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ABSTRACT

Cancer cell invasion across the surrounding tissues is driven by finger-like

protrusions known as invadopodia. Plasma membrane of a cancer cell has the elastic

characteristic that gives the idea to employ the knowledge of Stefan problem to solve

the problem in cancer cell invasion. For this purpose, plasma membrane is treated

as a free boundary interface. In fact, Stefan problem is a well-known free boundary

problem that requires the solution of moving interface(s) as time proceeds along

with the change in the temperature distribution. Hence, this study investigated two-

dimensional free boundary Stefan problem that focused on the solidification process.

A mathematical model of solidification is first introduced by Chen et al. (1997)

considering the jump of the temperature distribution from the liquid to the solid regions.

The velocity concerning the movement of the interface is calculated by taking the first

derivative of the temperature with respect to space. The model is solved numerically

by using finite-difference of level set method [13]. Two algorithms of the level set

method are presented in modelling and discretization parts, to handle the topology

changes of Stefan problem, systematically. Results of the interface movement and

temperature distribution are presented graphically and discussed in order to visualize

the solidification process.
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ABSTRAK

Serangan sel kanser terhadap keseluruhan tisu adalah didorong oleh bonjolan-

bonjolan berbentuk jejari yang dikenali sebagai invadopodia. Sifat kekenyalan yang

dimiliki oleh membran plasma sel kanser telah memberi idea untuk mengaplikasikan

konsep masalah Stefan dalam menyelesaikan masalah serangan sel kanser ini. Untuk

tujuan ini, membran plasma dianggap sebagai antara muka sempadan bebas. Secara

faktanya, masalah Stefan terkenal dengan masalah sempadan bebas yang memerlukan

penyelesaian dalam pergerakan antara muka mengikut perubahan masa dan juga

taburan suhu. Maka, pembelajaran ini adalah untuk mengkaji sempadan bebas

masalah Stefan dalam dua dimensi yang fokus kepada proses penyejukbekuan. Model

matematik tentang penyejukbekuan telah diperkenalkan oleh Chen et al. (1997) dengan

mempertimbangkan lompatan suhu dari kawasan cecair kepada kawasan pepejal.

Halaju mengenai pergerakan antara muka dikira dengan mengambil terbitan pertama

suhu terhadap ruang. Model ini diselesaikan secara berangka menggunakan beza

terhingga bagi kaedah set aras [13]. Dua algoritma bagi kaedah set aras dikemukakan

dalam bahagian permodelan dan bahagian pendiskretan, untuk mengawal perubahan

topologi masalah Stefan secara sistematik. Keputusan-keputusan berkaitan pergerakan

antara muka dan tebaran suhu dikemukakan secara grafik dan dibincangkan untuk

menggambarkan proses penyejukbekuan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Cancer is a critical societal and scientific problem. Researchers from various

fields spend many years to understand the behaviour of the cancer cells in order to find

the cure. Normally, humans cells grow and divide to form new cells as the body needs

them. Cells grow old or become damage and they die, and new cells take their place.

But, cancer will develop when this orderly process breaks down.

Saitou et al. [1] said that cancer cells at an early stage of invasion possess

the ability to invade the surrounding tissue. This ability leads to metastasis where

cells from primary tumour move to the distant sites in the body to form secondary

tumour. Metastasis is a major cause of death in cancer patients, and thus preventing this

secondary spread of the tumour leads to an increase of the survival rate. Accordingly,

Saitou et al. [1] carried out a mathematical model of invadopodia formation observed

as sub-cellular structures of invasive tumor cells.

Invadopodia are invasive cancer cells with a special sub-cellular membrane

structure which carries a pivotal process in cancer invasion. They are membrane

protrusions that localized enzyme required for extracellular matrix (ECM) degradation.

Besides, invadopodia are composed of a variety of proteins such as actin and actin
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regulatory protein, adhesion molecules, membrane remodelling and signalling proteins.

