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ABSTRACT

Multi-stacked brownfield in Malaysia is known to have 
zonal contrast reservoir pressure and water cut. Commingled 
production without any flow control such as conventional on-off 
sliding sleeve will induce cross flow of production from a high 
pressure reservoir to lower pressure reservoir which disables 
optimum oil production. Having high zonal water cut contrast will 
cause early or excessive water production translates to deferred oil 
production. To pro-actively prevent these occurrences, adaptation 
of intelligent completion components such as Permanent 
Downhole Gauge (PDG) and surface-controlled Flow Control 
Valve (FCV) can be used. Downhole FCV choke is designed to 
cater for the dynamic changes of reservoir properties predicted 
over well life. In order to standardize the FCV choke sizing by well 
or by campaign, the choke sizing will be averaged to fit for all 
layers which is not the ultimate optimized design for maximum oil 
production. Latest in market today, electrical driven infinite 
position FCV is the solution to conventional hydraulic actuated 
FCV. Having infinite position enables optimized choke sizing for 
all reservoir layers and flexible to tackle uncertainties and dynamic 
changes of reservoir properties over time which enables the 
ultimate optimum oil production and water cut reduction. Besides 
choke sizing, deployment method and operating method also 
contribute to installation and operating efficiency. Conventional 
multi-position FCVs in market today are either fully hydraulic 
operated or electro-hydraulic operated which require hydraulic 
pump units at surface to enable pressuring up hydraulic control 
lines to change the position of FCV. It is also time consuming 
during deployment due to the requirement of electrical splicing, 
hydraulic splicing and FCV actuation sequence. Infinite position 
FCV is electrically operated using single downhole cable that can 
be multi-dropped to more than 25 FCV which reduces deployment 
time. With WellWatcher Advisor software that provides real time 
optimization features, operating efficiency is improved 
significantly with infinite position FCV as compared to 
conventional multi-position FCV and on-off sliding sleeve.
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ABSTRAK

Medan matang yang berlapis di Malaysia mempunyai 
kontras tekanan reservoir dan potong air yang tinggi antara lapisan. 
Pengeluaran minyak secara bercampur tanpa alat kawalan aliran 
misalnya sarung gelongsor akan menyebabkan berlakunya aliran 
silang dari reservoir bertekanan tinggi ke reservoir bertekanan 
rendah, lalu menghalang pengeluaran secara optimum. Kontras 
potong air yang ketara mengakibatkan penghasilan air yang lebih 
awal lalu mengurangkan pengeluaran minyak. Untuk mencegah 
kejadian ini, komponen pelengkapan pintar seperti Tolok Kekal 
Bawah Lubang (PDG) dan Injap Kawalan Aliran (FCV) yang 
dikawal dari permukaan boleh diguna. FCV bawah lubang direka 
bentuk supaya sesuai dengan perubahan dinamik yang dialami 
reservoir. Saiz purata pencekik diguna pakai untuk semua lapisan 
bagi memaksimumkan pengeluaran minyak. Terkini di pasaran, 
FCV berposisi infiniti memberikan penyelesaian yang terbaik 
dengan pencekik bersaiz optimum boleh diguna pakai untuk semua 
lapisan reservoir demi mengoptimumkan pengeluaran minyak dan 
mengurangkan potong air. Selain saiz pembukaan, alat itu turut 
menyumbang kepada kecekapan pemasangan dan operasi. FCV 
kenvensional pelbagai posisi beroperasi secara hidraulik atau 
elektro-hidraulik memerlukan pam hidraulik di permukaan. Alat 
itu memakan masa pemasangan berikutan kerja penyambungan 
tiub elektrik dan hidraulik serta aturan penggubahan posisi. FCV 
berposisi infiniti dikendalikan sepenuhnya secara elektrik 
menggunakan satu kabel elektrik dan boleh digunakan untuk lebih 
daripada 25 FCV yang sudah pasti mengurangkan masa 
pemasangan. Penggunaan perisian WellWatcher Advisor yang 
berciri pengoptimuman masa nyata berjaya meningkatkan 
kecekapan operasi FCV berposisi infiniti berbanding FCV 
konvensional pelbagai posisi dan sarung gelongsor.
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CHAPTER 1

INTRODUCTION

1.1 Background

Post drilling, a well must be completed safely and 

efficiently prior to initiating production. Completions system must 

be designed to withstand suspected loads throughout its life 

(PETRONAS, 2013). Numerous technologies today enable safe 

and efficient completions installation (Dyson et al., 1999).

A well can be completed for a single reservoir or multi­

stacked reservoir. As the associated cost for drilling a well in 

offshore environment is significantly high as compared to onshore, 

completing a well with multi-zone reservoirs can be a cost- 

effective solution for oil operators (Masoudi et al., 2015). It also 

will enable operators to produce oil by commingling the 

production or selective sequential production from different layers.

