
 

 

 

 

SEISMIC FRAGILITY OF LOW DUCTILE PARTIALLY INFILLED 

REINFORCED CONCRETE FRAME IN MALAYSIA 

 

 

 

 

 

NUR AMALINA BINTI ANUAR 

 

 

 

 

 

A project report submitted in partial fulfilment of the  

requirements for the award of the degree of  

Master of Engineering (Structure) 

 

 

 

 

 

Faculty of Civil Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

JUNE 2017 



 

 

 

 

 

 

 

 

 

 

To my beloved mother and father 

  



 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

First and foremost, all praises to Allah Almighty for giving me 

accomplishment in completing this project report through many people and sources. 

In preparing this thesis, I was in contact with many dedicated academicians of 

Universiti Teknologi Malaysia. They have contributed towards my understanding 

and thoughts. In particular, I wish to express my sincere gratitude to my main 

supervisor, Dr. Mohammadreza Vafaei for his patience, motivation, immense 

knowledge and providing me with continuous support with regards to my study and 

related research. I am also very thankful to my co-supervisor, Dr. Sophia C. Alih for 

her insightful advices and encouragement. Their guidance helped me throughout the 

process of researching and writing of this project report.  

 

My appreciation also extends to Ministry of Education Malaysia for funding 

my Master’s degree course in Universiti Teknologi Malaysia through MyBrain15 

scholarship programme. 

 

I am indebted to my family for the support they provided me spiritually 

throughout the writing of this thesis. And finally, I acknowledge my friends who 

have been providing me assistance throughout this research. My fellow postgraduate 

students should also be recognized for their continuous support and advices 

throughout the accomplishment of this project report. 

 

 

 

 

 



 

 

 

 

ABSTRACT 

 

 

 

 

The purpose of this study is to develop analytical fragility curves for low 

ductile partially infilled reinforced concrete (RC) frames building under seismic 

ground motions. Three RC frames with their ground story open and masonry walls 

infilled in all of the upper stories (pilotis) comprise of three-, six- and nine-stories 

were selected, modelled, and analysed representing common building type in 

Malaysia. These frames were designed in accordance with BS 8110-1997 code 

specification. 45 seismic ground motions were used and subdivided into three groups 

namely low (L), medium (M) and high (H) records based on peak ground 

acceleration (PGA) over peak ground velocity (PGV) ratio. ETABS 2015 was used 

to perform Incremental Dynamic Collapse Analysis (IDA) with increment every 0.1g 

until 0.5g. The PGA was compared to the maximum inter-story drift demand 

obtained from nonlinear time history analysis and also to the three levels of 

performance-based seismic designs, namely, immediate occupancy (IO), life safety 

(LS), and collapse prevention (CP) to assess structural performance. The results 

show that as the height of structure increases, the intensity of damage decreases. 

Therefore, 3 story is the most damaging structure followed by 6-story and 9-story. 

For all types of structure assessed, the most devastating type of earthquake records is 

M. For 3 and 9 story, there are no difference observed between IO and LS. This 

shows that the preserved strength was very small where IO suddenly jumps straight 

to CP with increasing intensity. As for 6 story there is a clear distance between IO, 

LS and CP and this shows that the structure is not very fragile. 

 

 

 

 

 



 

 

 

 

ABSTRAK 

 

 

 

 

 Tujuan kajian ini adalah untuk menghasilkan lengkung kerapuhan bagi 

rangka konkrit bertetulang (RC) bermulur rendah separa penuh dibawah pengaruh 

pergerakan tanah seismik. Bingkai RC dengan tingkat bawah terbuka tanpa dinding 

dan semua tingkat atas dipenuhi dinding yang terdiri daripada tiga-, enam dan 

sembilan tingkat telah dipilih, peringkat, dan dianalisa mewakili jenis bangunan 

biasa di Malaysia. Kerangka ini direka mengikut spesifikasi kod BS 8110-1997. 45 

rekod pergerakan tanah telah dibahagikan kepada tiga kumpulan iaitu rendah (L), 

sederhana (M) dan tinggi (H) rekod berdasarkan puncak tanah pecutan (PGA) nisbah 

halaju (PGV) puncak tanah. ETABS 2015 telah digunakan untuk melakukan analisis 

kejatuhan dinamik tokokan (IDA) dengan kenaikan setiap 0.1g hingga 0.5g. PGA 

adalah permintaan maksimum antara tingkat drift yang diperolehi daripada analisis 

