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ABSTRACT

Humic acid (HA) is categorised as a natural organic matter (NOM). 
Excessive concentrations of HA present in water treatment system may lead to 
adverse effects such as undesirable taste, effluent coloration towards and production 
of carcinogenic by-products such as trihalomethanes. One promising way of HA 
elimination is by photocatalysis. Lanthanum orthoferrites (LaFeO3) has been 
regarded as an efficient visible-light driven photocatalyst due to its narrow band gap. 
In order to synthesize LaFeO3 nanoparticles, chelation is one of the important 
chemical processes to form the interaction between metals that directly affects the 
physicochemical properties of the nanoparticles. One of the common chelating 
agents used is glucose. However, synthesized LaFeO3 face issues in their 
physicochemical properties such as low surface area and poor morphology when 
glucose is used as the main chelating agent. Therefore, the effect of citric acid 
addition on glucose as a secondary chelating agent was investigated in this study. 
Interestingly, after the addition of citric acid (LFO2), the BET surface area 
dramatically increased from 15.68 m2/g to 40.77 m2/g. The field emission scanning 
electron microscopic (FESEM) images showed that LFO2 possesses a better 
spherical-shaped like growth and less agglomeration. More importantly, results 
revealed that LFO2 degraded 80% of HA within 120 minutes, which is a 1.3-fold 
increment compared to LFO1 (glucose only). Furthermore, the effects of different 
calcination temperatures (400 °C, 500 °C and 600 °C) were also investigated using 
glucose and citric acid as a dual chelating agent. From the study, LaFeO3 
nanoparticles calcined at 400 °C were selected as the most promising photocatalyst 
due to its amorphous nature which benefits from the presence of surface defect. In 
addition, the amorphous LaFeO3 also recorded the highest surface area with a value 
of 70.02 m2/g which contributed to the enhancement of photocatalytic activity for the 
degradation of HA. Besides that, effect of operational parameters such as 
photocatalyst loading (0.6-1.20 g/L), initial concentration of HA (10-40 mg/L) and 
aeration (presence of oxygen) for HA degradation under visible light irradiation were 
studied using the amorphous LaFeO3. Overall, the optimal values for degradation of 
HA were observed to be at a catalyst loading of 1.0 g/L and initial concentration of 
10 mg/L. The result also showed that the presence of oxygen as electron acceptor 
from aerated samples preventing recombination of electrons and holes, thus 
enhancing the photocatalytic degradation. In a nutshell, the perovskite based- 
photocatalyst, LaFeO3 was successfully synthesized using glucose and citric acid as a 
dual chelating agent assisted by low temperature calcination.
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ABSTRAK

