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ABSTRACT

The unvulcanized and dynamically vulcanized poly (lactic acid)/ epoxidized 
natural rubber (PLA/ENR, PLA/ENR-TPV) blends and a new ternary nanocomposite 
system based on PLA/ENR/graphene and PLA/ENR-TPV/graphene were prepared. 
The effect of ENR and ENR-TPV contents (10-30 wt%) on the morphological and 
mechanical properties of the blends were investigated. On the top of that, the effects 
of graphene loadings (0-2.0 phr) and different processing methods on the 
morphological, mechanical and thermal properties of nanocomposites were evaluated. 
The blends were prepared using a nano-single screw extruder whereas 
PLA/ENR/graphene and PLA/ENR-TPV/graphene nanocomposites were prepared 
using both nano-single screw extruder and internal mixer. The tensile and the impact 
test were carried out to determine the mechanical properties, while the differential 
scanning calorimeter (DSC) and the thermogravimetric analysis (TGA) were used to 
investigate the thermal properties. Meanwhile, scanning electron microscope (SEM) 
and field emission scanning electron microscope (FESEM) were used to observe the 
morphologies of the blends and nanocomposites. The PLA/ENR and PLA/ENR-TPV 
blends at 10 wt% of ENR and ENR-TPV loadings showed the highest impact and 
tensile properties. Thus were selected as basic materials to prepare the 
nanocomposites. The PLA/ENR/graphene nanocomposites prepared using the internal 
mixer gave higher mechanical properties and thermal stability than the nano-single 
screw extruder. The tensile strength, elongation at break and impact strength of the 
PLA/ENR/graphene and PLA/ENR-TPV/graphene nanocomposites were increased 
until 1.0 phr of graphene loading. Beyond that these mechanical properties decreased. 
The PLA/ENR-TPV/graphene nanocomposite exhibited higher tensile strength, 
elongation at break and impact strength compared with PLA/ENR/graphene 
nanocomposite. The thermal stabilities of the PLA/ENR/graphene and PLA/ENR- 
TPV/graphene nanocomposites prepared by both nano-single screw extruder and an 
internal mixer have improved as the graphene loading increased. From DSC analysis, 
it was found that the melting temperature, Tm remained unchanged while heat of 
fusion, AHm and degree of crystallinity, Xc increased as the graphene loading increased 
since graphene acted as a nucleating agent. The FESEM micrographs revealed good 
dispersion and distribution of graphene in the PLA/ENR and PLA/ENR-TPV matrix 
at 1.0 phr of graphene loading that resulting in good interaction between the 
components. Furthermore, the nanocomposites that prepared using the internal mixer 
showed better dispersions and distributions of graphene in the matrix thus further 
enhancing the properties of the nanocomposites.
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ABSTRAK