One of the fundamental methodologies to enhance oil 

production in multi-zone completions is to incorporate reservoir
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monitoring and control technologies as part of completions 

accessories (Schlumberger, 2015a; Pogoson and Cardona, 2013). 

Reservoir monitoring can be achieved by installing Permanent 

Downhole Gauge (PDG) that reads pressure and temperature data 

near reservoir and transmit the data real time to end user (Samuel 

et al., 2014; Shestov et al., 2015). Active reservoir control can be 

achieved by having surface controlled downhole flow control 

device near reservoir. This will enable proactive measure to 

optimize production throughout well life by delaying water and gas 

breakthrough and ultimately increasing oil production 

(Schlumberger, 2018a; Al-Amri et al., 2013). Multi-zone 

completions can be completed in few configurations as shown in 

Figure 1.1.
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ICD, (c) Multi-zone with FCV and PDG
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(1) Multi-zone with sliding sleeve -  It requires slickline 

intervention to open and close the sliding sleeve.

(2) Multi-zone with passive Inflow Control Device (ICD) -  

Multiple ICD with pre-designed choke size usually 

installed along the reservoir section.
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(3) Multi-zone with active Flow Control Valve (FCV) -  

Surface controlled flow control valves usually integrated 

with PDG (Rodriguez et al., 2014; Mohammed Tawfik et 

a l, 2013).

Most FCVs in current market are available in two (Innes et 

al., 2007), four (Rodriguez et al., 2014; Mohammed Tawfik et al.,

2013), six, and eight (Masoudi et al., 2015; Shestov et al., 2015) 

positions. The FCV is operated with various means such as:

(1) Hydraulic operated FCV (Jannise et al., 2017) -  Hydraulic 

operated FCV usually utilizes N+1 concept. N is 

referencing to number of FCV. One common line is shared 

between all FCVs. As example, if three FCVs are used for 

three zones, four hydraulic control lines are required to 

operate the FCV.

(2) Electro-hydraulic operated FCV -  Electro-hydraulic FCV 

utilizes one electrical cable and two hydraulic control lines 

to operate the FCV (Schlumberger, 2017b; Halliburton, 

2015).

(3) Electrical operated FCV -  Electrical operated FCV utilizes 

one electrical cable to operate the FCV (Basak and Gurses, 

2015).

Prior to deciding choke size for FCV, a reservoir simulation 

study would be done to achieve the most optimized design. Prior 

to commissioning at site, a detailed completion design and
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planning is required to optimize rig time for complex installation 

of multi-zone FCV without jeopardizing safety nor quality.

1.2 Problem Statement

Multi-stacked reservoir in Malaysian brownfield is known 

to have great difference of reservoir pressure between the layers 

(Ceccarelli et al., 2014). Commingled production without any 

choking capability such as sliding sleeve will induce cross flow 

between the zones (Hamid et al., 2017).

Often, especially during oil crisis, completion design 

chosen is driven by cost. Multi-zone with sliding sleeve would be 

the cheapest option with regards to capital expenditure as 

compared to multi-zone with ICD or FCV. However, the setback 

of multi-zone with sliding sleeve would be higher operational 

expenditure as slickline intervention is required to open or close 

the sliding sleeve. In addition, as only open and close position is 

available with sliding sleeve, once the independent zone is not 

economical with excessive produced water or gas, there will be no 

capability to choke back water or gas production to produce 

remaining reserve. Hence, the sliding sleeve will be shut using 

slickline intervention.
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Multi-zone completions with FCV require proper planning 

and tedious installation process. Control line termination at FCV, 

PDG cable termination at Solid Gauge Mandrel (SGM) and control 

lines splice at packer require longer installation time as compared 

to multi-zone completions with sliding sleeve. This translates to 

higher capital expenditure for multi-zone with FCV. However, on 

the other hand, the operational expenditure would be lower 

compared to multi-zone with sliding sleeve as FCV has multiple 

positions enable choking the production for the high water cut zone 

without intervention. This will permit the high water cut zone to 

still produce oil which directly translate in oil production 

incremental (Schlumberger, 2017a).

Hydraulic actuated FCV is operated using hydraulic pump 

while PDG is powered up by Surface Acquisition Unit (SAU) from 

surface which require space, instrument gas or air supply, and 

power allocation on the platform.

Conventional FCV is also limited by the number of 

positions. To design the choke size for these positions, a detailed 

study on the reservoir condition and production is required and 

simulation accuracy is extremely important. Sometime, the data 

available during design stage is limited which reduces the accuracy 

of the simulation. In addition, if the reservoir condition after 

drilling was found to be different as compared to simulated 

production, the actual production could be smaller than target.

