PREPARATION, CHARACTERIZATION AND PERFORMANCE EVALUATION OF LANTHANUM ORTHOFERRITES FOR HUMIC ACID REMOVAL VIA PHOTOCATALYSIS

NORSYAZWANI BINTI YAHYA

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

JULY 2019

DEDICATION

Dedicated to my parents, (Yahya Lim and Zubaidah Johari) my beloved siblings, (Norhayati, Noraini, Norhidayah, Norizzati, Syafiq and Ikmal) family and friends who gave me inspiration, encouragement and endless support throughout the success of my study. May this thesis be an inspiration and guidance in the future.

ACKNOWLEDGEMENT

In the name of ALLAH, The Most Gracious and Most Merciful, praises be to ALLAH S.W.T and Salam to our Prophet Muhammad S.A.W for giving me the strength and blessing upon the completion of this study. In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts in this research. In particular, I wish to express my sincere appreciation to my main supervisor, Dr Farhana Aziz, for her encouragement, guidance, critics, and friendship. I am also very thankful to my co-supervisors, Prof. Madya Dr. Juhana Jaafar and Prof. Madya Dr. Lau Woei Jye for their guidance, advices and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

My sincere appreciation also extends to all my fellow colleagues in AMTEC and others who have aided at various occasions. Their views and tips are very useful indeed. In addition to that, I would also like to extend my gratitude to AMTEC and School of Chemical and Energy Engineering staffs for all their helps and guidance throughout my master study. Unfortunately, it is not possible to list all of them in this limited space. I am also grateful to all my family members especially my parents who has pushed me towards my decision in getting into postgraduate study and my siblings who has supported me in every decision I made.

ABSTRACT

Humic acid (HA) is categorised as a natural organic matter (NOM). Excessive concentrations of HA present in water treatment system may lead to adverse effects such as undesirable taste, effluent coloration towards and production of carcinogenic by-products such as trihalomethanes. One promising way of HA elimination is by photocatalysis. Lanthanum orthoferrites (LaFeO₃) has been regarded as an efficient visible-light driven photocatalyst due to its narrow band gap. In order to synthesize LaFeO₃ nanoparticles, chelation is one of the important chemical processes to form the interaction between metals that directly affects the physicochemical properties of the nanoparticles. One of the common chelating agents used is glucose. However, synthesized LaFeO3 face issues in their physicochemical properties such as low surface area and poor morphology when glucose is used as the main chelating agent. Therefore, the effect of citric acid addition on glucose as a secondary chelating agent was investigated in this study. Interestingly, after the addition of citric acid (LFO2), the BET surface area dramatically increased from 15.68 m^2/g to 40.77 m^2/g . The field emission scanning electron microscopic (FESEM) images showed that LFO2 possesses a better spherical-shaped like growth and less agglomeration. More importantly, results revealed that LFO2 degraded 80% of HA within 120 minutes, which is a 1.3-fold increment compared to LFO1 (glucose only). Furthermore, the effects of different calcination temperatures (400 °C, 500 °C and 600 °C) were also investigated using glucose and citric acid as a dual chelating agent. From the study, LaFeO3 nanoparticles calcined at 400 °C were selected as the most promising photocatalyst due to its amorphous nature which benefits from the presence of surface defect. In addition, the amorphous LaFeO₃ also recorded the highest surface area with a value of 70.02 m^2/g which contributed to the enhancement of photocatalytic activity for the degradation of HA. Besides that, effect of operational parameters such as photocatalyst loading (0.6-1.20 g/L), initial concentration of HA (10-40 mg/L) and aeration (presence of oxygen) for HA degradation under visible light irradiation were studied using the amorphous LaFeO₃. Overall, the optimal values for degradation of HA were observed to be at a catalyst loading of 1.0 g/L and initial concentration of 10 mg/L. The result also showed that the presence of oxygen as electron acceptor from aerated samples preventing recombination of electrons and holes, thus enhancing the photocatalytic degradation. In a nutshell, the perovskite basedphotocatalyst, LaFeO3 was successfully synthesized using glucose and citric acid as a dual chelating agent assisted by low temperature calcination.

ABSTRAK

Asid humik (HA) dikategorikan sebagai bahan organik semulajadi (NOM). Kepekatan berlebihan HA di dalam sistem rawatan air boleh membawa kepada kesan buruk seperti rasa yang tidak diingini, warna efluen dan penghasilan produk sampingan karsinogenik seperti trihalometana. Salah satu cara yang boleh menjanjikan prosess penghapusan HA adalah dengan fotopemangkinan. Lantanum ortoferit (LaFeO₃) telah dianggap sebagai fotomangkin yang mempunyai keberkesanan di bawah cahaya nampak disebabkan oleh sela tenaga yang rendah. Untuk mensintesis nanopartikel LaFeO3, pengkelatan adalah salah satu proses kimia yang penting untuk membentuk interaksi antara logam yang secara langsung mempengaruhi sifat fizikokimia nanopartikel. Salah satu agen pengkelat yang biasa digunakan ialah glukosa. Walau bagaimanapun, LaFeO3 yang telah disintesis berdepan dengan beberapa isu pada sifat-sifat fizikokimianya seperti luas permukaan yang rendah dan morfologi yang lemah apabila glukosa digunakan sebagai agen pengkelat utama. Oleh itu, kesan penambahan asid sitrik pada glukosa sebagai agen pengkelat kedua telah disiasat dalam kajian ini. Menariknya, selepas penambahan asid sitrik (LFO2), luas permukaan BET didapati telah meningkat secara mendadak daripada 15.68 m²/g ke 40.77 m²/g. Mikroskop elektron imbasan pancaran medan (FESEM) menunjukkan bahawa LFO2 mempunyai morfologi yang lebih baik dari segi pembentukan sfera yang lebih sekata dan kurang penggumpalan. Lebih penting lagi, keputusan mendedahkan bahawa LFO2 mampu menguraikan 80% HA dalam tempoh 120 minit, iaitu kenaikan 1.3 kali ganda berbanding LFO1 (glukosa sahaja). Selain itu, kesan suhu pengkalsinan yang berbeza (400 °C, 500 °C dan 600 °C) juga telah dikaji menggunakan glukosa dan asid sitrik sebagai agen pengkelat dwi. Daripada kajian ini, suhu pengkalsinan nanopartikel LaFeO3 pada 400 °C telah dipilih sebagai fotomangkin yang paling berpotensi disebabkan oleh sifat amorfusnya mendapat faedah daripada iaitu kecacatan pada permukaannya. Tambahan pula, LaFeO₃ amorfus juga mencatatkan luas permukaan yang paling tinggi dengan nilai 70.02 m²/g yang menyumbang kepada peningkatan aktiviti fotopemangkinan untuk penguraian HA. Di samping itu, kesan parameter operasi seperti muatan pemangkin yang digunakan (0.6-1.20 g/L), kepekatan awal HA (10-40 mg/L) dan kesan pengudaraan (kehadiran oksigen) untuk penguraian HA di bawah radiasi cahaya nampak telah dikaji menggunakan amorfus LaFeO₃. Secara keseluruhan, nilai optimum bagi penguraiaan HA diperhatikan adalah pada muatan sebanyak 1.0 g/L dengan kepekatan awal HA mangkin sebanyak 10 mg/L. Keputusan juga menunjukkan kehadiran oksigen sebagai penerima elektron daripada sampel yang diudarakan menghalang daripada penggabungan semula lubang-elektron, lalu meningkatkan prosess penguraian fotobermangkin. Secara ringkasnya, fotomangkin berasaskan bahan perovskit, LaFeO3 telah berjaya disintesis dengan menggunakan glukosa dan asid sitrik sebagai agen pengkelat dwi dan dibantu oleh suhu pengkalsinan yang rendah.

TABLE OF CONTENTS

TITLE

DEC	CLARATION	ii
DEI	DICATION	iii
AC	KNOWLEDGEMENT	iv
ABS	STRACT	v
ABS	STRAK	vi
TAI	BLE OF CONTENTS	vii
LIS	T OF TABLES	xi
LIS	T OF FIGURES	xii
LIS	T OF ABBREVIATIONS	XV
LIS	T OF SYMBOLS	xvi
LIS	T OF APPENDICES	xvii
CHAPTER 1	INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statements	3
1.3	Research Objectives	5
1.4	Research Scopes	5
1.5	Significance of Study	6
1.6	Organization of the Thesis	7
CHAPTER 2	LITERATURE REVIEW	9
2.1	Humic Substances	9
	2.1.1 Humic Acid	10
2.2	Conventional Methods of HA Removal in Water Treatment	11
	2.2.1 Adsorption	12
	2.2.2 Coagulation	13
	2.2.3 Biological Method	15
2.3	Advanced Oxidation Process (AOPs) for Water Treatment	18
	2.3.1 Ozonation	18
	2.3.2 Fenton / Photo-Fenton	19

	2.3.3 Photocatalysis	20
2.4	Perovskites	30
	2.4.1 LaFeO ₃ as Photocatalyst	31
2.5	Selection of Synthesis Method of LaFeO ₃ Nanoparticles	32
	2.5.1 Hydrothermal Method	32
	2.5.2 Co-precipitation Method	33
	2.5.3 Gel-combustion Method	34
2.6	Role of Chelating Agents in the Chemical Synthesis	36
	2.6.1 Glucose	37
	2.6.2 Citric Acid	39
	2.6.3 Other Conventional Chelating Agents	42
2.7	Dual Chelating Agents	44
2.8	Effects of Calcination Temperature	47
2.9	Parameters Affecting the Photocatalytic Degradation	48
	2.9.1 Effects of Catalyst Loading	48
	2.9.2 Effects of Initial Concentrations of Organic Contaminant	49
	2.9.3 Effect of Oxygen as Oxidizing Agents	50
CHAPTER 3	RESEARCH METHODOLOGY	51
3.1	Research Design and Procedure	51
3.2	Chemicals and Materials	53
3.3	Preparation of Photocatalyst, LaFeO ₃	53
3.4	Characterization of Synthesized LaFeO ₃	58
	3.4.1 Weight Loss and Precursor Phase Change	58
	3.4.2 Crystallinity	58
	3.4.3 Functional Group Determination	59
	3.4.4 Morphology and Elemental Composition	59
	3.4.5 BET Surface Area and Pore Size	60
	3.4.6 Optical Band Gap Measurement	60
3.5	Sample Analysis	60
	3.5.1 Preparation of Synthetic HA Solution	61
	3.5.2 Photocatalytic Activity Determination Analysis	61
	3.5.2 Photocatalytic Activity Determination Analysis3.5.3 Mineralization Analysis	61 61

	3.6.1	Adsorption Equilibrium and Photocatalytic	(2)
	0	Degradation of Humic Acid	62
3.7	Opera	tional Parameters Study	63
	3.7.1	Catalyst Loading	63
	3.7.2	Initial Concentration of HA	64
	3.7.3	Aeration	64
	3.7.4	Kinetic Rate Constant	64
CHAPTER 4	RESI	JLTS AND DISCUSSION	67
4.1	Introd	uction	67
4.2	Chara	cterization of Synthesized LaFeO3	67
	4.2.1	XRD Analysis	67
	4.2.2	FTIR Spectra Analysis	68
	4.2.3	TGA Analysis	70
	4.2.4	BET Surface Area and Pore Sizes Distribution Analysis	71
	4.2.5	Morphological and Structural Analysis	73
	4.2.6	Optical Properties Analysis	77
4.3	Chara Calcir	cterization of Synthesized LaFeO ₃ at Various nation Temperatures	79
	4.3.1	XRD Analysis	79
	4.3.2	FTIR Spectra Analysis	80
	4.3.3	BET Surface Area Analysis and Pore Size Distribution	82
	4.3.4	Morphological and Structural Analysis	85
	4.3.5	Optical Properties Analysis	87
4.4	Effect Activi	of Citric Acid Addition onto the Photocatalytic ty of LaFeO ₃ Nanoparticles Prepared by	00
	4 4 1	LIV Via spectraphotometer Analysis	00
	4.4.1	Divervis spectrophotometer Analysis	88
4.5	4.4.2		89
4.5	Photo	s of Calcination Temperature onto the catalytic Activity of LaFeO ₃ Nanoparticles	91
	4.5.1	UV-Vis Spectrophotometer Analysis	91
	4.5.2	TOC Analysis	94
4.6	Effect Degra	s of Operating Parameters on Photocatalytic dation of HA	95
	4.6.1	Effect of Catalyst Loading	95

	4.6.2	Effect of Initial Concentration of HA	97
	4.6.3	Effect of Oxygen via Aeration as Oxidizing Agent	98
CHAPTER 5	GENI RECO	ERAL CONCLUSIONS AND DMMENDATIONS	101
5.1	Gener	al Conclusions	101
5.2	Recon	nmendation for Future Works	102
REFERENCES			104
LIST OF PUBLICATIONS			132
APPENDIX A-D			133-139

LIST OF TABLES

TABLE NO.