Asid humik (HA) dikategorikan sebagai bahan organik semulajadi 
(NOM). Kepekatan berlebihan HA di dalam sistem rawatan air boleh membawa 
kepada kesan buruk seperti rasa yang tidak diingini, warna efluen dan penghasilan 
produk sampingan karsinogenik seperti trihalometana. Salah satu cara yang boleh 
menjanjikan prosess penghapusan HA adalah dengan fotopemangkinan. Lantanum 
ortoferit (LaFeO3) telah dianggap sebagai fotomangkin yang mempunyai 
keberkesanan di bawah cahaya nampak disebabkan oleh sela tenaga yang 
rendah. Untuk mensintesis nanopartikel LaFeO3, pengkelatan adalah salah satu 
proses kimia yang penting untuk membentuk interaksi antara logam yang secara 
langsung mempengaruhi sifat fizikokimia nanopartikel. Salah satu agen pengkelat 
yang biasa digunakan ialah glukosa. Walau bagaimanapun, LaFeO3 yang telah 
disintesis berdepan dengan beberapa isu pada sifat-sifat fizikokimianya seperti luas 
permukaan yang rendah dan morfologi yang lemah apabila glukosa digunakan 
sebagai agen pengkelat utama. Oleh itu, kesan penambahan asid sitrik pada glukosa 
sebagai agen pengkelat kedua telah disiasat dalam kajian ini. Menariknya, selepas 
penambahan asid sitrik (LFO2), luas permukaan BET didapati telah meningkat 
secara mendadak daripada 15.68 m2/g ke 40.77 m2/g. Mikroskop elektron imbasan 
pancaran medan (FESEM) menunjukkan bahawa LFO2 mempunyai morfologi yang 
lebih baik dari segi pembentukan sfera yang lebih sekata dan kurang penggumpalan. 
Lebih penting lagi, keputusan mendedahkan bahawa LFO2 mampu menguraikan 
80% HA dalam tempoh 120 minit, iaitu kenaikan 1.3 kali ganda berbanding LFO1 
(glukosa sahaja). Selain itu, kesan suhu pengkalsinan yang berbeza (400 °C, 500 °C 
dan 600 °C) juga telah dikaji menggunakan glukosa dan asid sitrik sebagai agen 
pengkelat dwi. Daripada kajian ini, suhu pengkalsinan nanopartikel LaFeO3 pada 400 
°C telah dipilih sebagai fotomangkin yang paling berpotensi disebabkan oleh sifat 
amorfusnya iaitu mendapat faedah daripada kecacatan pada 
permukaannya. Tambahan pula, LaFeO3 amorfus juga mencatatkan luas permukaan 
yang paling tinggi dengan nilai 70.02 m2/g yang menyumbang kepada peningkatan 
aktiviti fotopemangkinan untuk penguraian HA. Di samping itu, kesan parameter 
operasi seperti muatan pemangkin yang digunakan (0.6-1.20 g/L), kepekatan awal 
HA (10-40 mg/L) dan kesan pengudaraan (kehadiran oksigen) untuk penguraian HA 
di bawah radiasi cahaya nampak telah dikaji menggunakan amorfus LaFeO3. Secara 
keseluruhan, nilai optimum bagi penguraiaan HA diperhatikan adalah pada muatan 
mangkin sebanyak 1.0 g/L dengan kepekatan awal HA sebanyak 10 
mg/L. Keputusan juga menunjukkan kehadiran oksigen sebagai penerima elektron 
daripada sampel yang diudarakan menghalang daripada penggabungan semula 
lubang-elektron, lalu meningkatkan prosess penguraian fotobermangkin. Secara 
ringkasnya, fotomangkin berasaskan bahan perovskit, LaFeO3 telah berjaya disintesis 
dengan menggunakan glukosa dan asid sitrik sebagai agen pengkelat dwi dan dibantu 
oleh suhu pengkalsinan yang rendah.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Humic acid (HA) is a major component of natural organic matter (NOM). 

The formation of HA is usually initiated by the breakdown of animal carcasses and 

plant residues and can be vastly found in the aquatic system, including surface and 

ground water (Fabris et al., 2008). In general, HA is composed of hydrophilic 

portions, consisting of OH- groups, and hydrophobic portions, consisting of aliphatic 

chains and aromatic rings. However, the structure is more prevalent with phenolic 

and carboxylic groups. In the past decades, the penetration of HA into water sources 

via drainages into water bodies are worryingly increasing. According to experts, 

climate change is the main factor that contributes to this increment (Bhatnagar and 

Sillanpaa, 2017; Wang et al., 2002). It is known that floods, droughts, rainfalls, 

snowmelt runoffs are example of events which are resulted from climate changes 

(Nkambule et al., 2012). Moreover, it has been reported that visible impact on the 

quality of water is to be expected by the combination of these events (Hirabayashi et 

al., 2008). High concentration of HA commonly leads to problems such as 

undesirable taste, coloration of drinking water, membrane fouling and formation of 

biofilms in pipe lines (Korotta-Gamage and Sathasivan, 2017; Lu et al., 2016). 

However, the utmost impact of HA is when it interacts with disinfectants used in 

drinking water treatment process. (Mohora et al., 2012). The reaction of HA with 

chlorine during disinfection would produce carcinogenic by-products like 

trihalomethanes which turns out to be a major problem for drinking water treatment 

(Kim et al., 2017; Serrano et al., 2015).

