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ABSTRACT

This study aimed to design a mililiter range bioreactor (MRS) prototype and evaluate the
performance of this MRB using lactose (milk) hydrolysis enzymatic reaction. A scaling down
approach was used in performing biocatalysis experiments using immobilized enzymes in a stirred
MRB system, due to uneven distribution in packed bed reactor and cost effective way in enzyme
application. Poly-methyl methacrylate polymer was utilized as raw material for fabrication of MRS
vessel. Impellers were designed using computer-aided design software and fabricated using 3D
printer. Online monitoring system of MRS was set-up via LabVIEW software. The MRB was
integrated with agitation motor, heating element, inlet and outlet control system. The feasibility of
MRS was evaluated through lactose hydrolysis reaction using immobilized ~-galactosidase. The
enzyme was immobilized on alginate beads and stirred in MRB system with a working volume
between 12 tol5 mL. The effects of temperatu re (27°C and 40°C), agitation speed (150, 250 and
300 rpm) and different types of impellers (T-shape, five-bladed turbine, paddle and edge beater
blade impeller) on the glucose yield and rate of reaction were investigated to obtain an optimum
lactose hydrolysis. The rate of reaction was calculated by measuring glucose production throughout
the reaction. The sample was analyzed using glucose analyzer and high performance liquid
chromatography. Performance of MRS was benchmarkedwith a bench-top stirred tank bioreactor
(STR) system (volume of 250-450 mL). The bench-top STR used different types of impeller
namely pitch blade turbine, Rushton turbine, marine propeller and pitch paddle. Kinetics study of
the lactose hydrolysis was performed using Michaelis Menten model while kinetic adsorption
model was used for immobilized ~-galactosidase . Results showed that MRS with T-shape impeller
system at temperature of 40°C and agitation speed of 150 rpm under batch operating mode was the
best condition in achieving high yield of glucose. The rate of reaction increased about 25% w/vas
the agitation speed increased from 150 rpm to 250 rpm. At constant agitation speed (250 rpm), rate
of reaction increased double from 27°C to 400C. MRB with T-shape impeller at 40°C and250 rpm
was the best condition that resulted in the highest enzymatic rate of reaction of 0.23±0.03 mg/rnin,
The result obtained showed that MRS can be utilized for lactose hydrolysis with 6% w/v more
glucose production compared to bench-top STR. The kinetic adsorption models showed that all the
samples were following Pseudo second order model. The Michaelis-Menten constants K; and Vm

for the immobilized enzyme have been determined at 0.07 mM and 3.22 mol ONP min'! mg
enzyme, respectively . From this study, it can be concluded that the MRS has improved liquid­
phase mass transfer and it is feasible to be used for lactose hydrolysis using stirred immobilized­
enzyme beads system.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

 Bioreactor is a device that is manufactured specifically to facilitate various types of 

biological processes. These include microbial fermentation (Schäpper et al., 2009), 

enzymatic reaction (Newman et al., 2013), and biodiesel (Diao et al., 2008). Contrary to 

microbial fermentation and cultivation of animal cells, experimentation pertaining to 

enzymatic reactions are very straight forward to be executed using a bioreactor. Enzymatic 

reactions are initiated simply by the addition of enzyme cocktails into the desired 

substrates and it does not have to be conducted under aseptic conditions. In enzymatic 

reactions, substrates are normally degraded (or in a more general term–‘chopped-apart’) 

into smaller compounds by catalytic action of the enzymes. Enzymes are very specific 

(tendency to act on specific substrates) and its rate of reaction is highly dependent on the 

environment condition such as pH, temperature, enzyme-to-substrates ratio, etc. (Mendes 

et al., 2012). The use of enzymes in large scale is however limited by their high production 

cost and stability. In laboratory scale, often a small quantity of enzymes are used for 

research work and experiments are carried out typically using a microtiter plates platform 

(Nunes et al., 2013). Since the working volume of a microtiter plate unit is very low 

(normally in few hundreds microliter), the cost of enzymes needed per experiment can be 

significantly reduced; thus, allowing for an extensive research work at affordable cost. 

Despite the low running cost, translating the experimental findings from a microtiter plates 
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platform into a larger scale operation in a bioreactor device is difficult (Kumar et al., 

2004a). Although, the optimal environmental factors affecting the enzymatic reactions can 

be duplicated for larger scale operation, but the hydrodynamics of a bioreactorare 

completely different compared to microtiter plate (or shake flask). Furthermore, using 

microtiter plates would not allow one to explore the possibility of performing the 

enzymatic reactions using an advanced bioprocessing approach such as membrane systems 

or column packed with immobilized-enzymes.   

 

 In recent years, there have been a growing interest in the development of a 

miniature bioreactor system to facilitate biocatalyst processes (enzymatic reactions) (Kloke 

et al., 2010). Miniature bioreactors are technically a direct copy of a classical bioreactor 

system. Literature shows that the working volume of a miniature bioreactor system (or a 

milliliter range bioreactor, MRB) is typically between 5 and 20 milliliters. The size of 

MRB is at least ten-fold larger than a microbioreactor system but still much smaller than a 

shake flask unit (50 mL). MRB system can be integrated with various sensors and 

actuators analogy to a standard bioreactor operation. This feature brings benefit to many 

researchers as a variety of biological experiments can be carried out inexpensively. Owing 

to MRB low running cost and small volumes, a high throughput experimental data can be 

obtained and most importantly, it offers the possibility for a direct scale-up to a larger scale 

bioreactor operation.  

 

 In industry, enzymes are often reused or recycled to reduce the operating cost. 