tolakan statik tak linear dan juga kepada tiga peringkat berasaskan prestasi seismik 

reka bentuk, iaitu serta-merta penghunian (IO),  keselamatan hidup (LS), dan 

pencegahan runtuhan (CP) untuk menilai prestasi struktur. Hasil kajian menunjukkan 

bahawa apabila ketinggian struktur bertambah, kerosakan struktur berkurangan. Oleh 

itu, bangunan 3 tingkat adalah yang mengalami kerosakan paling merosakkan 

struktur diikuti dengan bangunan 6 tingkat dan 9 tingkat. Untuk semua jenis struktur 

yang dinilai, jenis rekod gempa bumi yg paling menghancurkan adalah jenis M. Bagi 

bangunan 3 dan 9 tingkat, tiada perbezaan yang diperhatikan antara IO dan LS. Ini 

menunjukkan bahawa kekuatan dalaman struktur adalah sangat kecil di mana IO 

tiba-tiba bertukar terus ke CP dengan peningkatan intensiti gempa bumi. Bagi 6 

tingkat terdapat jarak yang jelas antara IO, LS dan CP dan ini menunjukkan bahawa 

struktur itu tidak begitu rapuh. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

In this study, the fragility functions developed for low ductile partially 

infilled Reinforced Concrete (RC) buildings are discussed. The seismic fragility 

analysis of structure is a requirement for seismic loss estimation and seismic risk 

management. The vulnerability of structures, seismically, is usually conveyed 

through functions of fragility, which denote the probability of exceeding or reaching 

limit state performance damage by seismic ground movements. Fragility curves are 

tremendously essential to estimate the total risk to the structural buildings from 

possible tremors and to forecast the effects of loss to the economy from forthcoming 

tremors. These fragility functions also can be handy in planning for disaster or 

emergency response by national authority, furthermore an advantage for the 

insurance companies to execute rough estimation on the total loss of the post-

earthquake. 

 

Additionally, fragility curves can also be utilized to outline the design 

retrofitting for damaged structures or that with inadequate strength to resist 

earthquake loadings. This is done by performing benefit and cost studies for different 

sorts of structural material and properties. Moreover, these fragility functions can be 

used to alleviate risk through the adjustment of seismic codes for the plan of new 
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structures; the potential losses are quantitatively compared with the additional cost in 

providing seismic resistance. 

 

A large portion of the structures, additionally the buildings constructed 

without the consideration of seismic code may have adequate and sufficient lateral 

strength to withstand tremors of moderate size with a small degree of damage but not 

severe or extreme tremors. Studies on vulnerability are conducted preceding the 

earthquake events. The significance of the building, its utilization and the owner’s 

necessities will decide whether the damage is acceptable or not.  

 

The design of the buildings is based on the provisions of British Standard 

8110-1997 in this study. The studied buildings are designed to resist wind loads and 

gravity loads only as most of the buildings in Malaysia did not imply seismic codes 

on the buildings due to its location outside earthquake prone areas. 45 ground motion 

records are imposed to estimate the vulnerability of the buildings. The variable 

considerations are the buildings heights that are the number of storeys and the 

seismic design level with regard to Peak Ground Acceleration (PGA). Extra 

consideration for the partially infilled frames is the quantity of infills (brick walls). In 

this study, three performance levels or limit states, namely immediate occupancy 

(IO), life safety (LS) and collapse prevention (CP) are considered to assess the 

structural performance denoting the inter-story demand. The damage scale or 

measure of interest is corresponded from the median value of the fragility functions. 

 

Hence, in this study, fragility curves are used as the main tool for 

preparations of seismic risk map. As mentioned before, fragility analysis plays an 

important role in seismic risk assessment to estimate the vulnerability of a structure 

reaching or exceeding limit state performance damage by seismic ground 

movements. This vulnerability assessment method can be categorized into four 

categories, that are, empirical, hybrid, judgemental and analytical. The classification 

relies on upon the damage data used in their generation which are established mainly 

from observed post-tremor study, analytical simulation, expert judgement or 

combination of both. (Kwon & Elnashai, 2006) The Malaysian Meteorological 

Department reports that only limited data of strong ground motions have been 

recorded. In view of that, the curves are developed using analytical simulation. 



3 

 

 

Moreover, these curves are particularly handy in vulnerability assessment, post 

tremor assessment and retrofit prioritization from potential seismic tremors. (Jeong & 

Elnashai, 2007) Additionally, these curves are more critical and vital in the loss 

estimation of economy, life and occupancy that many happen as an aftereffect of 

future seismic tremors. (Tan & Abdul Razak, 2010) Therefore, this project report 

highlights the development of fragility curves to assess the vulnerability of buildings 

under seismic ground motions. 

