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ABSTRACT 

Poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA) latex series that 

contained polystyrene(PS) seed was prepared by seeded emulsion polymerisation. 

The seed-shell nanoparticles were designed with high (PS seed) and low glass 

transition temperature (Tg), respectively. Two types of monomer crosslinkers i.e. 

ethylene glycol and 1,3-butanediol dimethacrylate (1,3-BDDMA) were added into 

the formulation to prevent the particles from agglomeration, as well as to increase the 

covalent-crosslinked of polymer chains. In this study, the effects of PS content, 

surfactant addition mode, the degree of neutralisation, and types of monomer 

crosslinkers on the physical and mechanical properties of samples were investigated. 

Analysis using dynamics light scattering showed that the addition of PS seed 

increased consistency of particle size. The strains of the films were improved when 

surfactant was added at an initial charge compared to the feeding during 

polymerisation. The addition of a small percentage of ionic groups zinc oxide (ZnO) 

and monomeric crosslinkers increased the stress and modulus of the films. By 

contrast, they decreased the strain and tackiness of the films. Meanwhile, spectra 

from Fourier transform infrared spectroscopy confirmed that the ZnO had bonded to 

the carboxylic groups –RCOOH. The stress-strain data showed the neutralisation at 

100n was required to increase the stress-at-break up to 0.5 MPa and to decrease 

strain-at-break by a factor of 2. The addition of 1,3-BDDMA crosslinker had 

increased the stress-at-break by the factor of 1. Meanwhile, the Tg of the films did 

not significantly affect by the addition of crosslinkers and ZnO, as shown by 

differential scanning calorimetry data. 
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ABSTRAK 

Siri lateks poli(n-butil akrilik-ko-asid metakrilik) (PBA-MAA) yang 

mengandungi benih polistirena (PS) telah disediakan dengan cara pempolimeran 

emulsi benih. Nanopartikel benih-kulit telah direka dengan suhu peralihan kaca (Tg) 

masing-masing yang tinggi (benih PS) dan rendah. Dua jenis monomer pautsilang 

etilena glikol dimetakrilat dan 1,3-butandiol dimetakrilat (1,3-BDDMA) ditambah ke 

dalam formulasi untuk mengelakkan partikel bergumpal di samping untuk 

meningkatkan pautsilang kovalen di antara rantaian polimer. Dalam kajian ini, kesan 

kandungan PS, mod penambahan surfaktan, darjah peneutralan dan jenis monomer 

pautsilang ke atas sifat-sifat fizikal dan mekanikal sampel telah dikaji. Analisis 

menggunakan serakan cahaya dinamik menunjukkan penambahan benih PS telah 

meningkatkan saiz partikel secara konsisten. Peratus terikan filem pula meningkat 

apabila surfaktan ditambah pada mod awal berbanding dengan penambahan semasa 

pempolimeran. Penambahan peratusan kecil kumpulan ionik zink oksida (ZnO) dan 

monomer pautsilang telah meningkatkan kekuatan tegasan dan modulus filem. 

Sebaliknya, terikan dan kelekitan filem berkurangan. Spektra inframerah jelmaan 

Fourier mengesahkan bahawa ZnO telah membentuk ikatan dengan kumpulan asid 

karboksilik -RCOOH. Data dari tegasan-terikan menunjukkan peneutralan sebanyak 

100n diperlukan bagi meningkatkan tegasan pada takat putus sehingga 0.5 MPa dan 

mengurangkan terikan pada takat putus dengan faktor 2. Penambahan 1,3-BDDMA 

telah meningkatkan tegasan pada takat putus dengan faktor 1. Sementara itu, 

penambahan monomer pautsilang dan ZnO tidak memberi kesan yang ketara ke atas 

Tg filem seperti yang ditunjukkan oleh data kalorimeter imbasan kebezaan. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research Background 

Polymer latex is defined as a dispersion of polymeric materials that are 

stabilized within an aqueous medium with a size ranging from tens to hundreds of 

nanometres.
1–4

 Polymer latexes or emulsions are one of the most important types of 

products in the polymer industry. With several different physicochemical properties, 

latex polymers be used in different applications. Mostly they are used in the coatings 

and paint industry and also used for adhesives, textiles, paper industry and various 

other markets.
5
 

Polymer latexes with core-shell nanostructured have attracted considerable 

fundamental interest due to their controllable and well-defined structures
6–9

. 