TITLE

PAGE

Table 2.1	Major types of HS characterized by its solubility nature	9
Table 2.2	Allowable concentration of THM in drinking water recommended by the World Health Organization (WHO)	12
Table 2.3	The comparison of technologies to remove HA	17
Table 2.4	Perovskite photocatalysts	31
Table 2.5	Comparison of physicochemical properties of LaFeO ₃ synthesized using CA as chelating agents	41
Table 4.1	BET Surface areas and pore sizes of the LFO1 and LFO2.	73
Table 4.2	BET surface areas, pore size (BJH) and total pore volume of precursor, LFO-400, LFO-500 and LFO-600	84
Table 4.3	Linear correlation coefficients (R^2) and rate constant (K) of the first-order kinetic models for photocatalytic degradation of HA by LFO1 and LFO2	90
Table 4.4	Linear correlation coefficients (R^2) and rate constant (K) of the first-order kinetic models for photocatalytic degradation of HA by LFO-400, LFO-500 and LFO-600	94
Table 4.5	Linear correlation coefficients (R^2) and rate constant (K) of the first-order kinetic models for photocatalytic degradation of HA by aeration and without aeration	99

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 2.3	Schematic representation of a pilot-scale setup used for a coagulation-based water treatment system	14
Figure 2.4	a) Fungal growth on humic-agar plate b) Vertical bleaching of HA agar media by WRF, c) horizontal bleaching	15
Figure 2.5	Mechanism of photocatalytic process and the reaction that occurs at the surface of photocatalyst	22
Figure 2.6	Schematic representation of the dispersion of TiO ₂ nanoparticles under various experimental conditions	24
Figure 2.7	Different types of morphological of photocatalysts (a)Nano flakes, (b) spheres, (c) nanotubes, (d) nanowires, (e) flower-like, (f) hollow spheres, (g) microspheres and (h) nano rod photocatalytic materials	26
Figure 2.8	Schematic illustration of different shapes of synthesised Bi_2S_3NPs prepared by using various solvent along with different structure-modifying capping agents	27
Figure 2.9	Structure of perovskite ABO3 crystal	31
Figure 2.10	Schematic diagram of the synthesis process for nano-sized ESB powder via reverse strike co-precipitation	34
Figure 2.11	Schematic description of the three main steps in gel- combustion synthesis	35
Figure 2.12	Schematic illustration of possible complex of metal ions and glucose	37
Figure 2.13	SEM images of LaFeO ₃ synthesized using glucose as the chelating agent	38
Figure 2.14	Schematic illustration of possible chelating process of CA with metal.	39
Figure 2.15	FESEM images of LaFeO ₃ prepared at different calcination temperatures (a) 200 °C (b) 400 °C	40
Figure 2.16	Possible interaction between metal and EDTA	43
Figure 2.17	TEM images of Al_2O_3 nanoparticles prepared with (a) Citric acid and (b) urea	44
Figure 3.1	Research design flowchart	52
Figure 3.2	Flow chart of the preparation of LaFeO ₃ using (a) glucose method and (b) glucose-citric acid method	55
Figure 3.3	Schematic diagram for the gel-combustion preparation	

	method	56
Figure 3.4	Calcination temperature procedure	57
Figure 3.5	Experimental set up for photocatalytic degradation conducted in a closed stainless-steel box	63
Figure 4.1	XRD patterns of LFO1 and LFO2 at 600 °C	68
Figure 4.2	FTIR spectra of LFO1 and LFO2 at 600 °C	69
Figure 4.3	TGA curves of LaFeO ₃ precursor (a) LFO1 (b) LFO2	71
Figure 4.4	Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curve (a) LFO1 (b) LFO2	73
Figure 4.5	FESEM micrographs of LaFeO ₃ (a) LFO1 (b) LFO2	75
Figure 4.6	EDX result for the calcined sample at 600 °C of LFO1 and LFO2	75
Figure 4.7	Schematic diagram of the possible chelating process for (a) glucose (b) addition of citric acid on glucose	77
Figure 4.8	(a) UV-Vis spectra of LFO1 and LFO2 (b) Kubelka-Munk function of LFO1 and LFO2 to estimate band gap value	78
Figure 4.9	XRD diffraction patterns of precursor, LFO-400, LFO-500 and LFO-600	80
Figure 4.10	FTIR spectra of precursor, LFO-400, LFO-500 and LFO-600	81
Figure 4.11	Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curve (a) LFO-400, (b) LFO-500 and (c) LFO-600	84
Figure 4.12	FESEM images of (a) precursor, (b) LFO-400, (c) LFO-500 and (d) LFO-600	86
Figure 4.13	EDX spectra of LFO-400, LFO-500 and LFO-600	87
Figure 4.14	(a) UV-Vis diffuse reflection absorbance spectra of LFO- 400, LFO-500 and LFO-600 (b) Kubelka-Munk function of LFO-400, LFO-500 and LFO-600 to estimate band gap	
	value	88
Figure 4.15	UV-Vis spectrophotometer analysis on the HA removal efficiency (concentration HA at 10 mg/L), catalyst dosage = 1.0 g/L , pH neutral).	89
Figure 4.16	First order kinetic for photocatalytic activity on HA.	90
Figure 4.17	Effects of calcination temperatures on the HA removal efficiency (concentration HA at 10 mg/L, catalyst dosage = 1.0 g/L , pH neutral).	93
Figure 4.18	Rate constant of photocatalytic activity on the HA by LFO- 400, LFO-500 and LFO-600	94
Figure 4.19	Degradation rates of removal of HA using TOC analysis	95

Figure 4.20	Effects of LFO-400 loading on photocatalytic degradation efficiency of HA at irradiation times of 120 minutes, [HA]= 10 mg/L, pH neutral	96
Figure 4.21	Effects of initial concentration on photocatalytic degradation efficiency of HA, $[LFO-400] = 1.0 \text{ g/L}$, pH neutral	98
Figure 4.22	Determination of rate constant for effect of aeration on photocatalytic degradation, $[HA] = 10 \text{ mg/L}$, $[LFO-400] = 1.0 \text{ g/L}$, pH neutral, contact time = 120 minutes, air flow rate of 0.62 L/min. kg)	100

LIST OF ABBREVIATIONS

AOPs	-	Advanced oxidation processes
BET	-	Brunauer–Emmett–Teller
BJH	-	Barrett–Joyner–Halenda
CA	-	Citric acid
DI	-	Deionized water
EDX	-	Energy-dispersive X-ray
EDTA	-	Ethylenediaminetetraacetic acid
FESEM	-	Fourier electron-scanning electron microscope
FTIR	-	Fourier transform infrared
HA	-	Humic acid
IUPAC	-	International union of pure and applied chemistry
LaFeO ₃	-	Lanthanum orthoferrites
N_2	-	Nitrogen gas
SEM	-	Scanning electron microscope
TiO ₂	-	Titanium Dioxide
TEM	-	Transmission electron microscopy
TOC	-	Total organic carbon
UV	-	Ultraviolet
XRD	-	X-ray powder diffraction

LIST OF SYMBOLS

Mg	-	Milligram
L	-	Litre
°C	-	Degree celcius
μm	-	Micrometre
Μ	-	Meter
nm	-	Nanometer
g	-	Gram
%	-	Percentage
Μ	-	Molarity
Ppm	-	Part per million
[HA] _o	-	Initial concentration of humic acid
w/v	-	Weight per volume
Min	-	Minutes
K	-	Rate constant
R^2	-	Linear regression
S	-	Second
W	-	Watt
Т	-	Times
А	-	Lambda

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Particle Size Calculation using Image J	133
Appendix B	Crystallite Size Calculation from XRD Analysis	134
Appendix C	BET Analysis Result	136
Appendix D	Calibration Curve of Humic Acid at λ = 277 nm	139

CHAPTER 1

INTRODUCTION

1.1 Research Background

Humic acid (HA) is a major component of natural organic matter (NOM). The formation of HA is usually initiated by the breakdown of animal carcasses and plant residues and can be vastly found in the aquatic system, including surface and ground water (Fabris et al., 2008). In general, HA is composed of hydrophilic portions, consisting of OH⁻ groups, and hydrophobic portions, consisting of aliphatic chains and aromatic rings. However, the structure is more prevalent with phenolic and carboxylic groups. In the past decades, the penetration of HA into water sources via drainages into water bodies are worryingly increasing. According to experts, climate change is the main factor that contributes to this increment (Bhatnagar and Sillanpää, 2017; Wang et al., 2002). It is known that floods, droughts, rainfalls, snowmelt runoffs are example of events which are resulted from climate changes (Nkambule et al., 2012). Moreover, it has been reported that visible impact on the quality of water is to be expected by the combination of these events (Hirabayashi et al., 2008). High concentration of HA commonly leads to problems such as undesirable taste, coloration of drinking water, membrane fouling and formation of biofilms in pipe lines (Korotta-Gamage and Sathasivan, 2017; Lu et al., 2016). However, the utmost impact of HA is when it interacts with disinfectants used in drinking water treatment process. (Mohora et al., 2012). The reaction of HA with chlorine during disinfection would produce carcinogenic by-products like trihalomethanes which turns out to be a major problem for drinking water treatment (Kim et al., 2017; Serrano et al., 2015).

Despite many conventional treatment techniques such as adsorption (Bhatnagar and Sillanpää, 2017), coagulation (Matilainen *et al.*, 2010), and biological treatment (Yang *et al.*, 2018) suggested for removal of HA, these contaminants are not properly removed. By considering the disadvantages of these

methods, heterogeneous photocatalysis is an effective alternative solution for elimination of HA from aqueous solution. Heterogeneous photocatalysis is a catalytic process in which the reactant and the catalyst are in different phase, where the photocatalyst is typically presents as solid with the reaction taking place at the interface between phases, i.e., solid-liquid or solid-gas. The concept of photocatalysis is originally adapted from advanced oxidation processes (AOPs) where the idea is basically releasing hydroxyl radicals, •OH (Comninellis *et al.*, 2008). The hydroxyl radical is generates after the catalyst being excited by any irradiation sources of light (De Lasa and Ibrahim, 2004; Prier *et al.*, 2013). The generated hydroxyl radicals then turn into highly active species which are responsible for destruction of humic acid and further mineralize into CO_2 and H_2O .