6



Conventional FCV installation is normally integrated with 

Pressure and Temperature PDG across each zone. The real-time 

data transmission every second can be configured to be sent to 

town for reservoir monitoring capability. Proactive measure to 

diligently monitor the real-time data and also the performance of 

the production is crucial. If changing to different choke size is 

required, production surveillance will need to be present at the 

platform physically to monitor the valve cycling operation with 

Hydraulic Power Unit (HPU) to ensure operations are completed 

successfully. Physical monitoring is required as valve cycling 

requires pressuring up control lines to actuate the FCV. Fluid 

return can be monitored to confirm downhole choke position.

Latest electrical operated FCV technology in market that 

has infinite position and embedded with sensors enable real time 

monitoring such as zonal pressure, temperature, flow rate and 

water cut will enhance fast loop decision making to optimize 

production over well life (Basak and Gurses, 2015; Almadi, 2014). 

The fact that more than 10 zones can be multi-dropped with one 

cable to actuate FCV will simplify offshore installation and surface 

commissioning significantly as compared to conventional FCV 

and PDG installation (Schlumberger, 2015b). The infinite position 

FCV will greatly increase the flexibility to tackle uncertainties and 

dynamic changes over time of multi-stacked reservoir properties to 

enable maximum oil production.
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1.3 Objectives

(1) To evaluate infinite position FCV in improving oil

production and reducing water cut as compared to on/off 

sliding sleeve in high zonal contrast of water cut and 

pressure.

(2) To compare and prove adaption of infinite position FCV

will improve installation time comparing to conventional 

multi-position FCV.

(3) To compare and prove improved operating efficiency of

infinite position FCV as compared to on-off sliding sleeve 

and conventional multi-position FCV.

The objectives o f  this study are as follow :
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1.4 Hypothesis

(1) By having an infinite FCV that is flexible to cater dynamic 

changes of reservoir over well life, the oil production will 

significantly increase and water production will decrease as 

compared to on-off sliding sleeve application.

(2) One cable connected from downhole to surface to operate 

infinite FCV will simplify and reduce risk for downhole 

installation, surface installation and save significant 

amount of rig time as compared to conventional FCV.

(3) Having real time optimizer WellWatcher Advisor software 

fed with real time data such as pressure, temperature, flow 

rate and water cut will facilitate a proactive measure to 

ensure full well potential achieved for oil production.

(4) By simplifying method of operating infinite FCV by 

sending command from software, faster response time is 

achievable as compared to conventional FCV and sliding 

sleeve application in multi-zone commingled oil 

production.

The hypothesis o f  this study are as follow :
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1.5 Research Scope

(1) The study used common brownfield multi-stacked 

reservoir condition in Malaysia as an input into the flow 

simulations. The main idea was to understand the impact of 

reservoir properties contrast of multi-stacked brownfield 

reservoir such as the pressure and water cut difference 

between the reservoir layers towards oil and water 

production. Using these data, multiphase flow simulation 

was done using PIPESIM and WellWatcher Advisor 

software to compare oil and water production for multi­

zone completions with sliding sleeve and infinite position 

FCV.

(2) The installation and post installation operating efficiency 

was compared between sliding sleeve, conventional multi­

position FCV and infinite FCV in multi-zone commingled 

production.

The scope o f  research are as follow :
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1.6 Significance of Study

High zonal reservoir properties contrast in multi-stacked 

brownfield oil reservoir is common in Malaysia. In addition, 

almost all wells in Malaysia are drilled from offshore platforms 

which incur high capital and operating cost as compared to onshore 

wells development. This study has proven significant incremental 

in oil production and reduction in water cut by having infinite 

position downhole flow control to cater for dynamic changes of 

reservoir properties over time. This study has provided lots of 

information for future consideration of adapting multi-zone 

Intelligent Completions with infinite position FCV.

1.7 Chapter Summary

Completing wells in multi-stacked brownfield reservoir is 

common in Malaysia to reduce overall cost by drilling fewer wells. 

It is known to have high contrast reservoir properties between 

reservoir layers such as pressure and water cut. Without the 

capability of controlling zonal production, commingled multi-zone 

oil production optimization is impossible due to cross flow from 

high pressure zone to low pressure zone and due to water 

production. Besides, with FCV, water and gas breakthrough can be 

delayed for maximizing oil production. By adapting downhole

11



monitoring and controlling device, commingled production 

enables maximum well potential for oil production. However, it is 

essential for downhole flow control to be flexible to cater for the 

dynamic change and uncertainty of reservoir properties over well 

life (Ghosh, et al., 2013). Simplifying operating method for valve 

actuation using WellWatcher Advisor software aided with real 

time data such as zonal pressure, temperature, flow rate and water 

cut enables faster response time for valve optimization without the 

need of well intervention (Abuahmad et al., 2016; Saeed et al., 

2015).
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