Despite many conventional treatment techniques such as adsorption 

(Bhatnagar and Sillanpaa, 2017), coagulation (Matilainen et al., 2010), and 

biological treatment (Yang et al., 2018) suggested for removal of HA, these 

contaminants are not properly removed. By considering the disadvantages of these



methods, heterogeneous photocatalysis is an effective alternative solution for 

elimination of HA from aqueous solution. Heterogeneous photocatalysis is a 

catalytic process in which the reactant and the catalyst are in different phase, where 

the photocatalyst is typically presents as solid with the reaction taking place at the 

interface between phases, i.e., solid-liquid or solid-gas. The concept of photocatalysis 

is originally adapted from advanced oxidation processes (AOPs) where the idea is 

basically releasing hydroxyl radicals, *OH (Comninellis et al., 2008). The hydroxyl 

radical is generates after the catalyst being excited by any irradiation sources of light 

(De Lasa and Ibrahim, 2004; Prier et al., 2013). The generated hydroxyl radicals then 

turn into highly active species which are responsible for destruction of humic acid 

and further mineralize into CO2 and H2O.

Since the discovery of TiO2 as a viable photocatalyst in 1972 by Fujishima 

and Honda, much fundamental progress has been made in developing novel semi­

conductor photocatalysts such as WO3 (Maghsoodloo et al., 2011), ZnO (Zhao et al., 

2011), CuS (Vakili et al., 2014), BiOBr (Sillanpaa et al., 2018), BiFeO3 (Wei et al., 

2018) and others, particularly visible light response catalysts for efficient utilization 

of solar energy. Recently, perovskite based-photocatalyst is discovered to be an 

efficient photocatalyst due to its unique crystal structures and electronic properties 

under visible light irradiation. There are different types of perovskite that has been 

further explored, such as titanite perovskite (Itoh et al., 1999), tantalite perovskite 

(Machida et al., 2000), vanadium-based perovskite (Dang and Millis, 2013) and 

ferrite perovskite (Liu et al., 2010). Lanthanum orthoferrites (LaFeO3) is regarded as 

a an efficient visible-light driven photocatalyst for photocatalytic reaction due to its 

narrow band gap and optoelectronic properties (Li et al., 2015; Thirumalairajan et 

al., 2012).

In order to produce LaFeO3 of desired surface area and morphology, there are 

few important criteria’s that are to be considered, such as synthesis methods, 

chelating agents, calcination temperature and others (Cecchini et al., 2014; Chen et 

al., 2008). Based on literature, sol-gel, hydrothermal, co-precipitation and gel- 

combustion methods are frequent method for synthesizing LaFeO3 due to the ability 

to produce photocatalyst of desired properties (Augustin and Kalaiselvan, 2003; Das

2



and Kandimalla, 2017). Gel-combustion is regarded as the most adaptable method 

due to its simplicity, cost-efficiency and large scale produce compared to 

hydrothermal and co-precipitation method for the synthesis of LaFeO3 (Deganello 

and Tyagi, 2018; Hao and Zhang, 2017). In order to synthesize LaFeO3 nanoparticles 

in gel-combustion method, chelation is one of the chemical processes that gives 

influence to the strength of metal-ligand interactions. In chelate formation, chelating 

agents are typically act as intermediate substance that interact intimately with metal 

cations and thus, providing stable gel network formation during the synthesizing 

process (Kolodynska, 2011; Priyadharsini et al., 2018; Samoila et al., 2012). In this 

sense, many chemical compounds have been proposed as chelating agents.

On the other hand, calcination temperature also is regarded as a key 

parameter in the enhancement of photocatalytic activity (Ali et al., 2018; Shen et al., 

2016). This is because thermal treatment has a prominent influence on the 

physicochemical properties of photocatalyst (Pereyma et al., 2018). It is known that 

calcination temperatures could affect the physicochemical properties such as band 

gap, crystallinity aside from surface area and morphology properties (Cen et al., 

2014; Shen et al., 2016). All these properties will determine the efficiency of the 

photocatalyst.