Since the discovery of TiO₂ as a viable photocatalyst in 1972 by Fujishima and Honda, much fundamental progress has been made in developing novel semiconductor photocatalysts such as WO₃ (Maghsoodloo *et al.*, 2011), ZnO (Zhao *et al.*, 2011), CuS (Vakili *et al.*, 2014), BiOBr (Sillanpää *et al.*, 2018), BiFeO₃ (Wei *et al.*, 2018) and others, particularly visible light response catalysts for efficient utilization of solar energy. Recently, perovskite based-photocatalyst is discovered to be an efficient photocatalyst due to its unique crystal structures and electronic properties under visible light irradiation. There are different types of perovskite that has been further explored, such as titanite perovskite (Itoh *et al.*, 1999), tantalite perovskite (Machida *et al.*, 2000), vanadium-based perovskite (Dang and Millis, 2013) and ferrite perovskite (Liu *et al.*, 2010). Lanthanum orthoferrites (LaFeO₃) is regarded as a an efficient visible-light driven photocatalyst for photocatalytic reaction due to its narrow band gap and optoelectronic properties (Li *et al.*, 2015; Thirumalairajan *et al.*, 2012).

In order to produce LaFeO₃ of desired surface area and morphology, there are few important criteria's that are to be considered, such as synthesis methods, chelating agents, calcination temperature and others (Cecchini *et al.*, 2014; Chen *et al.*, 2008). Based on literature, sol-gel, hydrothermal, co-precipitation and gelcombustion methods are frequent method for synthesizing LaFeO₃ due to the ability to produce photocatalyst of desired properties (Augustin and Kalaiselvan, 2003; Das and Kandimalla, 2017). Gel-combustion is regarded as the most adaptable method due to its simplicity, cost-efficiency and large scale produce compared to hydrothermal and co-precipitation method for the synthesis of LaFeO₃ (Deganello and Tyagi, 2018; Hao and Zhang, 2017). In order to synthesize LaFeO₃ nanoparticles in gel-combustion method, chelation is one of the chemical processes that gives influence to the strength of metal–ligand interactions. In chelate formation, chelating agents are typically act as intermediate substance that interact intimately with metal cations and thus, providing stable gel network formation during the synthesizing process (Kołodyńska, 2011; Priyadharsini *et al.*, 2018; Samoila *et al.*, 2012). In this sense, many chemical compounds have been proposed as chelating agents.

On the other hand, calcination temperature also is regarded as a key parameter in the enhancement of photocatalytic activity (Ali *et al.*, 2018; Shen *et al.*, 2016). This is because thermal treatment has a prominent influence on the physicochemical properties of photocatalyst (Pereyma *et al.*, 2018). It is known that calcination temperatures could affect the physicochemical properties such as band gap, crystallinity aside from surface area and morphology properties (Cen *et al.*, 2014; Shen *et al.*, 2016). All these properties will determine the efficiency of the photocatalyst.

1.2 Problem Statements

In gel combustion method, chelating agent plays significant roles during the synthesizing process which results in the uniform sol solution, and facilitates the formation of homogeneous nanoparticles. Theoretically, chelating agents act as a binder to form interaction between metals that directly affects the physicochemical properties of the nanoparticle. Without the presence of chelating agents, the nanoparticles will be resulted as severe agglomeration in morphology, low surface area and thus, affected the photocatalytic performance (Siwińska-Stefańska *et al.*, 2015). Recently, many of studies attempt to investigate the effect of different of chelating agents on the physicochemical properties of nanoparticles (Kołodyńska, 2011; Samoila *et al.*, 2012; Tabesh *et al.*, 2017). It is known that different chelating

agents have its own functional group that subsequently exhibit different interactions in chelation process. One of the common chelating agent used in previous studies is glucose (Ansari et al., 2018; Liu and Xu, 2011). Glucose is known as eco-friendly source, low cost, facile and reproducibility. Most importantly, using glucose as the chelating agents often leads to convenience method which requires less energy for synthesis of high purity nanoparticles. However, glucose act as a single chelating agent is not able to accommodate all the metals completely due to the weak electron donating group and subsequently produces LaFeO₃ with low surface area and high agglomeration degree (Li et al., 2015; Priyadharsini et al., 2018). Therefore, presence of secondary chelating agent is essential in order to improve the interaction between the metal cation so that the stability of metal oxide can be achieved. However, the effect of secondary chelating agent on the physicochemical properties of LaFeO₃ by the gel-combustion method has been scarcely investigated. Thus, this work aims to employ citric acid (CA) as a secondary chelating agent that can possibly improve the physicochemical properties of LaFeO₃ due to its highly structural stability and ability to build good interaction with the primary chelating agent which somehow can lead to better photocatalytic activity.

Besides that, calcination temperature is another vital parameter that will affect the surface area and morphological properties of LaFeO₃. According to literature, increase of calcination temperature will also affect physicochemical properties such as band gap, crystallinity aside from surface area and morphology (Ali *et al.*, 2018; Shen *et al.*, 2016). One way or another, many researchers have outlined the fact that high calcination temperatures often produce photocatalyst of high crystallinity and better morphology compared to low calcination temperatures (Hakki *et al.*, 2018; Klaysri *et al.*, 2015). However, it is known that increasing the thermal treatment temperature would consume higher energy and leads to higher operation cost (Gasia *et al.*, 2017; Smith *et al.*, 2018). In this case, it would not be efficient to be adapted in industry. Lately, approaches using amorphous structures have started to gain attention due to its lower synthesis cost and facile scaling up (Korotcenkov, 2008; Yao and He, 2014). Moreover, amorphous material has concisely exhibit large surface area, something important for an efficient photocatalyst (Castillo *et al.*, 2010; Wang *et al.*, 2017; Yoon and Cocke, 1986). In

addition to that, amorphous materials also provide active centres for charge separation via the production of surface defects (impurities, micro voids, and oxygen vacancies) and subsequently, promotes high absorption of visible light as compared to crystalline materials (Ma *et al.*, 2014). Apart from that, the operational parameter for photocatalytic degradation such as catalyst loading, initial concentration of HA and oxidizing agents is further investigated to establish highly efficient photocatalytic degradation of HA.

1.3 Research Objectives

The aim of this study is to develop a perovskite-based photocatalyst, LaFeO₃ for the photocatalytic degradation of humic acid present in water treatment. The specific objectives for this study are as follows:

- 1. To identify the effects of citric acid addition as a secondary chelating agent on the physicochemical properties of the synthesized LaFeO₃ photocatalyst.
- To determine the influences of calcination temperatures (400 °C, 500 °C and 600 °C) on the physicochemical properties of the synthesized LaFeO₃ photocatalyst.
- 3. To evaluate the effects of operating parameters such as catalyst loading, initial concentration and presence of oxygen as an oxidizing agent on the photocatalytic degradation efficiency of humic acid.

1.4 Research Scopes

In order to achieve the objectives of this study, the following tasks of work were conducted:

1. Synthesizing LaFeO₃ via gel combustion method by varying two routes namely as glucose method and glucose-citric acid method.

- Characterization of the physicochemical properties of the synthesized LaFeO₃ in terms of thermal stability, morphological properties, surface areas, crystallinity and optical properties using Thermogravimetric analysis (TGA), Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area, Xray powder diffraction (XRD) and UV-Vis spectrophotometer.
- 3. Evaluation of the photocatalytic degradation performance of HA under visible light irradiation (100 Watt LED) using synthesized LaFeO₃ in order to prove adding citric acid as secondary chelating agent on glucose can have better performance.
- 4. Synthesis of LaFeO₃ using dual chelating agents, glucose and citric acid by varying the calcination temperature at 400 °C, 500 °C and 600 °C in order to study the influences of calcination temperatures on the physicochemical properties of LaFeO₃ photocatalyst.
- 5. Characterization of the synthesized photocatalyst using FESEM, EDX, BET surface area, XRD and UV-Vis spectrophotometer.
- Evaluation of the photocatalytic activity i.e degradation of HA under visible light irradiation (100 Watt LED) using synthesized LaFeO₃ from different of calcination temperature (400 °C, 500 °C and 600 °C).
- 7. Evaluation of photocatalytic activity for the degradation of HA under visible light irradiation (100 Watt LED) using selected photocatalyst (400 °C) by varying the operating parameters conditions. The operating parameters are catalyst loading, initial concentration of HA and the effect of oxygen via aeration (air flow rate of 0.62 L/min.kg) as an oxidizing agent.

1.5 Significance of Study

Photocatalysis, is an effective method to oxidize many organic contaminants at ambient conditions. Thus, researches on synthesizing visible-light driven photocatalyst that are easy to be produced and large scalable nanoparticles with desired properties are the main priorities. In this study, rapid production of high surface area LaFeO₃ photocatalyst via gel-combustion method using the addition of citric acid to glucose as a secondary chelating agent were presented. Citric acid was considered as a secondary chelating agent in this study due to its high structural stability and builds good interaction with the primary chelating agent. Additionally, the effect of calcination temperature on physiochemical properties of synthesized photocatalyst was also studied upon as researches seek ways to produce photocatalyst at lower cost and energy consumption. In fact, this study proves that higher calcination temperatures impart poor physicochemical properties onto photocatalyst which resulted low performance of photocatalytic activity. The synthesized LaFeO₃ photocatalyst via this new approach together with ideal calcination temperature and optimum photocatalytic operating conditions led to significant improvement in photocatalytic activity for the degradation of humic acid under visible light irradiation.

1.6 Organization of the Thesis

This thesis consists of 5 chapters. Chapter 1 provides a brief information on humic acid contaminants and the current issues plaguing humic acid removal. The objectives, scopes and the research significance were also highlighted in this chapter. In Chapter 2, literature review done for this research work, including detailed information of humic acid such as its chemical structure and the adverse effects of excessive humic acid in water treatment plants. Furthermore, the chapter also discussed in detail on the important criteria's such as synthesis method, chelating agents and calcination temperature that were considered in order to synthesize photocatalyst with highly desired properties. The background and reason for selecting LaFeO₃ was also highlighted. The proposed mechanism of chelating based on previous studies were explained in detail. Lastly, the chapter discussed the fundamental basics of operational parameter for photocatalytic degradation of humic acid. In Chapter 3, a reliable pathway for preparation of LaFeO₃ via gel combustion method was described. Various characterization tools that were employed to define

the characteristics of synthesised photocatalyst were also presented. Finally, the photocatalytic activity of synthesized were discussed.

Results and discussion were deliberated in Chapter 4. In this chapter, detail effects of citric acid on glucose as a secondary chelating agent on the physicochemical properties of synthesized LaFeO₃ photocatalyst has been discussed in detail. The improvement in physicochemical properties of LaFeO₃ using the proposed mechanism were described based on the chelation process between the functional group and metal cations. Also in this chapter 4, the influences of calcination temperatures (400 °C, 500 °C and 600 °C) on the physicochemical properties of synthesized LaFeO₃ photocatalyst has been further deliberated. Optimum calcination temperature was selected and was further discussed in more detail. The effects of operational parameters such as catalyst loading, initial concentration and presence of oxygen as an oxidizing agent on the photocatalytic degradation performance, the optimal value from each parameter were selected. Finally, a general conclusion of this study and some recommendation for future work were listed in Chapter 5.

