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ABSTRACT 

An Inflow-control device (ICD) is a permanent completion hardware that is 

installed as part of well completions which often known as an equalizer or choking 

device. It offers numbers of unique benefits especially in the horizontal application, 

but it is not adjustable or non-retrievable hardware. Frictional pressure drops caused 

by fluid flow in horizontal section resulted in higher drawdown pressure at the heels 

section which causing an unbalance fluid distribution profile. Hence the main 

challenge of horizontal wells is an early water and/or gas breakthrough near the heel 

section which leads to a loss in production and reserves extraction, and ultimately, a 

decrease in profitability. Therefore, the purpose of this study is to develop the best ICD 

modelling design for a specific case study (Well ETA-06) and to investigate the effect 

of few important parameters towards the performance and functionality of the ICD 

along horizontal wellbore. ICD modelling was developed using NEToolTM software 

for appropriate number of open-flow ports and the optimum length and/or numbers of 

ICDs required for evenly distributing the flow profile along the screen length in order 

to achieve the proactive functionality of the ICDs. A sensitivity study has been run 

towards the best resulted ICD parameters, namely (1) ICD size, (2) flow port size, (3) 

swell packer usability, (4) flow rate, (5) ICD roughness, and (6) discharge coefficient 

in simulating influx along the horizontal wellbore by coupling fluid flow through 

porous media and hydraulic flow into nozzle type of ICD completion architecture. In 

the homogeneous reservoir, the heel section tends to produce more oil compared to the 

toe section thereby will allow water or gas production in a brief period. On the other 

hand, the ICD has reduced or choked the fluid inflow at the higher permeability section 

and produces more at the low permeability area. In general, ICDs are unchangeable; 

once installed downhole in the well, the location of the device and the relationship 

between the rate and pressure drop are fixed. Consequently, the best design of a well 

completion and ICDs is extremely crucial in order to ensure the functionality and 

effectiveness of the ICDs in obtaining the optimum production at lesser water or gas 

production. 
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ABSTRAK 

Peranti kawalan aliran masuk (ICD) ialah perkakasan kekal yang dipasang 
sebagai sebahagian daripada pelengkapan telaga. Perkakasan ini dikenali juga sebagai 
peranti pencekik atau penyama. Walaupun mempunyai banyak kelebihan terutama bila 
digunakan pada telaga mendatar tetapi peranti ini tidak boleh dilaras atau diguna 
semula. Kejatuhan tekanan geseran yang disebabkan oleh aliran bendalir di dalam 
lubang mendatar menyebabkan terjadinya surutan tekanan yang lebih tinggi pada 
bahagian tumit, lalu berlaku profil taburan bendalir yang tidak seimbang. Oleh itu, 
cabaran utama pada telaga mendatar ialah berlakunya bulus air dan/atau gas 
berhampiran tumit, lalu mengakibatkan berkurangnya pengeluaran dan keuntungan. 
Oleh itu, tujuan kajian adalah untuk membangunkan reka bentuk model terbaik ICD 
untuk kajian kes (Telaga ETA-28), dan digunakan untuk mengkaji kesan beberapa 
parameter terhadap prestasi and fungsi ICD di sepanjang lubang telaga mendatar. 
Pemodelan ICD menguna pakai perisian NEToolTM bagi menentukan bilangan liang 
aliran, panjang optimum, dan/atau bilangan ICD yang harus dipasang supaya profil 
aliran adalah sekata di sepanjang tabir. Kajian kepekaan telah dilaksanakan terhadap 
(1) saiz ICD, (2) saiz liang aliran, (3) pengunaan penyendat ampul, (4) kadar aliran, 
(5) kekasaran ICD, dan (6) pekali luahan bagi menyelaku kemasukan sepanjang lubang 
mendatar dengan menggandingkan aliran bendalir menerusi media berliang dengan 
aliran hidraulik ke dalam ICD jenis muncung. Di dalam reservoir homogen, bahagian 
tumit cenderung untuk menghasilkan lebih banyak minyak berbanding bahagian hilir. 
Dengan itu, air atau gas akan turut segera keluar. Pada ketika yang sama, ICD akan 
mengurangkan aliran masuk bendalir pada bahagian berkebolehtelapan tinggi dan 
membolehkan pengeluaran lebih banyak di kawasan berkebolehtelapan rendah. Secara 
umum, ICD tidak boleh diubah; sebaik sahaja terpasang di dalam lubang telaga, lokasi 
pemasangan dan hubungannya dengan kadar aliran dan kejatuhan tekanan adalah 
kekal. Akhirnya, reka bentuk pelengkapan telaga dan ICD adalah penting supaya 
pengeluaran secara optimum dengan kadar iringan air atau gas yang lebih rendah boleh 
dicapai menerusi penggunaan ICD.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Completion is part of well construction. It is defined as a series of activities or 