 

 

 

 

1.2 Problem Statement 

 

 

Earthquakes are one of the most disastrous events that could happen in 

human history and are frequently exciting highly populated cities. Earthquakes 

impose damages to structures and infrastructures, subsequently cause casualties and 

fatalities. Malaysia is categorized under low seismicity group as it is located 

tectonically within the comparatively steady Sunda Shelf. Except for Sabah, where it 

is categorized under moderate seismicity group. Since Malaysia’s geology is far from 

earthquake prone area, the buildings have been designed according to BS8110-1997 

to resist gravity and wind loads effects only. A large portion of present and existing 

Malaysian’s structures have not been designed for earthquake thus never designed to 

take seismic excitation effect. Having experienced with local and distant seismic 

motions, Malaysia has come to realize that the danger of earthquake is real and has 

the risk to public safety and welfare.  

 

Therefore, there has been effort to reduce seismic induced damages. One way 

to decrease seismic induced damages is to retrofit buildings which have not been 

designed for seismic actions. There are several methods available, namely, 

reinforcement jacketing, steel jacketing and Fibre-Reinforced Polymer (FRP) 

installation that have been proposed to mitigate or reduce structural damages under 

seismic actions. In order to retrofit our structures, we need to allocate enough 

budgets and the government should have estimation on total cost for retrofitting and 
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rehabilitating the structures. Therefore, one way to estimate seismic induced 

damages and the cost for retrofit of buildings is by preparing seismic risk map.  

 

Hence, in this study, fragility curves are used as the main tool for 

preparations of seismic risk map. For Malaysia, there has been no comprehensive 

study on the preparation of fragility curves. Based on the research carried out by 

(Saruddin & Mohamed Nazri, 2015), they developed fragility curves for material of 

moment resisting concrete frame (MRCF) and steel frame (MRSF). It was found that 

the steel frame has better performance than moment resisting concrete frame. (Tan, 

et al., 2014) developed fragility curves for three story reinforced concrete frame. 

From their study, the results indicate that the fragility curves are affected by both the 

number of stories in the building and soil conditions. 

 

Based on the affirmation studies, there has been no fragility curves developed 

for low ductile partially infilled RC frame in Malaysia. There is also no fragility 

curves developed for partially infilled RC frame that takes into consideration near- 

and far-field effects of earthquakes in Malaysia. Therefore, in this study fragility 

curves for low ductile partially infilled RC frame considering near-field and far-field 

seismic ground motions are developed in contributing to the shortcomings of 

previous studies. 
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1.3 Objectives of Research 

 

 

Therefore, this study embarks on the following objectives: 

 

1. To study failure mechanism of low ductile partially infilled RC frames 

subjected to ground motions. 

 

2. To investigate inter-storey drift demand of low ductile partially infilled RC 

frames subjected to ground motions. 

 

3. To develop seismic fragility curves for low ductile partially infilled RC 

frames subjected to ground motions.  

 

 

 

 

1.4 Scopes of Research  

  

 

This project focuses on the following scopes: 

 

1. Seismic fragility of low ductile partially reinforced concrete frames in 

Malaysia subjected to seismic ground motions.  

 

2. Seismic risk analysis using fragility curves for three-, six- and nine storeys of 

RC frame buildings are selected as studied buildings 

 

3. All of the buildings are regular in both plan and elevation configuration. 

 

4. Each frame of three-, six- and nine-story has four 6m bays and typical story 

height of 3m except for the ground story having height of 4m. The total 

height of building is 10m, 19m and 28m respectively. 
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5. Compressive strength of concrete: 20 MPa 

 

6. Yield stress of reinforcement, Fy : 300 MPa 

 

7. Ultimate stress of reinforcement, Fu : 420 MPa 

 

8. Live load applied is 6 kN/m2 

 

9. Dead load applied is 25.5kN/m except for the top floor (without walls) i.e. 

15.54kN/m 

 

10. 45 earthquake records will be used to perform Incremental Dynamic Collapse 

Analysis (IDA) 

 

11. The structures are designed in compliance with the BS 8110-1997 code 

specification 

 

12. Preliminary design of these 3 models is performed by using ETABS 2015 

software. This finite element simulation and design of buildings are according 

to common practice in Malaysia. 
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