REFERENCES

- Abd Mutalib, M., Ahmad Ludin, N., Nik Ruzalman, N. A. A., Barrioz, V., Sepeai, S.,
 Mat Teridi, M. A., et al. (2018). Progress towards highly stable and lead-free perovskite solar cells. *Materials for Renewable and Sustainable Energy*, 7(2), 7.
- Abdel-Hamid, A. M., Solbiati, J. O., and Cann, I. K. (2013). Insights into lignin degradation and its potential industrial applications. *Advances in Applied Microbiology*, (Vol. 82, pp. 1-28).
- Abdullah, N. A., Hasan, S., and Osman, N. (2012). Role of CA-EDTA on the synthesizing process of cerate-zirconate ceramics electrolyte. *Journal of Chemistry*, 2013.
- Adishkumar, S., Kanmani, S., and Rajesh Banu, J. (2014). Solar photocatalytic treatment of phenolic wastewaters: influence of chlorides, sulphates, aeration, liquid volume and solar light intensity. *Desalination and Water Treatment*, 52(40-42), 7957-7963.
- Ahmed, S. N., and Haider, W. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. *Nanotechnology*, 29(34), 342001.
- Albanese, A., and Chan, W. C. (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. *ACS nano*, 5(7), 5478-5489.
- Ali, F., Khan, J. A., Shah, N. S., Sayed, M., and Khan, H. M. (2018). Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations. *Process Safety and Environmental Protection*, 117, 307-314.
- Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., et al. (2018). Effect of calcination temperature on the photoactivities of ZnO/SnO₂ nanocomposites for the degradation of methyl orange. *Materials Chemistry* and Physics, 213, 259-266.
- Álvarez, M. A., Orellana-García, F., López-Ramón, M. V., Rivera-Utrilla, J., and Sánchez-Polo, M. (2018). Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. *Arabian Journal of Chemistry*, 11(4), 564-572.

- Amano, F., Nogami, K., Tanaka, M., and Ohtani, B. (2010). Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure. *Langmuir*, 26(10), 7174-7180.
- Ambati, R., and Gogate, P. R. (2017). Photocatalytic degradation of Acid Blue 80 using iron doped TiO₂ catalyst: Understanding the effect of operating parameters and combinations for synergism. *Journal of Water Process Engineering*, 20, 217-225.
- Ameta, R., Solanki, M. S., Benjamin, S., and Ameta, S. C. (2018). Chapter 6 -Photocatalysis. In S. C. Ameta and R. Ameta (Eds.), Advanced Oxidation Processes for Waste Water Treatment (pp. 135-175): Academic Press.
- Ansari, F., Sobhani, A., and Salavati-Niasari, M. (2018). Simple sol-gel synthesis and characterization of new CoTiO₃/CoFe₂O₄ nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. *Journal of Colloid and Interface Science*, 514, 723-732.
- Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. *Science*, 293(5528), 269-271.
- Asakawa, D., Iimura, Y., Kiyota, T., Yanagi, Y., and Fujitake, N. (2011). Molecular size fractionation of soil humic acids using preparative high performance size-exclusion chromatography. *Journal of Chromatography A*, 1218(37), 6448-6453.
- Augustin, C., and Kalaiselvan, R. (2003). Combustion synthesis of ABO₃ and AB₂O₄ compounds-an overview. *Bulletin of electrochemistry*, 19(07), 319-334.
- Balázs, N., Mogyorósi, K., Srankó, D. F., Pallagi, A., Alapi, T., Oszko, A., et al. (2008). The effect of particle shape on the activity of nanocrystalline TiO₂ photocatalysts in phenol decomposition. *Applied Catalysis B: Environmental*, 84(3-4), 356-362.
- Banerjee, S., Pillai, S. C., Falaras, P., O'shea, K. E., Byrne, J. A., and Dionysiou, D.
 D. (2014). New insights into the mechanism of visible light photocatalysis. *The journal of physical chemistry letters*, 5(15), 2543-2554.
- Barnard, A., and Curtiss, L. (2005). Prediction of TiO₂ nanoparticle phase and shape transitions controlled by surface chemistry. *Nano Letters*, 5(7), 1261-1266.

- Bechambi, O., Sayadi, S., and Najjar, W. (2015). Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. *Journal of Industrial and Engineering Chemistry*, 32, 201-210.
- Belman-Rodriguez, C., Vidal-Limon, A. M., Contreras, O. E., Oviedo, M. J., and Aguila, S. A. (2018). Synthesis and characterization of BGO with different chelating compounds by the polymeric precursor method, and their effect on luminescence properties. *Ceramics International*, 44(13), 15618-15621.
- Bhatnagar, A., and Sillanpää, M. (2017). Removal of natural organic matter (NOM) and its constituents from water by adsorption–a review. *Chemosphere*, 166, 497-510.
- Bigall, N. C., Härtling, T., Klose, M., Simon, P., Eng, L. M., and Eychmüller, A. (2008). Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties. *Nano Letters*, 8(12), 4588-4592.
- Borthakur, P., Boruah, P. K., Darabdhara, G., Sengupta, P., Das, M. R., Boronin, A. I., et al. (2016). Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. *Journal of Environmental Chemical Engineering*, 4(4, Part A), 4600-4611.
- Busca, G., and Lorenzelli, V. (1982). Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. *Materials Chemistry*, 7(1), 89-126.
- Byrne, C., Subramanian, G., and Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. *Journal of Environmental Chemical Engineering*, 6(3), 3531-3555.
- Carbajo, J., Tolosana-Moranchel, A., Casas, J. A., Faraldos, M., and Bahamonde, A. (2018). Analysis of photoefficiency in TiO₂ aqueous suspensions: Effect of titania hydrodynamic particle size and catalyst loading on their optical properties. *Applied Catalysis B: Environmental*, 221, 1-8.
- Castillo, N. C., Heel, A., Graule, T., and Pulgarin, C. (2010). Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO₄ with visible-light photocatalytic activity. *Applied Catalysis B: Environmental*, 95(3-4), 335-347.

- Cecchini, M. M., Charnay, C., De Angelis, F., Lamaty, F., Martinez, J., and Colacino, E. (2014). Poly (ethylene glycol)-Based Ionic Liquids: Properties and Uses as Alternative Solvents in Organic Synthesis and Catalysis. *ChemSusChem*, 7(1), 45-65.
- Cen, W., Xiong, T., Tang, C., Yuan, S., and Dong, F. (2014). Effects of morphology and crystallinity on the photocatalytic activity of (BiO)₂CO₃ nano/microstructures. *Industrial & Engineering Chemistry Research*, 53(39), 15002-15011.
- Chamyani, S., Salehirad, A., Oroujzadeh, N., and Fateh, D. S. (2018). Effect of fuel type on structural and physicochemical properties of solution combustion synthesized CoCr₂O₄ ceramic pigment nanoparticles. *Ceramics International*, 44(7), 7754-7760.
- Chauque, E. F. C., Adelodun, A. A., Dlamini, L. N., Greyling, C. J., Ray, S. C., and Ngila, J. C. (2017). Synthesis and photocatalytic application of TiO₂ nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. *Materials Chemistry and Physics*, 192, 108-124.
- Chen, C.-L., Zhang, P., and Rosi, N. L. (2008). A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. *Journal of the American Chemical Society*, 130(41), 13555-13557.
- Chen, D., Wang, Z., Ren, T., Ding, H., Yao, W., Zong, R., et al. (2014). Influence of defects on the photocatalytic activity of ZnO. *The Journal of Physical Chemistry C*, 118(28), 15300-15307.
- Choi, E., Cho, I.-H., and Park, J. (2004). The effect of operational parameters on the photocatalytic degradation of pesticide. *Journal of Environmental Science and Health, Part B*, 39(1), 53-64.
- Choi, J., Kim, B., Song, S.-H., and Park, J.-S. (2016). A composite cathode with undoped LaFeO₃ for protonic ceramic fuel cells. *International Journal of Hydrogen Energy*, 41(22), 9619-9626.
- Chu, A., Qin, M., Jiang, X., Zhang, L., Jia, B., Lu, H., et al. (2013). Preparation of TiN nanopowder by carbothermal reduction of a combustion synthesized precursor. *Materials Characterization*, 81, 76-84.
- Clancy, J., McCuin, R., Palmer, T., and Willis, J. (2002). Chemical Water and Wastewater Treatment VII.

- Comninellis, C., Kapalka, A., Malato, S., Parsons, S. A., Poulios, I., and Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(6), 769-776.
- Cruz-Morató, C., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barceló, D., Marco-Urrea, E., Vicent, T., et al. (2013). Degradation of pharmaceuticals in nonsterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. *Water research*, 47(14), 5200-5210.
- Cui, D., Zhang, H., He, R., and Zhao, M. (2016). The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge. *International journal of environmental research and public health*, 13(11), 1053.
- Dąbrowski, A. (2001). Adsorption—from theory to practice. *Advances in colloid and interface science*, 93(1-3), 135-224.
- Dang, H. T., and Millis, A. J. (2013). Theory of ferromagnetism in vanadium-oxide based perovskites. *Physical Review B*, 87(15), 155127.
- Danks, A., Hall, S., and Schnepp, Z. (2016). The evolution of 'sol-gel'chemistry as a technique for materials synthesis. *Material Horizons*, 3(2), 91-112.
- Das, N., and Kandimalla, S. (2017). Application of perovskites towards remediation of environmental pollutants: an overview. *International Journal of Environmental Science and Technology*, 14(7), 1559-1572.
- Davies, J., and Binner, J. G. P. (2000). Coagulation of electrosterically dispersed concentrated alumina suspensions for paste production. *Journal of the European Ceramic Society*, 20(10), 1555-1567.
- De Lasa, H., and Ibrahim, H. (2004). Photocatalytic reactor and method for destruction of organic air-borne pollutants: Google Patents.
- De Lasa, H., Serrano, B., and Salaices, M. (2005). Establishing photocatalytic kinetic rate equations: basic principles and parameters. *Photocatalytic Reaction Engineering* (pp. 1-15).
- De Melo, B. A. G., Motta, F. L., and Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. *Materials Science and Engineering: C*, 62, 967-974.

- Deganello, F. (2017). Nanomaterials for environmental and energy applications prepared by solution combustion based-methodologies: Role of the fuel. *Materials Today: Proceedings*, 4(4, Part E), 5507-5516.
- Deganello, F., Liotta, L. F., Marcì, G., Fabbri, E., and Traversa, E. (2013). Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. *Materials for Renewable and Sustainable Energy*, 2(1), 8.
- Deganello, F., and Tyagi, A. K. (2018). Solution combustion synthesis, energy and environment: Best parameters for better materials. *Progress in Crystal Growth and Characterization of Materials*, 64(2), 23-61.
- Deng, Y., and Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. *Current Pollution Reports*, 1(3), 167-176.
- Dhinesh Kumar, R., and Jayavel, R. (2014). Facile hydrothermal synthesis and characterization of LaFeO3 nanospheres for visible light photocatalytic applications. *Journal of Materials Science: Materials in Electronics*, 25(9), 3953-3961.
- Domingos, R. F., Rafiei, Z., Monteiro, C. E., Khan, M. A., and Wilkinson, K. J. Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. *Environmental Chemistry*, 10(4), 306-312.
- Dong, S., Feng, J., Fan, M., Pi, Y., Hu, L., Han, X., et al. (2015). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. *Rsc Advances*, 5(19), 14610-14630.
- Duan, X., Sun, H., and Wang, S. (2018). Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Accounts of Chemical Research, 51(3), 678-687.
- Dunphy Guzman, K. A., Finnegan, M. P., and Banfield, J. F. (2006). Influence of surface potential on aggregation and transport of titania nanoparticles. *Environmental science & technology*, 40(24), 7688-7693.
- El-Shazly, A. N., Rashad, M. M., Abdel-Aal, E. A., Ibrahim, I. A., El-Shahat, M. F., and Shalan, A. E. (2016). Nanostructured ZnO photocatalysts prepared via surfactant assisted Co-Precipitation method achieving enhanced photocatalytic activity for the degradation of methylene blue dyes. *Journal of Environmental Chemical Engineering*, 4(3), 3177-3184.