1.2 Problem Statements

In gel combustion method, chelating agent plays significant roles during the 

synthesizing process which results in the uniform sol solution, and facilitates the 

formation of homogeneous nanoparticles. Theoretically, chelating agents act as a 

binder to form interaction between metals that directly affects the physicochemical 

properties of the nanoparticle. Without the presence of chelating agents, the 

nanoparticles will be resulted as severe agglomeration in morphology, low surface 

area and thus, affected the photocatalytic performance (Siwinska-Stefanska et al.,

2015). Recently, many of studies attempt to investigate the effect of different of 

chelating agents on the physicochemical properties of nanoparticles (Kolodynska, 

2011; Samoila et al., 2012; Tabesh et al., 2017). It is known that different chelating

3



agents have its own functional group that subsequently exhibit different interactions 

in chelation process. One of the common chelating agent used in previous studies is 

glucose (Ansari et al., 2018; Liu and Xu, 2011). Glucose is known as eco-friendly 

source, low cost, facile and reproducibility. Most importantly, using glucose as the 

chelating agents often leads to convenience method which requires less energy for 

synthesis of high purity nanoparticles. However, glucose act as a single chelating 

agent is not able to accommodate all the metals completely due to the weak electron 

donating group and subsequently produces LaFeO3 with low surface area and high 

agglomeration degree (Li et al., 2015; Priyadharsini et al., 2018). Therefore, 

presence of secondary chelating agent is essential in order to improve the interaction 

between the metal cation so that the stability of metal oxide can be achieved. 

However, the effect of secondary chelating agent on the physicochemical properties 

of LaFeO3 by the gel-combustion method has been scarcely investigated. Thus, this 

work aims to employ citric acid (CA) as a secondary chelating agent that can 

possibly improve the physicochemical properties of LaFeO3 due to its highly 

structural stability and ability to build good interaction with the primary chelating 

agent which somehow can lead to better photocatalytic activity.

Besides that, calcination temperature is another vital parameter that will 

affect the surface area and morphological properties of LaFeO3. According to 

literature, increase of calcination temperature will also affect physicochemical 

properties such as band gap, crystallinity aside from surface area and morphology 

(Ali et al., 2018; Shen et al., 2016). One way or another, many researchers have 

outlined the fact that high calcination temperatures often produce photocatalyst of 

high crystallinity and better morphology compared to low calcination temperatures 

(Hakki et al., 2018; Klaysri et al., 2015). However, it is known that increasing the 

thermal treatment temperature would consume higher energy and leads to higher 

operation cost (Gasia et al., 2017; Smith et al., 2018). In this case, it would not be 

efficient to be adapted in industry. Lately, approaches using amorphous structures 

have started to gain attention due to its lower synthesis cost and facile scaling up 

(Korotcenkov, 2008; Yao and He, 2014). Moreover, amorphous material has 

concisely exhibit large surface area, something important for an efficient 

photocatalyst (Castillo et al., 2010; Wang et al., 2017; Yoon and Cocke, 1986). In
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addition to that, amorphous materials also provide active centres for charge 

separation via the production of surface defects (impurities, micro voids, and oxygen 

vacancies) and subsequently, promotes high absorption of visible light as compared 

to crystalline materials (Ma et al., 2014). Apart from that, the operational parameter 

for photocatalytic degradation such as catalyst loading, initial concentration of HA 

and oxidizing agents is further investigated to establish highly efficient 

photocatalytic degradation of HA.

1.3 Research Objectives

The aim of this study is to develop a perovskite-based photocatalyst, LaFeO3 

for the photocatalytic degradation of humic acid present in water treatment. The 

specific objectives for this study are as follows:

1. To identify the effects of citric acid addition as a secondary chelating agent 

on the physicochemical properties of the synthesized LaFeO3 photocatalyst.

2. To determine the influences of calcination temperatures (400 °C, 500 °C and

600 °C) on the physicochemical properties of the synthesized LaFeO3 

photocatalyst.

3. To evaluate the effects of operating parameters such as catalyst loading,

initial concentration and presence of oxygen as an oxidizing agent on the 

photocatalytic degradation efficiency of humic acid.

1.4 Research Scopes

In order to achieve the objectives of this study, the following tasks of work 

were conducted:

1. Synthesizing LaFeO3 via gel combustion method by varying two routes

namely as glucose method and glucose-citric acid method.
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2. Characterization of the physicochemical properties of the synthesized LaFeO3 

in terms of thermal stability, morphological properties, surface areas, 

crystallinity and optical properties using Thermogravimetric analysis (TGA), 

Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive 

X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area, X- 

ray powder diffraction (XRD) and UV-Vis spectrophotometer.

3. Evaluation of the photocatalytic degradation performance of HA under 

visible light irradiation (100 Watt LED) using synthesized LaFeO3 in order to 

prove adding citric acid as secondary chelating agent on glucose can have 

better performance.

