTP). He is active in

researches of Malware, Network Packet

Filtering, and Unmanned Aerial Vehicle.

Email: szainudeen@utm.my