- Fabris, R., Chow, C. W., Drikas, M., and Eikebrokk, B. (2008). Comparison of NOM character in selected Australian and Norwegian drinking waters. *Water research*, 42(15), 4188-4196.
- Fakoussa, R., and Frost, P. (1999). In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. *Applied microbiology* and biotechnology, 52(1), 60-65.
- Figueiredo, R., Andrade, H. M. C., and Fierro, J. (1998). The Role of the Coprecipitation Sequence of Salt Precursors on the Genesis of Cu-ZnO-Al₂O₃ Catalysts: Synthesis, Characterization and Activity for Low Temperature Shift Reaction. *Brazilian Journal of Chemical Engineering*, 15(2).
- Figueiredo, S. A., Loureiro, J., and Boaventura, R. (2005). Natural waste materials containing chitin as adsorbents for textile dyestuffs: Batch and continuous studies. *Water Research*, 39(17), 4142-4152.
- French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., and Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. *Environmental science & technology*, 43(5), 1354-1359.
- Gasia, J., Miró, L., and Cabeza, L. F. (2017). Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements. *Renewable and Sustainable Energy Reviews*, 75, 1320-1338.
- Ge, S., Jia, H., Zhao, H., Zheng, Z., and Zhang, L. (2010). First observation of visible light photocatalytic activity of carbon modified Nb₂O₅ nanostructures. *Journal of Materials Chemistry*, 20(15), 3052-3058.
- Ghazanfari, M. R., Kashefi, M., and Jaafari, M. R. (2016). Investigation of stabilization mechanism and size controlling of Fe₃O₄ nanoparticles using anionic chelating agents. *Applied Surface Science*, 375, 50-56.
- Gnanaprakasam, A., Sivakumar, V., and Thirumarimurugan, M. (2015). Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. *Indian Journal of Materials Science*, 2015.
- Gosavi, P. V., and Biniwale, R. B. (2010). Pure phase LaFeO₃ perovskite with improved surface area synthesized using different routes and its characterization. *Materials Chemistry and Physics*, 119(1), 324-329.

- Gregory, J., and Duan, J. (2001). Hydrolyzing metal salts as coagulants. *Pure and Applied Chemistry*, 73(12), 2017-2026.
- Grøn, C., Wassenaar, L., and Krog, M. (1996). Origin and structures of groundwater humic substances from three Danish aquifers. *Environment international*, 22(5), 519-534.
- Guo, H., Ke, Y., Wang, D., Lin, K., Shen, R., Chen, J., et al. (2013). Efficient adsorption and photocatalytic degradation of Congo red onto hydrothermally synthesized NiS nanoparticles. *Journal of Nanoparticle Research*, 15(3), 1475.
- Guo, K., Chen, H.-H., Guo, X., Yang, X.-X., Xu, F.-F., and Zhao, J.-T. (2010). Morphology investigation of yttrium aluminum garnet nano-powders prepared by a sol-gel combustion method. *Journal of Alloys and Compounds*, 500(1), 34-38.
- Habibi, M. H., Hassanzadeh, A., and Mahdavi, S. (2005). The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO₂ suspensions. *Journal of Photochemistry and Photobiology A: Chemistry*, 172(1), 89-96.
- Hakki, H. K., Allahyari, S., Rahemi, N., and Tasbihi, M. (2018). The role of thermal annealing in controlling morphology, crystal structure and adherence of dip coated TiO₂ film on glass and its photocatalytic activity. *Materials Science in Semiconductor Processing*, 85, 24-32.
- Hao, X., and Zhang, Y. (2017). Low temperature gel-combustion synthesis of porous nanostructure LaFeO₃ with enhanced visible-light photocatalytic activity in reduction of Cr(VI). *Materials Letters*, 197, 120-122.
- Hashem, A. M., Abdel-Ghany, A. E., Abuzeid, H. M., El-Tawil, R. S., Indris, S., Ehrenberg, H., et al. (2018). EDTA as chelating agent for sol-gel synthesis of spinel LiMn₂O₄ cathode material for lithium batteries. *Journal of Alloys and Compounds*, 737, 758-766.
- He, K., Zhao, C., Zhao, G., and Han, G. (2015). Effects of pore size on the photocatalytic activity of mesoporous TiO₂ prepared by a sol-gel process. *Journal of Sol-Gel Science and Technology*, 75(3), 557-563.
- He, L., Tong, Z., Wang, Z., Chen, M., Huang, N., and Zhang, W. (2018). Effects of calcination temperature and heating rate on the photocatalytic properties of

ZnO prepared by pyrolysis. *Journal of Colloid and Interface Science*, 509, 448-456.

- Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., et al. (2019). The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. *Chemical Reviews*, 119(8), 4819-4880.
- Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., and Kimoto, M. (2008). Global projections of changing risks of floods and droughts in a changing climate. *Hydrological Sciences Journal*, 53(4), 754-772.
- Hosseini, S. Y., and Khosravi Nikou, M. R. (2014). Investigation of different precipitating agents effects on performance of γ-Al₂O₃ nanocatalysts for methanol dehydration to dimethyl ether. *Journal of Industrial and Engineering Chemistry*, 20(6), 4421-4428.
- Hu, R., Li, C., Wang, X., Sun, Y., Jia, H., Su, H., et al. (2012). Photocatalytic activities of LaFeO₃ and La₂FeTiO₆ in p-chlorophenol degradation under visible light. *Catalysis Communications*, 29, 35-39.
- Idrees, M., Nadeem, M., Siddiqi, S. A., Ahmad, R., Hussnain, A., and Mehmood, M. (2015). The organic residue and synthesis of LaFeO₃ by combustion of citrate and nitrate precursors. *Materials Chemistry and Physics*, 162, 652-658.
- Itoh, M., Wang, R., Inaguma, Y., Yamaguchi, T., Shan, Y., and Nakamura, T. (1999). Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. *Physical Review Letters*, 82(17), 3540.
- Jaouali, I., Hamrouni, H., Moussa, N., Nsib, M. F., Centeno, M. A., Bonavita, A., et al. (2018). LaFeO₃ ceramics as selective oxygen sensors at mild temperature. *Ceramics International*, 44(4), 4183-4189.
- Ji, K., Dai, H., Deng, J., Song, L., Xie, S., and Han, W. (2013). Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO₃ for toluene combustion. *Journal of Solid State Chemistry*, 199, 164-170.
- Jiang, F., Zheng, S., An, L., and Chen, H. (2012). Effect of calcination temperature on the adsorption and photocatalytic activity of hydrothermally synthesized TiO₂ nanotubes. *Applied Surface Science*, 258(18), 7188-7194.
- Jiao, X., Sokolov, S. V., Tanner, E. E., Young, N. P., and Compton, R. G. (2017). Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates. *Physical Chemistry Chemical Physics*, 19(1), 64-68.

- Kalinina, E., Efimov, A., and Safronov, A. (2016). The influence of nanoparticle aggregation on formation of ZrO₂ electrolyte thin films by electrophoretic deposition. *Thin Solid Films*, 612, 66-71.
- Karimi, L., Zohoori, S., and Yazdanshenas, M. E. (2014). Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. *Journal of Saudi Chemical Society*, 18(5), 581-588.
- Kaur, J., and Singhal, S. (2014). Heterogeneous photocatalytic degradation of rose bengal: Effect of operational parameters. *Physica B: Condensed Matter*, 450, 49-53.
- Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., and Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant degradation A review. *Journal of Environmental Management*, 198, 78-94.
- Khaledi, A. G., Afshar, S., and Jahromi, H. S. (2012). Improving ZnAl₂O₄ structure by using chelating agents. *Materials Chemistry and Physics*, 135(2), 855-862.
- Khalik, W. F., Ho, L.-N., Ong, S.-A., and Wong, Y.-S. (2015). Decolorization and mineralization of batik wastewater through solar photocatalytic process. *Sains Malaysiana*, 44(4), 607-612.
- Kim, H.-C., Lee, W. M., Lee, S., Choi, J., and Maeng, S. K. (2017). Characterization of organic precursors in DBP formation and AOC in urban surface water and their fate during managed aquifer recharge. *Water research*, 123, 75-85.
- Klaysri, R., Wichaidit, S., Tubchareon, T., Nokjan, S., Piticharoenphun, S., Mekasuwandumrong, O., et al. (2015). Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO₂ and Si-doped TiO₂. *Ceramics International*, 41(9, Part A), 11409-11417.
- Kojima, M., Sakuragi, H., and Tokumaru, K. (1981). The role of oxygen as an electron acceptor in dimerization of some styrene derivatives. *Tetrahedron Letters*, 22(30), 2889-2892.
- Kołodyńska, D. (2011). Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. *Expanding issues in desalination*.
- Komova, O. V., Simagina, V. I., Mukha, S. A., Netskina, O. V., Odegova, G. V., Bulavchenko, O. A., et al. (2016). A modified glycine-nitrate combustion

method for one-step synthesis of LaFeO₃. Advanced Powder Technology, 27(2), 496-503.

- Korotcenkov, G. (2008). The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. *Materials Science and Engineering: R: Reports*, 61(1), 1-39.
- Korotta-Gamage, S. M., and Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. *Chemosphere*, 167, 120-138.
- Kumar, M., Srikanth, S., Ravikumar, B., Alex, T., and Das, S. K. (2009). Synthesis of pure and Sr-doped LaGaO₃, LaFeO₃ and LaCoO₃ and Sr, Mg-doped LaGaO₃ for ITSOFC application using different wet chemical routes. *Materials Chemistry and Physics*, 113(2-3), 803-815.
- Kumar, R. D., Thangappan, R., and Jayavel, R. (2017). Synthesis and characterization of LaFeO₃/TiO₂ nanocomposites for visible light photocatalytic activity. *Journal of Physics and Chemistry of Solids*, 101, 25-33.
- Kumar, S. G., and Rao, K. K. (2015). Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. *Rsc Advances*, 5(5), 3306-3351.
- Lakshminarasimhan, N., Bokare, A. D., and Choi, W. (2012). Effect of Agglomerated State in Mesoporous TiO₂ on the Morphology of Photodeposited Pt and Photocatalytic Activity. *The Journal of Physical Chemistry C*, 116(33), 17531-17539.
- Lee, K. M., Lai, C. W., Ngai, K. S., and Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. *Water research*, 88, 428-448.
- Lee, K. T., Lidie, A. A., Jeon, S. Y., Hitz, G. T., Song, S. J., and Wachsman, E. D. (2013). Highly functional nano-scale stabilized bismuth oxides via reverse strike co-precipitation for solid oxide fuel cells. *Journal of Materials Chemistry A*, 1(20), 6199-6207.
- Lee, Y. Y., Jung, H. S., and Kang, Y. T. (2017). A review: Effect of nanostructures on photocatalytic CO₂ conversion over metal oxides and compound semiconductors. *Journal of CO₂ Utilization*, 20, 163-177.