Adunan poli (asid laktik)/getah asli terepoksida tanpa pemvulkanan dan 
tervulkan secara dinamik (PLA/ENR, PLA/ENR-TPV) dan satu sistem ternari 
nanokomposit yang baharu berasaskan PLA/ENR/grafin dan PLA/ENR-TPV/grafin 
telah disediakan. Kesan kandungan ENR dan ENR-TPV (10-30 wt%) terhadap sifat- 
sifat morfologi dan mekanikal adunan telah diselidiki dan kesan penambahan grafin 
(0-2.0 phr) dan kaedah pemprosesan yang berbeza keatas sifat morfologi, mekanikal 
dan terma nanokomposit telah dinilai. Adunan-adunan telah disediakan menggunakan 
penyemperit skru tunggal nano manakala PLA/ENR/grafin dan PLA/ENR-TPV grafin 
nanokomposit disediakan menggunakan penyemperit skru tunggal nano dan 
pencampur dalaman. Ujian tegangan dan hentaman telah digunakan untuk 
mengenalpasti sifat-sifat mekanikal, sementara kalorimetri pengimbasan pembezaan 
(DSC) dan penganalisis termogravimetri (TGA) telah digunakan untuk mengenalpasti 
sifat-sifat terma. Sementara itu, mikroskopi elektron imbasan (SEM) dan mikroskopi 
elektron imbasan pancaran medan (FESEM) digunakan untuk menganalisa morfologi 
adunan dan nanokomposit. PLA/ENR dan PLA/ENR-TPV pada 10 wt% kandungan 
ENR dan ENR-TPV telah menunjukkan kekuatan hentaman dan tegangan yang 
tertinggi. Oleh itu telah dipilih sebagai bahan asas untuk menyediakan nanokomposit. 
Nanokomposit PLA/ENR/grafin yang disediakan menggunakan pencampur dalaman 
memberikan sifat-sifat mekanik dan kestabilan terma yang lebih tinggi berbanding 
penyemperit skru tunggal nano. Kekuatan tegangan, pemanjangan pada takat putus 
dan kekuatan hentaman PLA/ENR/grafin dan PLA/ENR-TPV/ grafin nanokomposit 
meningkat sehingga 1.0 phr muatan grafin. Selepas nilai itu, sifat mekanikal akan 
berkurangan. Nanokomposit PLA/ENR-TPV/grafin menunjukkan kekuatan tegangan, 
pemanjangan pada takat putus dan kekuatan hentaman yang lebih tinggi berbanding 
PLA/ENR/grafin nanokomposit. Kestabilan terma nanokomposit PLA/ENR/grafin 
dan PLA/ENR-TPV/grafin yang disediakan menggunakan kedua-dua penyemperit 
skru tunggal nano dan pencampur dalaman bertambah baik dengan peningkatan 
muatan grafin. Daripada analisa DSC telah menunjukkan suhu lebur, Tm komposit 
nano kekal tidak berubah manakala haba pelakuran, AHm dan darjah penghabluran, Xc 
bertambah apabila kandungan grafin meningkat kerana grafin bertindak sebagai agen 
penukleusan. Mikrograf FESEM mendedahkan bahawa serakan dan taburan grafin 
adalah baik di dalam matriks PLA/ENR dan PLA/ENR-TPV pada 1.0 phr kandungan 
grafin. Oleh itu, menghasilkan interaksi yang baik diantara komponen-komponen. 
Tambahan pula, nanokomposit yang disediakan menggunakan pencampur dalaman 
menunjukkan penyerakan dan penyebaran grafin yang lebih baik dalam matriks 
sehingga dapat meningkatkan sifat-sifat nanokomposit.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, world-wide are produced over 200 million tons of plastics each 

year and 40% of them are used in short-life products such as packaging (Xu, Ma and 

Hoch, 2016). The plastics that commonly produced are polyethylene includes high 

density polyethylene (HDPE) and low density polyethylene (LDPE) (29.6%), 

polypropylene (PP) (18.9%), polystyrene (PS) (7.1%), polyvinyl chloride (PVC) 

(10.4%), polyethylene terephthalate (PET) (6.9%) and other types of plastic that 

represent about 19.7% which are approximately 90% of the total plastic production 

world-wide and most of the plastics are known as “hard to degrade” materials (Li, Tse 

and I, 2016; Saad and Williams, 2016). This rapid growth of plastic production leads 

to serious environmental pollution due to half of them are disposed to the environment 

within a short period (Moura, Nogueira and Veronique Bounor-Lagare, 2012).

Due to the environmental concerns and sustainable issues, the plastic wastes 

problem can be solved by using bio-based polymers to substitute the conventional 

petroleum-based polymer which is easily degrading and considered as 

environmentally friendly material. The bio-based polymer also known as 

biodegradable polymer where the properties such as mass, molecular weight, and 

strength of the material may degrade with time when scavenge by microorganisms and 

produced a by-product such as carbon dioxide (CO2), water (H2O), inorganic 

compounds or biomass (Gorrasi, Milone and Piperopoulos, 2013; Xu et al, 2016). The 

biodegradable polymer is classified into two groups: i) non-renewable source of raw 

material and ii) renewable source of raw material. The examples of non-renewable 

source of raw material are poly (vinyl alcohol) (PVA), poly (caprolactone) (PCL), poly 

(anhydride), aliphatic co-polyester, and aromatic co-polyester while for the renewable



source of raw material are poly (lactic acid) (PLA), poly (hydroxybutyrate) (PHB), 

poly (hydroxyl-valerate), and cellulose acetate (Ebnesajjad, 2013). The biodegradable 

polymer has attracted the interest of many researchers in recent year in various 

applications such as packaging, agriculture mulch films, and biomedical products 

(Gorrasi et al, 2013).