Generally, the core-shell particles can be built up of a rigid core and a soft shell or 

vice versa. In the case of an emulsion based adhesive or coating, the rigid core–soft 

shell type is preferable, as the crosslinked core offers sufficient cohesive strength 

while the flexible shell provides enhanced wetting and adhesion to a substrate
10

.  

Pérez-Carrillo et al
11 

 had synthesized the core-shell polystyrene/poly(butyl acrylate) 

copolymer via emulsion and microemulsion polymerization. They found that the 

mechanical properties of the core/shell polymers are strongly influenced by the 

particle size through the shell thickness and by the nature (Tg) and location of the 

composing polymers. 

Another researcher had added N-methylol acrylamide (N-MA) crosslinker in 

the nanostructured PS/PBA system through a two-step emulsion polymerization. 

Results showed that the system had improved tensile strength and higher resistance 

against organic solvent.
12
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Meanwhile, Borthakur et al.
13

  had investigated on core-shell PS/PBA 

emulsion based adhesives by changing the core-shell ratio and crosslinked the core 

with ethylene glycol dimethacrylate (EGDMA). The films simultaneously exhibited 

high cohesive and adhesive strength via structured core-shell particle design. The 

high cohesive strength of the adhesive was provided by the crosslinked core part, 

while the relatively soft shell facilitates adhesion by enabling the proper wetting of 

the substrate. The crosslinked EGDMA-core was able to avoid any probability of gel 

formation and to bind both the core and the shell phase together. Musa et al.
14

 had 

incorporated 1,4-butanediol diacrylate (BDDA) crosslinker in the shell poly(BA-

BDDA) copolymer. It was found that the presence of BDDA prevented from latex 

swelling at high pH of latex and enabling the formation of nanoparticle films. 

Meanwhile Riosl et al.
15

 had investigated core-shell PS/poly(BA-co-MAA) latex at 

different BA/MAA ratios. Results revealed that the amount of MAA in the 

copolymer shell could control the particle shape and morphology. The shape of the 

structured particles was non-spherical, and the shape irregularities are the function of 

reaction time.  

 Emulsion polymerization is an important polymerization process on an 

industrial scale and widely used method for the production of polymer latex 

products.
16

 Since the continuous phase is aqueous, it used less solvent and emits less 

VOC; therefore from an environmental perspective it is a preferred method of 

polymerization compared to other methods. However, to produce nanostuctured 

polymer particles, a simple batch emulsion polymerisation cannot be used; other 

approaches such as heteroaggregation, copolymer micelles and sequential seeded 

emulsion polymerisation are among commonly adopted methods to produce such 

nanostructured particles. The later i.e. sequential or semi-batch seeded emulsion 

polymerisation method is appealing for fundamental studies and manipulation of 

end-use properties due to easy control over the structure and cost-effectively scaled 

up
17

. This method also produces a narrower particle size distribution, more uniform 

copolymer composition.  

 Many polyacrylate-based emulsions that consist of carboxyl group (RCOO
-
) 

need to neutralized with alkali such as sodium hydroxide (NaOH) or potassium 
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hydroxide (KOH)in order to maintain the stability of particles in water. Apart from 

alkali, metal oxide such as zinc oxide (ZnO) can be used as a neutralising agent. In 

return, the polymeric materials will have a small number of ionic side groups in their 

hydrophobic backbone chains, called as ionomers.
18

 The presence of a small ionic 

group concentration (<10 mol %),
19

 can greatly improve the mechanical properties of 

the ionomers. The interaction between the ionic groups in the polymer matrix leads 

to the formation of ionic aggregations. The aggregations form physical crosslinking 

between the chains which influence the viscoelastic behavior of ionomers
20

.  

 For this project, the PS/poly(BA-co-MAA) core-shell nanoparticles was 

prepared via semi-batch emulsion polymerization. The PS/PBA ratios were varied at 

three PS levels while PMAA was fixed at 5 pphm. The shell i.e. poly(BA-co-MAA) 

was crosslinked with EDGMA and BDDA to reduce the swelling of nanoparticles at 

high pH. Furthermore, the PS/poly(BA-co-MAA) latex was neutralized with KOH 

and ZnO; with the latter formed ionomer. It was expected that the latex would have 

hard/soft nanoparticles due to higher Tg of core (PS seed) and low Tg shell poly(BA-

co-MAA).  