processes of making a hole ready for production or injection in a controlled manner 

(Buzarde et al., 1972; Ismail, 2000). Completion type can be divided into two 

categories which are upper and lower completion (Ismail, 2003). Part of the 

completion below the production packer is called as lower completion which can be 

subcategorized into few types. One of them is the sand screen or screen liner, including 

wire wrapped sand screens, slotted liners, pre-packed screens, and premium screen 

(Weatherford, 2010; Bellarby, 2009; Matanovic et al., 2012) which often deployed in 

poorly consolidated formation.  

Sand production or sand influx is one of the major problems facing almost all 

fields that produce from unconsolidated sandstone formation (Durrett, 1977). 

Malaysian fields which comprise young rocks of Tertiary age are no exception (Tjia, 

2000). The sand influx into producing well affects the economic limit for various 

reasons (Mann et al., 1962): (1) the replacement or maintenance of flowlines, chokes, 

valves and meters due to erosion by the flowing sand, (2) workover due to the sanding 

out of wells, (3) loss of wells due to casing or liners collapse, (4) increase in operational 

cost due to removal of sand and silt from the produced crude , (5) lowering production 

rates to decrease sand cuts which would subsequently reduce oil revenue, (6) frequent 
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cleaning out surface facilities, (7) increase in operational cost due to installation of 

downhole sand control devices, etc.  

Apart from the sand production, the application of horizontal wells at the loose 

sandstone reservoir can lead to some problems in the uniformity of the fluid influx 

along horizontal wellbores. Fernandes et al. (2009) found that higher pressure 

drawdown around the heel section results in frictional pressure drop of fluid flow in 

the wellbore which causes non-uniform fluid influx along the length of the wellbore 

and higher production rates at the heel. This often leads to early break-through of water 

or gas, which causes a reduction in oil recovery and uneven sweep of the drainage area. 

Hence, the Inflow Control Devices (ICDs) with the integration of the sand 

screen were proposed as a solution to address this problem. Principally, ICD is a 

choking device installed as part of sandface completion hardware which has been 

utilized for more than two decades. Subsequent field experiences have proven the 

potential and beneficial of ICDs to extend well life by extending the plateau period, 

minimizing or delay water or gas coning, eliminate and minimize annular flow, and 

ensure a uniform inflow along the horizontal wellbore at the cost of a small pressure 

drop (Al-Khelaiwi and Davies, 2007). 

In the early 1990’s, Norsk Hydro drilled most of the horizontal wells on the 

Norwegian Continental Shelf. At that time, the issue was to deal with water 

breakthrough after producing the wells for a short time. The idea was then emerged to 

install the ICDs along the horizontal section of the well in order to delay water 

breakthrough and achieve desired pressure drop in the ICD. Then, in 1998 the first 

installation of the helical channel type of ICD was completed in Troll field (Al 

Marzooqi et al., 2010; Adonoy, 2008). 

The simulation model of the ICD’s placement and port configurations can be 

established using the NEToolTM software, which is a micro-nodal analysis tool that 

integrates reservoir properties and completion architecture in the wellbore’s vicinity. 

(Rios, 2016; Halliburton, 2009).  The placement and setting of the ICD is important to 

ensure a uniform inflow at the optimum production rate that has been achieved after 
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installation of the devices. The detailed design and mechanism of an ICD have been 

discussed further in Chapter 2.  

1.2 Problem Statement 

With advances in drilling technology over the past 30 years, horizontal and 

multilateral wells have become a basic well architecture in current field development. 