PLA is one of the promising and commercially material on the market of bio­

based polymer that can replace the conventional petroleum-based polymer (synthetic 

polymer) in packaging and other engineering applications. PLA is a biodegradable 

aliphatic polyester that produced via fermentation of the carbohydrate from the 

renewable agriculture sources such as corn (Auras, Lim and Selke, 2010; Laurence, 

2012; Aghjeh, Nazari and Khonakdar, 2015). PLA is highly transparent which behaves 

as glassy and brittle material that exhibits the tensile strength of 30 to 50 MPa with an 

elongation at break between 1% to 7% depends on its molecular weight. The tensile 

modulus of the PLA is between 2 to 4 GPa (Yang, Tang and Xiong, 2015; Ebadi- 

Dehaghani, Khonakdar and Barikani, 2015; Xu, Ma and Hoch, 2016). The limitation 

by its brittleness is poor in toughness for the applications that need plastic deformation 

at high stress level and thermally unstable (Ebadi-Dehaghani et al, 2015; Xu et al, 

2016). To overcome the brittleness of the PLA, there are several methods can be used 

such as processing manipulation, copolymerization, and blending with other polymer, 

for example, thermoplastic or elastomeric polymer (Zhang, Wang and Huang, 2013).

The epoxidized natural rubber (ENR) has been used in this research as a 

toughening agent to improve the toughness of PLA. In fact, the ENR is the elastomeric 

material that has been modified from the natural rubber (NR) and consists of double 

functionality of crosslinking which are an epoxy group and double bond that makes 

ENR is a polar material. The ENR can be used as a toughening agent to the rigid 

polymer since ENR has high impact strength and excellent resistance to puncture and 

tear (Hazwani Syaza Ahmad, Hanafi Ismail and Rashid, 2016; Mohamad, Zainola, 

Rahima and Hairul Effendy Ab Maulodb, 2013). Pongtanayut, Thongpin and 

Santawitee (2013) state that there is partially compatibility between PLA and ENR as 

compared to PLA/NR at 20 wt% of rubber composition where in PLA/ENR blend 

system shows very fine particles of the ENR dispersion and ENR acts as the second
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phase in the PLA matrix. The ENR also act as stress concentrators that enhance the 

fracture energy absorption of brittle PLA and resulting in the improvement of the 

toughness of PLA but the tensile strength had decreased due to the ductile properties 

of the ENR. According to Zhang et al (2013), they reported that the impact strength 

and elongation at break of 20 wt% of ENR loading in the ENR50/PLA and 

ENR20/PLA were increased as compared to pure PLA and this due to the good 

interfacial adhesion between PLA and ENR while the tensile strength and modulus 

were reduced. In addition, Akbari, Jawaid and Hassan (2014) reported that addition of 

20 wt% of ENR into the PLA/talc composites were improved the impact strength due 

to the ENR enhancing the mobility of the PLA chains.

The ENR also can be vulcanized by adding a crosslinking agent such as N-N’- 

m-phenylene dimaleimide (HVA-2), dicumyl peroxide (DCP) and sulphur. In this 

research, HVA-2 being used as a crosslinking agent to vulcanize ENR. The advantage 

of using HVA-2 is due to the HVA-2 able to vulcanize rubber in the absence of other 

catalyst and free radicals source. It’s also free from residual chemicals such as zinc 

oxide, stearic acid and nitrosamines where they possess low cytotoxicity. HVA-2 also 

has a less rubbery protein that causes allergic responses. HVA-2 also acts as 

multifunctional radical acceptors to promote a combination of dissimilar polymer 

radicals to produce a copolymer and create sufficient copolymer to reduce interfacial 