4. Synthesis of LaFeO3 using dual chelating agents, glucose and citric acid by 

varying the calcination temperature at 400 °C, 500 °C and 600 °C in order to 

study the influences of calcination temperatures on the physicochemical 

properties of LaFeO3 photocatalyst.

5. Characterization of the synthesized photocatalyst using FESEM, EDX, BET 

surface area, XRD and UV-Vis spectrophotometer.

6. Evaluation of the photocatalytic activity i.e degradation of HA under visible 

light irradiation (100 Watt LED) using synthesized LaFeO3 from different of 

calcination temperature (400 °C, 500 °C and 600 °C).

7. Evaluation of photocatalytic activity for the degradation of HA under visible 

light irradiation (100 Watt LED) using selected photocatalyst (400 °C) by 

varying the operating parameters conditions. The operating parameters are 

catalyst loading, initial concentration of HA and the effect of oxygen via 

aeration (air flow rate of 0.62 L/min.kg) as an oxidizing agent.

1.5 Significance of Study

Photocatalysis, is an effective method to oxidize many organic contaminants

at ambient conditions. Thus, researches on synthesizing visible-light driven
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photocatalyst that are easy to be produced and large scalable nanoparticles with 

desired properties are the main priorities. In this study, rapid production of high 

surface area LaFeO3 photocatalyst via gel-combustion method using the addition of 

citric acid to glucose as a secondary chelating agent were presented. Citric acid was 

considered as a secondary chelating agent in this study due to its high structural 

stability and builds good interaction with the primary chelating agent. Additionally, 

the effect of calcination temperature on physiochemical properties of synthesized 

photocatalyst was also studied upon as researches seek ways to produce 

photocatalyst at lower cost and energy consumption. In fact, this study proves that 

higher calcination temperatures impart poor physicochemical properties onto 

photocatalyst which resulted low performance of photocatalytic activity. The 

synthesized LaFeO3 photocatalyst via this new approach together with ideal 

calcination temperature and optimum photocatalytic operating conditions led to 

significant improvement in photocatalytic activity for the degradation of humic acid 

under visible light irradiation.

1.6 Organization of the Thesis

This thesis consists of 5 chapters. Chapter 1 provides a brief information on 

humic acid contaminants and the current issues plaguing humic acid removal. The 

objectives, scopes and the research significance were also highlighted in this chapter. 

In Chapter 2, literature review done for this research work, including detailed 

information of humic acid such as its chemical structure and the adverse effects of 

excessive humic acid in water treatment plants. Furthermore, the chapter also 

discussed in detail on the important criteria’s such as synthesis method, chelating 

agents and calcination temperature that were considered in order to synthesize 

photocatalyst with highly desired properties. The background and reason for 

selecting LaFeO3 was also highlighted. The proposed mechanism of chelating based 

on previous studies were explained in detail. Lastly, the chapter discussed the 

fundamental basics of operational parameter for photocatalytic degradation of humic 

acid. In Chapter 3, a reliable pathway for preparation of LaFeO3 via gel combustion 

method was described. Various characterization tools that were employed to define
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the characteristics of synthesised photocatalyst were also presented. Finally, the 

photocatalytic activity of synthesized were discussed.

Results and discussion were deliberated in Chapter 4. In this chapter, detail 

effects of citric acid on glucose as a secondary chelating agent on the 

physicochemical properties of synthesized LaFeO3 photocatalyst has been discussed 

in detail. The improvement in physicochemical properties of LaFeO3 using the 

proposed mechanism were described based on the chelation process between the 

functional group and metal cations. Also in this chapter 4, the influences of 

calcination temperatures (400 °C, 500 °C and 600 °C) on the physicochemical 

properties of synthesized LaFeO3 photocatalyst has been further deliberated. 

Optimum calcination temperature was selected and was further discussed in more 

detail. The effects of operational parameters such as catalyst loading, initial 

concentration and presence of oxygen as an oxidizing agent on the photocatalytic 

degradation efficiency of HA were detailed. Based on the photocatalytic degradation 

performance, the optimal value from each parameter were selected. Finally, a general 

conclusion of this study and some recommendation for future work were listed in 

Chapter 5.
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