1.2 Problem Statement 

The ability to tune properties through independent control of the materials 

comprising the core and shell structures continues to attract considerable interest.
21–23

  

In previous work, polybutadiene/poly (acrylonitrile-co-methacrylic acid) 

PBd/poly(AN-co-MAA) latex with core-shell nanoparticles was synthesised.
18,19

 The 

latex was partially neutralized with KOH before further neutralized with ZnO. This 

had introduced ionic crosslinking to the system. The modulus values were shown to 

be affected by the proportions of AN and MAA and extents of neutralisation. 

However, despite having good ductility, those nanostructured ionomer films also had 

low modulus values. Furthermore, since the use of Bd, which has a boiling point of -

5 °C, had restricted the versatility for nanoparticle preparation because a high 

pressure reactor was required.
24

 Therefore, to overcome both the versatility and 

modulus deficiencies, core–shell nanoparticles were prepared using n-butyl acrylate 
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(n-BA) to replace Bd
20

. n-BA has a much higher boiling point (145 °C) which 

enabled the use of conventional (non-pressurised) reactor. The PBA/poly(AN-co-

MAA) core-shell nanoparticles was synthesised by introducing 1,4-butanediol 

diacrylate (BDDA) crosslinker into the shell. The latex was neutralized with KOH 

dan ZnO. It was found that the use of PBA as core had increased the Tg values close 

to room temperature. The elastomer film showed high modulus and strongly 

depended on the AN content and extent of neutralization of the –COOH groups. 

Although PBA/poly(AN-co-MAA/BDDA) showed excellent properties to be used in 

glove industry, acrylonitrile is a toxic material.  

Therefore, this study was conducted to prepare PS/poly(BA-co-MAA) 

nanoparticles by replacing PBA core with PS (to provide high Tg) and 

polyacrylonitrile with BA in shell (to provide low Tg). Furthermore two types of 

crosslinkers i.e. BDDMA and ethylene glycol dimethacrylate (EGDMA) were 

introduced in the poly(BA-co-MAA) shell to provide continuous and a percolating 

film phase. Effects of monomer composition, the core-shell volume fraction and the 

extent of neutralization (KOH and ZnO) on the physical and the mechanical 

properties of the nanoparticles were investigated.  

1.3 Objective  

The objectives of this work based on PS/poly(BA-co-MAA) core-shell 

nanoparticle systems were: 

1. To study a different volume ratio core-shell on physical and thermal and 

tensile properties of the nanostructured film. 

2. To investigate the effect of monomer crosslink on physical, thermal and 

tensile properties of the nanostructured film. 

3. To study the effect of neutralization (KOH and ZnO) on the physical, thermal 

and tensile properties of the nanostructured film. 
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1.4 Scope of Study 

The scopes of study are as follows: 

1. Synthesis of PS/Poly(BA-co-MAA) core-shell nanoparticle via semi-batch 

emulsion polymerisation. 

i) Core:shell volume fraction  

Polystrene seed was used as a core and Poly (BA-co-MAA) as a shell 

with different volume fraction of core-shell (PS seed 1, 2 and 3.5wt %). 

ii) Two type of monomer-crosslinker  

EGDMA and BDDMA were added to improve the properties of 

nanoparticle. 

iii) Neutralization with KOH and ZnO. 

KOH and ZnO were used to neutralize the pH of the latex and 

introducing ionic crosslinking to the shell. 

2. Testing and characterizations 

i) Fourier-transform infrared spectroscopy (FTIR) 

FTIR measurement was conducted using a Nicolet 5700 FTIR equipped 

with an attenuated total reflectance (ATR) unit.  

ii) Tensile test  

Stress-strain measurements were conducted using a Lloyd LR10k 

instrument. Tensile testing was conducted according to ISO 37 standard. 

 

iii) Dynamic light scattering (DLS) 

Z-average diameter was measured by using dynamic light scattering 

(DLS) model Malvern ZetaSizer NanoZS90. 

 

 



 

6 

iv) Viscometer 

The viscosity of latex was measured using a Brookfield LVT viscometer 

using spindle 3 at speed of 60 rpm. A unit of measurement was 

calculated in units of centipoise (cP). 

v) Differential scanning calorimetry (DSC) 

The glass transition temperature of latex was measured by a TA 

Instrument Differential Scanning Calorimetry (DSC) Q200. 
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