tension (Hassan, Wahit and Ching, 2003; Ismail Halimatuddahliana and Md Akil, 

2005; Kahar, Ismail and Othman, 2013). For the system PLA/epoxidized natural 

rubber-thermoplastic vulcanizate (ENR-TPV) was reported by Wang, Chen and Xu 

(2015) where compound was prepared through dynamic vulcanization in the presence 

of dicumyl peroxide (DCP) as crosslinking agent and they found that the impact 

strength and elongation at break of the PLA was improved by incorporated with 40 

wt% of ENR-TPV while the tensile strength shows decreasing trend but the 

improvement occurred was better than PLA/ENR itself. Other than that, Thongpin, 

Kuttanate and Kampuang (2012) stated that the tensile strength and modulus of the 

PLA/ENR-TPV/OMMT increases while elongation at break decreases as the OMMT 

loading increases. The thermal stability of PLA/ENR-TPV had enhanced with the 

incorporation of OMMT. Zurina, Ismail and Ratnam (2008) investigated ENR50/EVA 

blend that containing HVA-2 as a crosslinking agent and proved that the improvement

3



in interfacial adhesion, compatibility and tensile strength of the ENR50/EVA blend. 

The unique combination between PLA and elastomer is the biocompatibility and 

flexibility of biodegradable blends can be produced (Pongtanayut et al, 2013; Mascia, 

Hawortha and Vignalib, 2016; Zhang et al, 2016).

Nanofillers with ultrathin size (<100 nm) such as graphene can be used to 

improve the tensile, impact and thermal properties of polymer blend at lower filler 

loading (<5 wt%). Toughened PLA can be reinforced by graphene to trigger the 

significant enhancement in mechanical and thermal properties. Graphene is a carbon 

material consisting of a single layer or two dimensional sheet with a honeycomb 

structure or hexagonal packed lattice structure (Bouakaz, Habi and Grohens, 2015; 

Angelopoulou, Voulgari and Diamanti, 2015). Graphene is used as inorganic 

nanofillers to enhance the physical, mechanical, thermal and also gas barrier properties 

to the polymer nanocomposite (Ciu, Kundalwal and Kumar, 2016). Graphene also 

shows several unique properties such as tensile strength of 130 GPa, high Young’s 

modulus (~1.0 TPa), large theoretical specific surface area (2630 m2 g-1), and good 

thermal conductivity (~5000 Wm'1 K-1) (Bouakaz et al, 2015). Several studies have 

been demonstrated that graphene has high reinforcing efficiency in the PLA. Norazlina 

and Kamal (2015) have conducted the study of graphene modification in PLA 

nanocomposites and found that PLA/graphene has created good thermal stability by 

decreasing diffusion pathway of the degradation of by-products such as acidic species, 

metallic ions or residual products. The tensile strength of the poly (lactic 

acid)/graphene nanoplatelets (PLA/GNP) has no much different as compared to neat 

PLA which reported and proven by Pinto et al. (2015). According to She, He and Peng 

(2014), they found that as the graphene loading increases in the ENR matrix, the tensile 

strength of the composites was increased while the elongation at break was lower due 

to the reinforcing of the graphene in the ENR matrix.

This research has an interest in toughening PLA which focused on the 

incorporation of ENR and ENR-TPV as elastomeric-based materials in PLA matrix to 

produced PLA/ENR and PLA/ENR-TPV blends. The HVA-2 is selected as a 

crosslinking agent in the ENR-TPV system. The graphene was incorporated into the

4



toughened PLA as nanofiller to improve the mechanical and thermal properties of the 

PLA/ENR and PLA/ENR-TPV blends.