- Levchuk, I., Rueda Márquez, J. J., and Sillanpää, M. (2018). Removal of natural organic matter (NOM) from water by ion exchange A review. *Chemosphere*, 192, 90-104.
- Li, F.-t., Ran, J., Jaroniec, M., and Qiao, S. Z. (2015). Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. *Nanoscale*, 7(42), 17590-17610.
- Li, F., Zhang, L., Hu, C., Xing, X., Yan, B., Gao, Y., et al. (2019). Enhanced azo dye decolorization through charge transmission by σ-Sb³⁺- azo complexes on amorphous Sb₂S₃ under visible light irradiation. *Applied Catalysis B: Environmental*, 240, 132-140.
- Li, G., Lv, L., Fan, H., Ma, J., Li, Y., Wan, Y., et al. (2010). Effect of the agglomeration of TiO₂ nanoparticles on their photocatalytic performance in the aqueous phase. *Journal of Colloid and Interface Science*, 348(2), 342-347.
- Li, L., Xu, M., Chen, Z., Zhou, X., Zhang, Q., Zhu, H., et al. (2015b). Highperformance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. *Electrochimica Acta*, 174, 446-455.
- Li, S., Jing, L., Fu, W., Yang, L., Xin, B., and Fu, H. (2007). Photoinduced charge property of nanosized perovskite-type LaFeO₃ and its relationships with photocatalytic activity under visible irradiation. *Materials Research Bulletin*, 42(2), 203-212.
- Liang, Q., Jin, J., Liu, C., Xu, S., and Li, Z. (2017). Constructing a novel p-n heterojunction photocatalyst LaFeO₃/g-C₃N₄ with enhanced visible-light-driven photocatalytic activity. *Journal of Alloys and Compounds*, 709, 542-548.
- Liao, D. L., and Liao, B. Q. (2007). Shape, size and photocatalytic activity control of TiO₂ nanoparticles with surfactants. *Journal of Photochemistry and Photobiology A: Chemistry*, 187(2), 363-369.
- Lin, H.-Y., Chen, Y.-F., and Chen, Y.-W. (2007). Water splitting reaction on NiO/InVO₄ under visible light irradiation. *International Journal of Hydrogen Energy*, 32(1), 86-92.

- Lipczynska-Kochany, E. (2018). Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. *Science of The Total Environment*, 640-641, 1548-1565.
- Liu, J., Jia, Q., Long, J., Wang, X., Gao, Z., and Gu, Q. (2018). Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C₃N₄ photocatalyst. *Applied Catalysis B: Environmental*, 222, 35-43.
- Liu, J., Jin, Q., Wang, S., Yu, P., Zhang, C., Luckhardt, C., et al. (2018). An insight into formation mechanism of rapid chemical Co-precipitation for synthesizing yttrium iron garnet nano powders. *Materials Chemistry and Physics*, 208, 169-176.
- Liu, R., Zhao, Y., Huang, R., Zhao, Y., and Zhou, H. (2010). Multiferroic ferrite/perovskite oxide core/shell nanostructures. *Journal of Materials Chemistry*, 20(47), 10665-10670.
- Liu, T., and Xu, Y. (2011). Synthesis of nanocrystalline LaFeO₃ powders via glucose sol-gel route. *Materials Chemistry and Physics*, 129(3), 1047-1050.
- Lu, J., Dong, W., Ji, Y., Kong, D., and Huang, Q. (2016). Natural organic matter exposed to sulfate radicals increases its potential to form halogenated disinfection byproducts. *Environmental science & technology*, 50(10), 5060-5067.
- Ma, J., Wu, H., Liu, Y., and He, H. (2014). Photocatalytic Removal of NO_x over Visible Light Responsive Oxygen-Deficient TiO₂. *The Journal of Physical Chemistry C*, 118(14), 7434-7441.
- Ma, X., Chen, P., Zhou, M., Zhong, Z., Zhang, F., and Xing, W. (2017). Tight Ultrafiltration Ceramic Membrane for Separation of Dyes and Mixed Salts (both NaCl/Na₂SO₄) in Textile Wastewater Treatment. *Industrial & Engineering Chemistry Research*, 56(24), 7070-7079.
- Machida, M., Yabunaka, J.-i., and Kijima, T. (2000). Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa₂O₇ (Ln= La, Pr, Nd, and Sm). *Chemistry of Materials*, 12(3), 812-817.
- Maghsoodloo, S., Noroozi, B., Haghi, A. K., and Sorial, G. A. (2011). Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon. *Journal of Hazardous Materials*, 191(1), 380-387.

- Mahlambi, M. M., Ngila, C. J., and Mamba, B. B. (2015). Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles—a review. *Journal of Nanomaterials*, 2015, 5.
- Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., and Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. *Chemosphere*, 83(11), 1431-1442.
- Matilainen, A., Vepsäläinen, M., and Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 159(2), 189-197.
- Mazzarolo, A., Lee, K., Vicenzo, A., and Schmuki, P. (2012). Anodic TiO₂ nanotubes: Influence of top morphology on their photocatalytic performance. *Electrochemistry Communications*, 22, 162-165.
- McLaren, A., Valdes-Solis, T., Li, G., and Tsang, S. C. (2009). Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. *Journal of the American Chemical Society*, 131(35), 12540-12541.
- Mendonça, T. M., Tavares, P. B., Correia, J. G., Lopes, A. M. L., Darie, C., and Araújo, J. P. (2011). The urea combustion method in the preparation of precursors for high-TC single phase HgBa₂Ca₂Cu₃O₈^{+δ} superconductors. *Physica C: Superconductivity*, 471(23), 1643-1646.
- Menya, E., Olupot, P. W., Storz, H., Lubwama, M., and Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. *Chemical Engineering Research and Design*, 129, 271-296.
- Mera, A. C., Váldes, H., Jamett, F. J., and Meléndrez, M. F. (2017). BiOBr microspheres for photocatalytic degradation of an anionic dye. *Solid State Sciences*, 65, 15-21.
- Miller, M. E., McKinnon, L. P., and Walker, E. B. (2015). Quantitative measurement of metal chelation by fourier transform infrared spectroscopy. *Analytical Chemistry Research*, 6, 32-35.
- Mohora, E., Rončević, S., Dalmacija, B., Agbaba, J., Watson, M., Karlović, E., et al. (2012). Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. *Journal of hazardous materials*, 257-264.

- Mutalib, M. A., Aziz, F., Jamaludin, N. A., Yahya, N., Ismail, A. F., Mohamed, M. A., et al. (2018). Enhancement in photocatalytic degradation of methylene blue by LaFeO₃-GO integrated photocatalyst-adsorbents under visible light irradiation. *Korean Journal of Chemical Engineering*, 35(2), 548-556.
- Nagy, D., Szilágyi, I. M., Firkala, T., and Xianfeng, F. (2016). Study about the morphology effect on the photo-efficiency of WO₃. *European Chemical Bulletin*, 5(2), 40-42.
- Nakayama, S. (2001). LaFeO₃ perovskite-type oxide prepared by oxide-mixing, coprecipitation and complex synthesis methods. *Journal of Materials Science*, 36(23), 5643-5648.
- Nkambule, T., Krause, R., Haarhoff, J., and Mamba, B. (2012). Natural organic matter (NOM) in South African waters: NOM characterisation using combined assessment techniques. *Water SA*, 38(5), 697-706.
- Nowack, B., and Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. *Environmental pollution*, 150(1), 5-22.
- Ong, C. B., Ng, L. Y., and Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. *Renewable and Sustainable Energy Reviews*, 81, 536-551.
- Pal, S., Bandyopadhyay, A., Mukherjee, S., Samaddar, B., and Pal, P. (2010). Effect of agglomeration during coprecipitation: delayed spinellization of magnesium aluminate hydrate. *Bulletin of Materials Science*, 33(4), 451-456.
- Palmer, F. L., Eggins, B. R., and Coleman, H. M. (2002). The effect of operational parameters on the photocatalytic degradation of humic acid. *Journal of Photochemistry and Photobiology A: Chemistry*, 148(1), 137-143.
- Pang, H., Wei, C., Li, X., Li, G., Ma, Y., Li, S., et al. (2014). Microwave-assisted synthesis of NiS₂ nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H₂ production. *Scientific reports*, 4, 3577.
- Parida, K., Reddy, K., Martha, S., Das, D., and Biswal, N. (2010). Fabrication of nanocrystalline LaFeO₃: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. *International journal* of hydrogen energy, 35(22), 12161-12168.
- Parida, K. M., Reddy, K. H., Martha, S., Das, D. P., and Biswal, N. (2010). Fabrication of nanocrystalline LaFeO₃: An efficient sol-gel auto-combustion

assisted visible light responsive photocatalyst for water decomposition. International Journal of Hydrogen Energy, 35(22), 12161-12168.

- Park, J., Jin, T., Liu, C., Li, G., and Yan, M. (2016). Three-Dimensional Graphene– TiO₂ Nanocomposite Photocatalyst Synthesized by Covalent Attachment. ACS Omega, 1(3), 351-356.
- Patterson, A. (1939). The Scherrer formula for X-ray particle size determination. *Physical review*, 56(10), 978.
- Pei, D., and Luan, J. (2012). Development of visible light-responsive sensitized photocatalysts. *International Journal of Photoenergy*, 2012.
- Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., et al. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. *Applied Catalysis B: Environmental*, 125, 331-349.
- Peng, K., Fu, L., Yang, H., and Ouyang, J. (2016). Perovskite LaFeO₃/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. *Scientific reports*, 6, 19723.
- Pereyma, V. Y., Klimov, O. V., Prosvirin, I. P., Gerasimov, E. Y., Yashnik, S. A., and Noskov, A. S. (2018). Effect of thermal treatment on morphology and catalytic performance of NiW/Al₂O₃ catalysts prepared using citric acid as chelating agent. *Catalysis Today*, 305, 162-170.
- Pflugmacher, S., Pietsch, C., Rieger, W., and Steinberg, C. E. W. (2006). Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum. *Science of The Total Environment*, 357(1), 169-175.
- Phan, T. T. N., Nikoloski, A. N., Bahri, P. A., and Li, D. (2018). Optimizing photocatalytic performance of hydrothermally synthesized LaFeO₃ by tuning material properties and operating conditions. *Journal of Environmental Chemical Engineering*, 6(1), 1209-1218.
- Pirhashemi, M., Habibi-Yangjeh, A., and Rahim Pouran, S. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visiblelight-driven photocatalysts. *Journal of Industrial and Engineering Chemistry*, 62, 1-25.