Figure 1.1 shows the movement of a cancer cell that is driven by invadopodia which

engenders migratory pathways through the ECM. But, Saitou’s model however has a

problem where the region of actin, n > 0 becomes disconnected as time progresses.

Figure 1.1 Actin disconnected from the membrane as time progresses [2].

Admon [2] investigated a one-dimensional signal transduction with integrated

penalty of cancer cell model to overcome the problem in Saitou et al. [1] which is

shown in Figure 1.2 where domain Ω occupied by an individual cancer cell. ωt
c and

ωt
n represent intracellular and extracellular respectively. Admon’s model was able to

make the region of actin from Figure 1.1 continuous as time advances. He proposed to

treat the plasma membrane as a free boundary interface to overcome the region of actin

disconnection problem. Since the formation involves a free boundary problem, a two

dimensional simulation is needed to get a clear picture of formation of invadopodia.

Figure 1.3 shows the proposed two-dimensional signal transduction with integrated

penalty of cancer cell model.

This proposed model is similar to Chen’s model [3] as shown in Figure 1.4.

Chen’s model is about the process of solidification involving two phases which are

liquid and solid phases in free boundary problem. Thus, this study is focusing on

modelling a two-dimensional solidification problem and simulating it by using a level
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Figure 1.2 Domain of one-dimensional cancer cell model [2].
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Figure 1.3 Domain of two-dimensional cancer cell model [2].
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set method.
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Figure 1.4 Domain D for the model of dendritic solidification in 2 −D case [3].

1.2 Research Background

1.2.1 Stefan Problem

Stefan problem is a well-known boundary value problem concerning melting or

solidification process that requires the solution of a moving interface as time progresses

along with the change in the temperature distribution. Oftentimes, the goal of studying

and developing algorithm for solving Stefan problems is to adapt and apply various

methods such as the finite element method, front tracking method and level set method

to the problem of modelling unstable or dendritics solidification [3]. The model

of unstable solidification in the supercooled condition concern with an anistropic

curvature and velocity dependent boundary condition. It is said to be unstable when

the topology changes and complicated interface shapes are formed.

Various models of Stefan problems have been proposed. These problems

involve n-dimensions but most researchers focus on the research up to three dimensions

only. As for one dimension, most researchers frequently consider liquid phase only as
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found in Murphy [4], Brattkus and Meiron [5], Dunbar et al. [6], and Sethian and

Straint [7].

There are researchers who investigated two dimensional Stefan problems in

which they considered solid and liquid phases. Gammon and Howarth [8] solved the

two dimensional Stefan problem of solidification in a half-space where the heat flux

at the wall is a slightly varying function of position along the wall. Other examples

for two dimensional problems can be seen in Sussman et al. [9], Juric and Tryggvason

[10], Wang and Sekerka [11] and Chen et al. [3].

1.2.2 Numerical Methods for Stefan Problem

Numerous numerical approaches to solve Stefan problems have been conducted

by many researchers. Brattkus and Meiron [5] used boundary integral method to solve

an integral equation on the moving boundary. But, this method works well only in

one dimension. Schmidt [12] used finite elements methods to solve Stefan problems

in three dimension. He shows that finite element method is most suitable method

compared with other numerical approaches. Juric and Tryggvason [10] employed

front-tracking methods, a common way of solving moving boundary problem by using

immersed boundary method for transferring information from the moving boundary

to the fixed temperature. They successfully modelled various physical features of

dendritics solidification. However, a special care has to be taken when a topological

change occurs such as when merging happens at the front.

Employing phase-field method is also one of the ways to simulate Stefan

problems. The model of Stefan problem is used to track the boundary implicitly by

partial differential equation (PDE) for the temperature field and its boundary conditions

on the moving boundary by two coupled PDEs involving the temperature field and a

new field. The new field is the phase field that keep the track. Wang and Sekerka [11]
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used phase field model of solidification in two dimensions in the context of dendritic

growth. However, they failed to eliminate the interface tracking which is the advantage

of using phase-field model.