1.2 Problem Statement

There are several limitations of the PLA which are thermally unstable and low 

deformability that resulting PLA behaves quite glassy and brittle material. To 

overcome the brittleness, the PLA has been incorporated with an elastomer which is 

ENR and ENR-TPV to produce PLA/ENR and PLA/ENR-TPV blends which are 

known as toughened PLA. The incorporation of ENR into the PLA matrix was 

conducted by previous researchers such as Pongtanayut et al (2013), Zhang et al 

(2013), and Aghjeh et al (2015) and have been proven that the toughness, elongation 

at break and impact strength of the PLA/ENR blend system was increased by 

incorporation of 20 wt% of ENR loading. They also proved that the ENR and PLA 

were compatible with each other due to their polarity. However, according to Wang et 

al (2015), they found that the impact strength and elongation at break of the PLA was 

improved by incorporation of 40 wt% of ENR-TPV. As of our knowledge, ENR-TPV 

with sulphur and peroxide system had been reported by Wang et al (2015) and 

Thongpin et al (2012) in toughening of the PLA. In this study, HVA-2 is being used 

as a crosslinking agent for the PLA/ENR-TPV system since HVA-2 is able to 

vulcanize rubber in the absence of other catalyst and free radicals source and also there 

is no work reported on that. The addition of ENR and ENR-TPV into the PLA matrix 

has caused a reduction in the tensile strength and thermal stability due to the lower 

modulus and thermal stability of elastomer.

Graphene nanofiller has been used in many polymer systems to enhance the 

mechanical properties and thermal stability of systems due to a good mechanical and 

thermal properties of graphene. Norazlina et al (2015) have found that PLA/graphene 

has shown the improvement in thermal stability by decreasing diffusion pathway of 

the degradation of by-products and Pinto et al (2015) have proven that the tensile 

strength and tensile modulus of the PLA/GNP have slightly increased since GNP act
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as reinforced filler. According to the She et al (2014), they proved that as graphene 

loading increased in the ENR matrix, the tensile strength of the composites increased 

while the elongation at break lowered due to the reinforcing of the graphene in the 

ENR matrix. In this research, two types of processing method were used which were 

an internal mixer and nano-single screw extruder where the processing method plays 

an important role to determine the morphological, mechanical and thermal properties 

of the blends and nanocomposites.

The PLA/ENR, PLA/ENR-TPV, PLA/graphene and ENR/graphene have been 

reported in the previous study. Thus, this research is aim to develop a new ternary 

system based on PLA/ENR/graphene and PLA/ENR-TPV/graphene nanocomposites 

with improving properties.

1.3 Objectives

The specific objectives of this research are:

1. To determine the effect of ENR and ENR-TPV loading on the morphological 

and mechanical properties of PLA by using nano-single screw extruder.

2. To investigate the effect of graphene loading of PLA/ENR blends on the 

morphological, mechanical and thermal properties by comparing with different 

processing method between nano-single screw extruder and internal mixer.

3. To examine the effect of graphene loading of PLA/ENR and PLA/ENR-TPV 

blends on the morphological, mechanical and thermal properties by using an 

internal mixer.
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1.4 Scope of the Study

In order to attain the objectives of this research, a few requirements were 

carried out. A preliminary study of the previous research about PLA, ENR and 

graphene that related and relevance with this investigation was done in the literature 

review. The sample preparation was done where firstly the ENR was masticated and 

compounded with 3 phr of HVA-2 to produce the ENR-TPV. The amount of the HVA- 

2 was taken from the Zurina et al (2008) since they determined that only 3 phr of HVA- 

2 was good enough to vulcanize the ENR. Then, PLA/ENR and PLA/ENR-TPV blends 

were prepared at different ENR and ENR-TPV loading (0, 10, 20 and 30 wt%) by 

using nano-single screw extruder. The graphene-based nanocomposites were prepared 

with different loading of graphene (0, 0.5, 1.0, 1.5 and 2.0 phr) by using nano-single 

screw extruder and internal mixer.

Lastly, the testing and characterization of the blends and nanocomposites were 

done. For the mechanical testing, tensile properties are evaluated by using the tensile 

testing machine (Instron Universal Tester) while impact properties of the samples are 

determined by using impact tester. The thermal behaviour such as glass transition 

temperature (Tg) and melting temperature (Tm) are analyzed by using differential 

scanning calorimeter (DSC) while thermal stability of the sample is determined by 

thermogravimetric analysis (TGA). For the morphological study, scanning electron 

microscope (SEM) and field emission scanning electron microscope (FESEM) were 

used to study the dispersion and distribution of the nanofiller in toughened PLA.
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