- Piticescu, R. M., Vilarnho, P., Popescu, L. M., & Piticescu, R. R. (2006). Hydrothermal synthesis of perovskite based materials for microelectronic applications. *Journal of optoelectronics and advanced materials*, 8(2), 543
- Ponraj, C., G, V., and Daniel, J. (2017). A review on the visible light active BiFeO₃ nanostructures as suitable photocatalyst in the degradation of different textile dyes. *Environmental Nanotechnology, Monitoring & Management, 7*, 110-120.
- Pourrezaei, P., Drzewicz, P., Wang, Y., Gamal El-Din, M., Perez-Estrada, L. A., Martin, J. W., et al. (2011). The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water. *Environmental science & technology*, 45(19), 8452-8459.
- Prier, C. K., Rankic, D. A., and MacMillan, D. W. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. *Chemical reviews*, 113(7), 5322-5363.
- Priyadharsini, N., Rupa Kasturi, P., Shanmugavani, A., Surendran, S., Shanmugapriya, S., and Kalai Selvan, R. (2018). Effect of chelating agent on the sol-gel thermolysis synthesis of LiNiPO₄ and its electrochemical properties for hybrid capacitors. *Journal of Physics and Chemistry of Solids*, 119, 183-192.
- Qi, X., Zhou, J., Yue, Z., Gui, Z., and Li, L. (2003). Auto-combustion synthesis of nanocrystalline LaFeO3. *Materials Chemistry and Physics*, 78(1), 25-29.
- Rajaeiyan, A., and Bagheri-Mohagheghi, M. (2013). Comparison of sol-gel and coprecipitation methods on the structural properties and phase transformation of γ and α -Al₂O₃ nanoparticles. *Advances in Manufacturing*, 1(2), 176-182.
- Rajaeiyan, A., and Bagheri-Mohagheghi, M. (2013). Comparison of Urea and Citric Acid Complexing Agents and Annealing Temperature Effect on the Structural Properties of γ- and α-Alumina Nanoparticles Synthesized by Sol-Gel Method. Advances in Materials Science and Engineering, 2013.
- Rajamanickam, D., and Shanthi, M. (2016). Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. *Arabian Journal of Chemistry*, 9, S1858-S1868.
- Ramos-Delgado, N. A., Gracia-Pinilla, M. A., Mangalaraja, R. V., O'Shea, K., and Dionysiou, D. D. (2016). Industrial synthesis and characterization of nanophotocatalysts materials: titania. *Nanotechnology reviews*, 5(5), 467-479.

- Rashid, S., Gondal, M., Hameed, A., Aslam, M., Dastageer, M., Yamani, Z., et al. (2015). Synthesis, characterization and visible light photocatalytic activity of Cr³⁺, Ce³⁺ and N co-doped TiO₂ for the degradation of humic acid. *RSC Advances*, 5(41), 32323-32332.
- Rauf, M., Meetani, M., and Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO₂ doped with selective transition metals. *Desalination*, 276(1-3), 13-27.
- Sadeghzadeh-Attar, A. (2018). Efficient photocatalytic degradation of methylene blue dye by SnO₂ nanotubes synthesized at different calcination temperatures. *Solar Energy Materials and Solar Cells*, 183, 16-24.
- Sadeghzadeh-Attar, A., and Bafandeh, M. (2018). The effect of annealing temperature on the structure and optical properties of well-aligned 1D SnO₂ nanowires synthesized using template-assisted deposition. *CrystEngComm*, 20(4), 460-469.
- Saleh, T. A., Tuzen, M., and Sarı, A. (2017). Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. *Journal of Environmental Chemical Engineering*, 5(3), 2853-2860.
- Samoila, P., Slatineanu, T., Postolache, P., Iordan, A. R., and Palamaru, M. N. (2012). The effect of chelating/combustion agent on catalytic activity and magnetic properties of Dy doped Ni–Zn ferrite. *Materials Chemistry and Physics*, 136(1), 241-246.
- Santhosh Kumar, M., Eyssler, A., Hug, P., van Vegten, N., Baiker, A., Weidenkaff, A., et al. (2010). Elucidation of structure–activity relationships of model three way catalysts for the combustion of methane. *Applied Catalysis B: Environmental*, 94(1), 77-84.
- Saravanan, R., Gracia, F., and Stephen, A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. Nanocomposites for Visible Light-induced Photocatalysis (pp. 19-40).
- Sarkar, A., Ghosh, A. B., Saha, N., Srivastava, D. N., Paul, P., and Adhikary, B. (2016). Enhanced photocatalytic performance of morphologically tuned Bi₂S₃
 NPs in the degradation of organic pollutants under visible light irradiation. *Journal of Colloid and Interface Science*, 483, 49-59.
- Serrano, M., Montesinos, I., Cardador, M., Silva, M., and Gallego, M. (2015). Seasonal evaluation of the presence of 46 disinfection by-products throughout

a drinking water treatment plant. *Science of the Total Environment*, 517, 246-258.

- Shen, H., Xue, T., Wang, Y., Cao, G., Lu, Y., and Fang, G. (2016). Photocatalytic property of perovskite LaFeO₃ synthesized by sol-gel process and vacuum microwave calcination. *Materials Research Bulletin*, 84, 15-24.
- Shen, H. L., Hu, H. H., Liang, D. Y., Meng, H. L., Li, P. G., Tang, W. H., et al. (2012). Effect of calcination temperature on the microstructure, crystallinity and photocatalytic activity of TiO₂ hollow spheres. *Journal of Alloys and Compounds*, 542, 32-36.
- Shi, J., and Guo, L. (2012). ABO₃-based photocatalysts for water splitting. *Progress in Natural Science: Materials International*, 22(6), 592-615.
- Shi, X., Wang, J., and Cai, X. (2012). Effects of EDTA and boric acid on the morphology of CaCO₃ particles. *Journal of Nanomaterials*, 2012, 2.
- Shukla, K., and Srivastava, V. C. (2017). Diethyl carbonate synthesis by ethanolysis of urea using Ce-Zn oxide catalysts. *Fuel Processing Technology*, 161, 116-124.
- Sillanpää, M., and Matilainen, A. (2015). Chapter 6 NOM Removal by Advanced Oxidation Processes. M. Sillanpää (Ed.), *Natural Organic Matter in Water* (pp. 159-211): Butterworth-Heinemann.
- Sillanpää, M., Ncibi, M. C., and Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. *Journal of Environmental Management*, 208, 56-76.
- Sillanpää, M., Ncibi, M. C., Matilainen, A., and Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review. *Chemosphere*, 190, 54-71.
- Singh, I., and Birajdar, B. (2017). Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO₂ nano-powder prepared via a solvent-controlled non-aqueous sol–gel route. *RSC Advances*, 7(85), 54053-54062.
- Siwińska-Stefańska, K., Zdarta, J., Paukszta, D., and Jesionowski, T. (2015). The influence of addition of a catalyst and chelating agent on the properties of titanium dioxide synthesized via the sol-gel method. *Journal of Sol-Gel Science and Technology*, 75(2), 264-278.

- Skuja, L., Streletsky, A., and Pakovich, A. (1984). A new intrinsic defect in amorphous SiO₂: twofold coordinated silicon. *Solid state communications*, 50(12), 1069-1072.
- Smith, J., and Hong-Shum, L. (2011). Food additives data book: John Wiley & Sons.
- Smith, K., Liu, S., Liu, Y., and Guo, S. (2018). Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change. *Renewable and Sustainable Energy Reviews*, 91, 41-58.
- Sobana, N., and Swaminathan, M. (2007). The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. *Separation and Purification Technology*, 56(1), 101-107.
- Song, J., Fan, Q., Zhu, W., Wang, R., and Dong, Z. (2016). Preparation of BiOCl with high specific surface area and excellent visible light photocatalytic activity. *Materials Letters*, 165, 14-18.
- Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions: John Wiley & Sons.
- Subramaniam, M. N., Goh, P. S., Abdullah, N., Lau, W. J., Ng, B. C., and Ismail, A. F. (2017). Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. *Journal of Nanoparticle Research*, 19(6), 220.
- Suhas, Gupta, V. K., Carrott, P. J. M., Singh, R., Chaudhary, M., and Kushwaha, S. (2016). Cellulose: A review as natural, modified and activated carbon adsorbent. *Bioresource Technology*, 216, 1066-1076.
- Sun, D., Wang, T., Xu, Y., Li, R., and Sato, T. (2015). Hierarchical bismuth oxychlorides constructed by porous nanosheets: Preparation, growth mechanism, and application in photocatalysis. *Materials Science in Semiconductor Processing*, 31, 666-677.
- Suteu, D., and Zaharia, C. (2008). Removal of textile reactive dye Brilliant Red HE-3B onto materials based on lime and coal ash. Book of Proceedings of 4th International Textile, Clothing & Design Conference–Magic World of Textiles, 1118-1123.
- Szkoda, M., Siuzdak, K., and Lisowska-Oleksiak, A. (2016). Non-metal doped TiO₂ nanotube arrays for high efficiency photocatalytic decomposition of organic

species in water. *Physica E: Low-dimensional Systems and Nanostructures*, 84, 141-145.

- Tabesh, S., Davar, F., and Loghman-Estarki, M. R. (2017). The effects of chelating agent type on the morphology and phase evolutions of alumina nanostructures. *Ceramics International*, 43(13), 10247-10252.
- Tahir, M., and Amin, N. S. (2013). Advances in visible light responsive titanium oxide-based photocatalysts for CO₂ conversion to hydrocarbon fuels. *Energy Conversion and Management*, 76, 194-214.
- Tahir, M. B., Nabi, G., Iqbal, T., Sagir, M., and Rafique, M. (2018). Role of MoSe₂ on nanostructures WO₃-CNT performance for photocatalytic hydrogen evolution. *Ceramics International*, 44(6), 6686-6690.
- Tahir, M. B., Nabi, G., Rafique, M., and Khalid, N. (2017). Nanostructured-based WO₃ photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment. *International Journal of Environmental Science and Technology*, 14(11), 2519-2542.
- Talebian, N., Amininezhad, S. M., and Doudi, M. (2013). Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. *Journal of Photochemistry and Photobiology B: Biology*, 120, 66-73.
- Tang, P., Tong, Y., Chen, H., Cao, F., and Pan, G. (2013). Microwave-assisted synthesis of nanoparticulate perovskite LaFeO₃ as a high active visible-light photocatalyst. *Current Applied Physics*, 13(2), 340-343.
- Thirumalairajan, S., Girija, K., Ganesh, I., Mangalaraj, D., Viswanathan, C., Balamurugan, A., et al. (2012a). Controlled synthesis of perovskite LaFeO₃ microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity. *Chemical engineering journal*, 209, 420-428.
- Thirumalairajan, S., Girija, K., Ganesh, V., Mangalaraj, D., Viswanathan, C., and Ponpandian, N. (2012b). Novel synthesis of LaFeO3 nanostructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. *Crystal Growth & Design*, 13(1), 291-302.