These advanced technologies facilitate the drilling and completion operations for such 

wells with the primary objective of maximising reservoir contact (Joshi, 1990; 

Fernandes et al., 2009). The wellbore offers a great contact area with the productive 

layer through the extension of well length which helps to lower the pressure drawdown 

required in order to achieve the same rate and enhance the well productivity. The field 

experiences have verified the advantages of horizontal wells in improving recovery 

and lowering the cost per unit length (Joshi, 1990; Al-Khelaiwi and Davies, 2007). 

However, the increase in wellbore length and exposure to different reservoir 

facies came at a cost. Frictional pressure drops caused by fluid flow in horizontal 

sections resulted in higher drawdown pressure at the heels section of the completion, 

causing an unbalance fluid influx. Hence, the challenges and risk of horizontal wells 

applications are discussed as follow (Weatherford, 2009a): 

(1) Early water and/or gas coning near the heels section in the horizontal wells can 

lead to a loss in production and reserves extraction, and ultimately, a decrease 

in profitability. 

(2) Water and/or gas production from high permeability formations or fractures. 

(3) Non-uniform inflow profile in heterogeneous reservoirs. 

(4) Annular flow and cross-flow in non-compliant completions. 

(5) Screen erosion failure in sand control completions due to hot-spotting. 

To tackle these issues, the ICD technology has been introduced to reduce early 

water or gas production in horizontal wells, which can be installed together with the 

stand-alone-screens (SAS). ICDs are intentional choke in horizontal wellbore and will 
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slow down some zones which enforce the inflow balance. They also induce a pressure 

drop across the completion due to the choking effect (Oyeka et al., 2014). Besides, by 

reducing the tendency of early water or gas production, the ICD enables the reservoir 

to drain more efficiently while maximizing production and recovery. The device 

provides uniform production and flow contribution along the wellbore in horizontal 

wells, extending the well’s life. 

Hence, this study was mainly focusing in the solving and optimizing the design 

of the ICDs which involved their sizing, the best nozzle sizing of ICD as well as the 

number of ICDs’ port openings. These criteria were crucial in order to provide the best 

functionality and effectiveness of ICDs in adjusting the imbalance of inflow profile 

arising from fluid frictional losses in homogeneous reservoirs and from permeability 

variation in heterogeneous formation (Weatherford, 2009b). The pressure drop across 

an ICD is strongly depending on the fluid density and insensitive to fluid viscosity. 

Therefore, the device has the tendency to prevent early water and gas breakthrough 

and encourage oil production (Weatherford, 2009a). 

However, the main problem with ICD is it is a permanent device installed during 

well completion deployment and the design of ICD is based on the initial reservoir 

conditions and simulation prediction of the reservoir performance. The ICD is not 

adjustable and non-retrievable. Once installed downhole, the hardware will function 

as it remains in the well through the life of the well (Fernandes et al., 2009; Al Arfi et 

al., 2009). Hence, the main objective of this research study is to tackle the disadvantage 

of ICD and the study has been designed to investigate the behaviour of ICD’s port 

sizing/port opening towards the pressure drop of the reservoir for future technology 

development.  

Abdelfattah et al. (2013) successfully proved that the breakthrough of unwanted 

fluid (gas or water) is invertible especially at the later stage of the well life even with 

the usage of the ICD. The typical productive well life may be divided into three stages 

which are the first stage, second stage and the final or last stage of the well life cycle. 

The first stage of the production life which also called as the start-up stage includes 

the flowing back completion fluid that was initially in the well. The production influx 

of the targeted reservoir fluid will occur at the second stage of the well life. The last 
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stage includes the production of the unwanted fluid such as gas or water from the 

reservoir. Abdelfattah et al. (2013) also mentioned that ICDs as an effective solution 

in controlling the reservoir influx is at it early or first stage of the production life and 

its efficiency will decline over the time especially at the last stage of well life. 

Therefore, this study has also proposed the best solution or future technology that 

would be able to tackle the advantage of ICD. 

To accomplish the design and simulation works of this ICD, the NEToolTM 

software is used as a primary stimulator tool. NEToolTM is a steady-state numerical 

simulator ―  integrates the reservoir simulatorand the lift design software ― which 

enables engineers to simulate the flow in pipes uses the nodal analysis method. This 

software demonstrates the application of ICD in promoting the uniformity of the 

hydrocarbon influx from the reservoir along the horizontal section of the well. The 

proactive functionality of ICD subsequently shows the delay of onset of water 

breakthrough.   