Level set method is a well suited method for solidification problem which is

essentially a problem involving moving boundary. In this method, instead of tracking

the boundary or front using Lagrange approach, one can instead capture the front on

a fixed grid by using Eulerian approach. Sethian and Straint [7] simulated dendritic

growth by combining boundary integral formulation of the equation of motion coupled

with a level set method for advancing the propagating interface. It ables to follow

the evolution of extremely intricate shape, exhibiting complex behaviour such as

lingering, tip splitting, and side branching as well as profound topological changes.

But their technique is slightly complicated and computationally expensive for solving

the solidification problem.

Hence in this study, the level set method is used in which the moving front

is always represented by the zero level set of smooth, continuous function. Finite

difference method is used to compute the normal velocity at the interface. The

numerical results obtained from the computation using Matlab software are validated

with results by Mitchell [13].

1.3 Problem Statement

By realizing the fact that cancer is a critical societal and scientific problem,

the importance of the study of a cancer cell movement that is driven by invadopodia

which causes migratory pathways through the ECM in two dimensional model is

acknowledged. In this research, plasma membrane is treated as a free boundary similar

to Stefan problem. The main interest of this particular study is due to these few problem

statements:
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i. How to construct a mathematical model of a cancer cell growth based on the

Stefan problem associated with solidification of a crystal growth?

ii. How to discretize the model using level set approach?

iii. Are the numerical results obtained from the computation using Matlab fitted well

with those results from Mitchell [13]?

1.4 Objectives of the Study

The objectives of this study are:

i. To construct the mathematical modeling of Stefan problem associated with

solidification of water.

ii. To employ the level set method for solving two phase Stefan problem in two

dimensional case.

iii. To discretize the algorithm of level set method by using finite difference

method.

iv. To assemble the results for interface movements and temperature

distributions for the solidification process.

1.5 Scope of the Study

This study concerns on the modelling of the solidification process of water

surrounding the ice on two-dimension. Neumann boundary condition is considered on

the square domain, D. The model is then simulated by using a level set method where

values of the interface function ψ are taken as negative (ice), zero (on the boundary of

ice-water) and positive (water) constants.
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1.6 Significance of the Study

The outcome from this study is to visualize the behaviour of the moving front

that arises from the unstable solidification of pure substance. This study also helps

in better understanding on the cases related with moving boundaries such as alloy

solidification [14] and dendritic growth [3]. Also, by considering the moving boundary

concepts, we are able to understand the behaviour of a cancer cell invasion that is

driven by invadopodia which engenders migratory pathways through the ECM in two

dimensional model in which we treat the plasma membrane as a free boundary [2].

1.7 Research Methodology

The research starts from studying on unstable solidification process (Stefan

problem) in two dimension. Then, the mathematical modelling of the solidification

process in two dimensional Stefan problem is constructed. The level set method

is employed for solving Stefan problem. Next, the model is discretized by using

finite difference method. Finally, numerical simulation is computed by using Maltab

software.

1.8 Thesis Outline

There are six chapters in this research project. This chapter which is

Chapter 1 is the introduction chapter that includes the research background, statement

of the problem, research objectives, significance of the study and scope of the

study. Chapter 2 presents the literature review of this study. Various works by

different researchers regarding Stefan problems and solidification are presented. Some

numerical methods used to simulate solidification process are also discussed in
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Chapter 2.

Mathematical formulation is stated in Chapter 3. The chapter is started with the

governing equation followed by algorithm of the solution. Four steps for simulating the

model are given in this chapter. In Chapter 4, discretization by using finite difference

method is shown. Essentially-non oscillatory (ENO) method and upwind method

are also considered in this chapter. The result and discussion for this research are

given in Chapter 5. In Chapter 6, the conclusion of the research is presented and

recommendation for future work is delivered.
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