- Thuy, N. T., and Minh, D. L. (2012). Size effect on the structural and magnetic properties of nanosized perovskite LaFeO₃ prepared by different methods. *Advances in Materials Science and Engineering*, 2012.
- Tijare, S. N., Joshi, M. V., Padole, P. S., Mangrulkar, P. A., Rayalu, S. S., and Labhsetwar, N. K. (2012). Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO₃ perovskite. *International Journal of Hydrogen Energy*, 37(13), 10451-10456.
- Tišma, M., Zelić, B., and Vasić-Rački, Đ. (2010). White-rot fungi in phenols, dyes and other xenobiotics treatment-a brief review. *Croatian journal of food science and technology*, 2(2.), 34-47.
- Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., et al. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. *Carbohydrate polymers*, 113, 115-130.
- Venkatachalam, N., Palanichamy, M., Arabindoo, B., and Murugesan, V. (2007). Enhanced photocatalytic degradation of 4-chlorophenol by Zr⁴⁺ doped nano TiO₂. *Journal of Molecular Catalysis A: Chemical*, 266(1), 158-165.
- Volkova, A., Molodkina, L., Golikova, E., Ermakova, L., and Bogdanova, N. (2014). Aggregation stability of a positively charged γ-Al₂O₃ sol prepared from an air-dry nanopowder. *Colloid Journal*, 76(4), 395-407.
- Von Wandruszka, R. (2000). Humic acids: Their detergent qualities and potential uses in pollution remediation. *Geochemical Transactions*, 1(1), 10.
- Wang, C.-C., Lee, C.-K., Lyu, M.-D., and Juang, L.-C. (2008). Photocatalytic degradation of C.I. Basic Violet 10 using TiO₂ catalysts supported by Y zeolite: An investigation of the effects of operational parameters. *Dyes and Pigments*, 76(3), 817-824.
- Wang, G.-S., Kang, S.-F., Yang, H.-J., Pai, S.-Y., and Chen, H.-W. (2002). Removal of dissolved natural organic matter from source water with alum coagulation. *Environmental technology*, 23(12), 1415-1423.
- Wang, K., Niu, H., Chen, J., Song, J., Mao, C., Zhang, S., et al. (2016). Facile Synthesis of CeO₂-LaFeO₃ Perovskite Composite and Its Application for 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK) Degradation. *Materials*, 9(5), 326.

- Wang, P., Fan, C., Wang, Y., Ding, G., and Yuan, P. (2013). A dual chelating solgel synthesis of BaTiO₃ nanoparticles with effective photocatalytic activity for removing humic acid from water. *Materials Research Bulletin*, 48(2), 869-877.
- Wang, X., Yang, C., Zhou, D., Wang, Z., and Jin, M. (2018). Chemical Coprecipitation Synthesis and properties of pure-phase BiFeO₃. *Chemical Physics Letters*.
- Wang, X., Yu, J. C., Ho, C., Hou, Y., and Fu, X. (2005). Photocatalytic activity of a hierarchically macro/mesoporous titania. *Langmuir*, 21(6), 2552-2559.
- Wang, Y.-w., Yuan, P.-H., Fan, C.-M., Wang, Y., Ding, G.-Y., and Wang, Y.-F. (2012). Preparation of zinc titanate nanoparticles and their photocatalytic behaviors in the photodegradation of humic acid in water. *Ceramics International*, 38(5), 4173-4180.
- Wang, Y., Li, L., Zhang, Y., Zhang, N., Fang, S., and Li, G. (2017). Crystalline-toamorphous transformation of tantalum-containing oxides for a superior performance in unassisted photocatalytic water splitting. *International Journal of Hydrogen Energy*, 42(33), 21006-21015.
- Wang, Y., Zhang, L., Deng, K., Chen, X., and Zou, Z. (2007). Low temperature synthesis and photocatalytic activity of rutile TiO₂ nanorod superstructures. *The Journal of Physical Chemistry C*, 111(6), 2709-2714.
- Wawrzkiewicz, M. (2014). Anion-Exchange Resins for C.I. Direct Blue 71 Removal from Aqueous Solutions and Wastewaters: Effects of Basicity and Matrix Composition and Structure. *Industrial & Engineering Chemistry Research*, 53(29), 11838-11849.
- Wei, H., Gao, B., Ren, J., Li, A., and Yang, H. (2018). Coagulation/flocculation in dewatering of sludge: a review. *Water research*.
- Wei, Y., Zhao, Z., Jiao, J., Liu, J., Duan, A., and Jiang, G. (2015). Facile synthesis of three-dimensionally ordered macroporous LaFeO₃-supported gold nanoparticle catalysts with high catalytic activity and stability for soot combustion. *Catalysis Today*, 245, 37-45.
- Wei, Z., Kowalska, E., Verrett, J., Colbeau-Justin, C., Remita, H., and Ohtani, B. (2015). Morphology-dependent photocatalytic activity of octahedral anatase particles prepared by ultrasonication–hydrothermal reaction of titanates. *Nanoscale*, 7(29), 12392-12404.

WHO. (2005). Trihalomethanes in Drinking-water

- Wu, H.-C., Lin, Y.-S., and Lin, S.-W. (2013). Mechanisms of visible light photocatalysis in n-doped anatase TiO₂ with oxygen vacancies from GGA. *International Journal of Photoenergy*, 2013.
- Wu, K., Shen, D., Meng, Q., and Wang, J. (2018). Octahedral Co₃O₄ particles with high electrochemical surface area as electrocatalyst for water splitting. *Electrochimica Acta*, 288, 82-90.
- Wu, L., Jimmy, C. Y., Zhang, L., Wang, X., and Li, S. (2004). Selective selfpropagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. *Journal of Solid State Chemistry*, 177(10), 3666-3674.
- Wu, Y., Wang, H., Tu, W., Liu, Y., Tan, Y. Z., Yuan, X., et al. (2018b). Quasipolymeric construction of stable perovskite-type LaFeO₃/g-C₃N₄ heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid pn heterojunction interfacial effect. *Journal of hazardous materials*, 347, 412-422.
- Xiang, S., Zhang, Z., Gong, C., Wu, Z., Sun, L., Ye, C., et al. (2018). LaFeO₃ nanoparticle-coupled TiO₂ nanotube array composite with enhanced visible light photocatalytic activity. *Materials Letters*, 216, 1-4.
- Xiao, F., Yi, P., Pan, X.-R., Zhang, B.-J., and Lee, C. (2010). Comparative study of the effects of experimental variables on growth rates of aluminum and iron hydroxide flocs during coagulation and their structural characteristics. *Desalination*, 250(3), 902-907.
- Xu, H., Dong, J., and Chen, C. (2014). One-step chemical bath deposition and photocatalytic activity of Cu₂O thin films with orientation and size controlled by a chelating agent. *Materials Chemistry and Physics*, 143(2), 713-719.
- Yahya, N., Aziz, F., Jamaludin, N. A., A. Mutalib, M., Ismail, A. F., W. Salleh, W. N., et al. (2018). A review of integrated photocatalyst adsorbents for wastewater treatment. *Journal of Environmental Chemical Engineering*. 6(6), 7411-7425.
- Yang, C., Yu, J., Li, Q., and Yu, Y. (2017). Facile synthesis of monodisperse porous ZnO nanospheres for organic pollutant degradation under simulated sunlight irradiation: The effect of operational parameters. *Materials Research Bulletin*, 87, 72-83.

- Yang, L., Hakki, A., Wang, F., and Macphee, D. E. (2018a). Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement. *Applied Catalysis B: Environmental*, 222, 200-208.
- Yang, R., Li, D., Li, A., and Yang, H. (2018b). Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. *Applied Clay Science*, 151, 20-28.
- Yang, X., Qin, J., Jiang, Y., Li, R., Li, Y., and Tang, H. (2014). Bifunctional TiO₂/Ag₃PO₄/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. *Rsc Advances*, 4(36), 18627-18636.
- Yang, X., Zheng, X., Wu, L., Cao, X., Li, Y., Niu, J., et al. (2018c). Interactions between algal (AOM) and natural organic matter (NOM): Impacts on their photodegradation in surface waters. *Environmental Pollution*, 242, 1185-1197.
- Yao, L., and He, J. (2014). Recent progress in antireflection and self-cleaning technology – From surface engineering to functional surfaces. *Progress in Materials Science*, 61, 94-143.
- Yaremko, Z. M., Tkachenko, N. H., Bellmann, C., and Pich, A. (2006). Redispergation of TiO₂ particles in aqueous solutions. *Journal of Colloid and Interface Science*, 296(2), 565-571.
- Yi, S., Cui, J., Li, S., Zhang, L., Wang, D., and Lin, Y. (2014). Enhanced visiblelight photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties. *Applied Surface Science*, 319, 230-236.
- Yoon, C., and Cocke, D. L. (1986). Potential of amorphous materials as catalysts. *Journal of non-crystalline solids*, 79(3), 217-245.
- Yu, J. C., Zhang, L., Zheng, Z., and Zhao, J. (2003). Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. *Chemistry of Materials*, 15(11), 2280-2286.
- Yun, H. J., Lee, H., Joo, J. B., Kim, W., and Yi, J. (2009). Influence of aspect ratio of TiO₂ nanorods on the photocatalytic decomposition of formic acid. *The Journal of Physical Chemistry C*, 113(8), 3050-3055.

- Zahmatkesh, M., Spanjers, H., Toran, M., Blánquez, P., and van Lier, J. (2016). Bioremoval of humic acid from water by white rot fungi: exploring the removal mechanisms. *AMB Express*, 6(1), 118.
- Zhai, J., and Bakker, E. (2016). Complexometric titrations: new reagents and concepts to overcome old limitations. *Analyst*, 141(14), 4252-4261.
- Zhang, C., and Zhu, Y. (2005). Synthesis of square Bi₂WO₆ nanoplates as highactivity visible-light-driven photocatalysts. *Chemistry of Materials*, 17(13), 3537-3545.
- Zhang, J., Fu, X., Hao, H., and Gan, W. (2018). Facile synthesis 3D flower-like Ag@WO₃ nanostructures and applications in solar-light photocatalysis. *Journal of Alloys and Compounds*, 757, 134-141.
- Zhang, W., Yang, J., and Li, C. (2018). Role of thermal treatment on sol-gel preparation of porous cerium titanate: Characterization and photocatalytic degradation of ofloxacin. *Materials Science in Semiconductor Processing*, 85, 33-39.
- Zhang, Y., Zheng, R., Zhao, J., Ma, F., Zhang, Y., and Meng, Q. (2014). Characterization of-treated rice husk adsorbent and adsorption of copper (II) from aqueous solution. *BioMed research international*, 2014.
- Zhao, L.-M., Shi, L.-E., Zhang, Z.-L., Chen, J.-M., Shi, D.-D., Yang, J., et al. (2011).
 Preparation and application of chitosan nanoparticles and nanofibers.
 Brazilian Journal of Chemical Engineering, 28(3), 353-362.
- Zhao, S., Liu, T., Zheng, S., Zeng, W., Li, T., Zhang, Y., et al. (2016). One-pot synthesis of novel one-dimensional bismuth oxychloride nanotube. *Materials Letters*, 168, 13-16.
- Zhao, S., Wang, Y., Wang, L., and Jin, Y. (2017). Preparation, characterization and catalytic application of hierarchically porous LaFeO₃ from a pomelo peel template. *Inorganic Chemistry Frontiers*, 4(6), 994-1002.
- Zheng, W., Liu, R., Peng, D., and Meng, G. (2000). Hydrothermal synthesis of LaFeO3 under carbonate-containing medium. *Materials Letters*, 43(1), 19-22.
- Zhu, G., Zheng, H., Zhang, Z., Tshukudu, T., Zhang, P., and Xiang, X. (2011). Characterization and coagulation-flocculation behavior of polymeric aluminum ferric sulfate (PAFS). *Chemical Engineering Journal*, 178, 50-59.

- Zhu, Y. F., Liu, W. L., Wu, A. H., Feng, Z. Q., Wang, C. Y., and Xu, J. (2013). Synthesis of LaFeO₃ Nano-Powders by Self-Propagating Combustion Method of Sol-Gel. *Key Engineering Materials*, 17-20.
- Zhuravlev, V. D., Bamburov, V. G., Beketov, A. R., Perelyaeva, L. A., Baklanova, I. V., Sivtsova, O. V., et al. (2013). Solution combustion synthesis of α-Al₂O₃ using urea. *Ceramics International*, 39(2), 1379-1384.