1.3 Hypotheses 

The hypotheses of this study are as follow: 

(1) The optimum size of an ICD and suitable number of ICDs are required to 

equalize the pressure drop along the drain length in order to achieve a uniform 

flow through the formation thereby delaying undesired water or gas 

breakthroughs.  

 

(2) The appropriate selection of the flow port size is critical to obtain an efficient 

reservoir sweep and recovery as well as uniform inflow profile which must be 

maintained across the horizontal length interval (i.e., 1/8” or 3/32”). 

 

(3) The number of open-flow ports which has been successfully designed based on 

the pressure drop across the horizontal length could achieve the desired flowing 
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profile. This operation is typically set on the onshore or offshore, without using 

rig time. 

1.4 Objectives 

The objectives of study are: 

(1) To design the model of an ICD along the horizontal length using NEToolTM 

software.  

 

(2) To investigate the effect of important parameters towards the performance and 

functionality of the ICD along a horizontal wellbore. 

1.5 Scope of Study 

The scope of the study has been divided into two main sub-sections which are: 

(1) Engineering ― the design stage or modelling of the ICD placement and the port 

setting, and (2) The ICD offshore installation operation. The details are as follow: 

(1) Designing and developing the NEToolTM model of ICD across the production 

profile to ensure the appropriate number of ICDs, ICD sizing and port sizing as 

per reservoir condition and well architecture. 

 

(2) Comparing the result between NEToolTM base case/openhole scenario (without 

ICD) and NEToolTM ICD case in order to see the effect of the ICD in the 

horizontal section. 
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(3) Modelling or predicting the relationship behaviour between the best resulted 

ICD port sizing/opening and the pressure drop of the reservoir for the case study 

or well. 

 

(4) Establishing/running sensitivity study towards important parameters, such as 

size of ICD, flow port sizing, the usage of swell packer, flow rate, ICD 

roughness and ICD discharge coefficient in order to observe the effect of these 

parameters towards the performance and functionality of the ICD in simulating 

influx along the horizontal wellbore by coupling fluid flow through porous 

media and hydraulic flow into nozzle type of ICD completion architecture. 

1.6 Significance of the Study 

The findings of this study can definitely benefit oil and gas industry considering 

that ICDs play a significant role in the lower completion section of a long horizontal 

hole with large water aquifer. Having a great understanding in the functionally of the 

ICD itself is not enough to be part of the team in installing the device in the well. 

However, they require a deep understanding in designing the ICD placement along 

horizontal wellbore as well ― which is not restricted to the ICD nozzle sizing and the 

number of open-flow ports ― in order to ensure the effect of ICD is not detrimental. 

Apart from that, having the knowledge of how the ICD sizing or port opening 

has responded with the pressure drop of a reservoir significantly benefits the industry 

in developing or improvising the technology for future use.  

On top of that, the process flow and appropriate execution procedure of ICDs 

installation play an important role as well in order to accomplish the job as required 

and maintain the effectiveness of the ICDs. During the drilling process of an entire 

openhole section, the mud must be conditioned to ensure possible formation 

damage/screen plugging potential is kept to an absolute minimum. The use of clean 
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mud is critical to the success of sand control completion and ICD effectiveness 

(Weatherford, 2008; Weatherford, 2010; Weatherford, 2012). 

1.7 Chapter Summary 

The efficiency of the ICD in postponing or delaying the water or gas break-

through as well as prolong the well life has been proven in a wide range of reservoir 

environment.  However, the effectiveness of an ICD strongly depends on the 

appropriate design and planning of ICD placement and configurations which require 

the knowledge of the actual reservoir and geology data, such as permeability, porosity, 

reservoir pressure, oil/water saturation distribution, and well deviation data. 

The main study of this thesis includes both the planning and design of the ICD 

placement and configuration and the wellsite deployment operations. The simulation 

model of the ICD has been run using NEToolTM software which is a nodal analysis 

software. One case study has been demonstrated in this research project and has been 

discussed in detail the process flow from the planning and design stage up to the 

wellsite installation operations. 
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