Popular methods for recycling of enzymes is either by immobilizing the enzymes on a 

suitable supports or performing the enzymatic reactions using a membrane bioreactor 

systems (Jochems et al., 2011). Both methods have pros and cons. For instance, in an 

immobilized enzyme system, enzymes can be reused for a number of cycles, however mass 

transfer issue associated with a packed column bioreactor system hinders maximum 

productivity (Panesar et al., 2011). As for a membrane bioreactor system, concentration 

polarization issue will have a negative impact on product separation and hence, may inhibit 

overall reaction yield (Sen et al., 2011).  

 

The aim of this project was to overcome the mass transfer limitation normally 

encountered in a packed column immobilized enzyme bioreactor system. Enzymes was 

immobilized on suitable beads/supports; however, instead of packing these immobilized 
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enzymes in a column, the enzymes was stirred homogenously using a typical stirred tank 

bioreactor design; similar to a free-form enzyme system. The bioreactor size was scaled 

down to a milliliter range volumes in order to reduce the operation cost. The miniature 

bioreactor system designed for the work was equipped with the necessary stirring, 

pumping and temperature control capacity in order to accommodate the chosen enzymatic 

reactions. The work also emphasised on the mixing feature of the bioreactor in achieving a 

good mixing for the immobilized enzymes and the potential of applying such approach in 

industry as compared to the typical packed column bioreactor system.  

 

 

 

 

1.2 Problem Statement 

 

 

A free-form enzyme system is referred to a classical method in performing 

enzymatic reaction where enzymes are directly mixed with the substrates. In theory, this 

would warrant a good rate of reaction due to high contact times. However, the enzymes 

applied would not be possible to be reused – less cost effective system particularly in large 

scale operation. Due to this reason, many opt for an immobilized enzyme bioreactor 

system as one of the alternatives, since enzymes are immobilized and packed within the 

column, allowed for a lengthy operation and offered the possibility of reusing the enzymes 

for several times (or cycles) as long as the enzyme activity remains reasonably high. In a 

packed bed bioreactor (PBR), despite the advantages, there are few issues with the 

immobilized enzyme bioreactor system. These include uneven distribution of feed 

(substrates) in the column and difficulty in achieving a uniform temperature distribution 

throughout the reaction. Since there is no active mixing element that is present in a PBR, 

uniform heat distribution within the bioreactor is rather difficult to be achieved. This may 

lead to an undesirable temperature gradient between the central part and the side wall of 

the bioreactor if a thermostated water is being circulated in the jacketed layer of the 

bioreactor. Preheating the substrates before feeding it into the bioreactor is another option 

for maintaining a desirable working temperature. 
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As the work is to propose a bioreactor system that could overcome a mass transfer 

limitation of an immobilized-enzymes system, it also has to be cost effective. In this 

regards, the working volume was reduced down to milliliter range. Contrary to the small 

scale bioreactor system such as microtiter plates and/or shake flasks, mixing in a small 

volume bioreactor system is analogy to a typical bioreactor operation where mixing is 

achieved using an impeller system. Moreover, it is also difficult to integrate online 

monitoring features in microtiter plates and/or shake flasks operation platform because the 

whole unit is under a shaking condition. This is however not the case for a miniature 

bioreactor system. In brief, this work aimed to overcome the mass transfer limitation of 

immobilized-enzyme beads system using a milliliter range bioreactor equipped with 

control monitoring system.  

 

 

 

 

1.3 Objectives of the Research 

 

 

The main objectives of this study were as follows: 

 

1) To design a milliliter range bioreactor (MRB) prototype for improved liquid-phase 

mass transfer of immobilized-enzyme beads system. 

2) To analyze the effects of different design of impellers, heat transfer of heating 

element and online monitoring system of MRB. 

3) To evaluate the usefulness of the MRB in a lactose hydrolysis reaction using a 

stirred immobilized-enzyme (β-galactosidase) beads system. 
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1.4 Scope of the Research  

 

 

The following scopes were performed to achieve the objectives of this study: 

 

1. Establishment of a milliliter range bioreactor(MRB)prototype with working 

volume of 15 mL. The bioreactor was integrated with basic features to perform 

enzymatic reactions. These include temperature control, stirring and pump to 

facilitate continuous bioreactor operation.  

a) Fabrication of the MRB prototype using a poly-methyl methacrylate (PMMA) 

polymer to reduce the cost of fabrication.  

b) Establishment of mixing mechanism for immobilized-enzyme beads system in a 

stirred bioreactor using a 3D printed impeller design where Acrylonitrile 

butadiene styrene (ABS) was used as material for the 3D printing.  

c) Design of various types of impeller namely T-shape, five-bladed turbine, 

paddle and edge beater blade impeller by using Computer Aided Design (CAD) 

software. 

d) Determination of the mixing times and evaluation of the mixing patterns for  

T-shape, five-bladed turbine, paddle and edge beater blade impeller designs at 

agitation rate of 150 rpm. A concentrated fluorescence dye was used as tracer 

for the mixing experiments.  

e) Mixing experiments in bioreactor system with larger working volume (bench-

top stirred tank bioreactor (STR)) (250 mL and 400 mL) using different types 

of impellers namely pitch blade turbine, Rushton turbine marine propeller and 

pitch paddle were conducted as control.  

2. Evaluation of the performance of the MRB in carrying out lactosehydrolysis 

using immobilized β-galactosidase. The experiments were performed using 

different types of impeller (T-shape, five-bladed turbine, paddle and edge beater 

blade), agitation speed (150 rpm and 250 rpm) and at different temperature (27 

ºC and 40 ºC). The kinetic reaction of lactose hydrolysis was monitored ased on 

glucose production.  

a) Analysis of shape and morphology of the immobilized enzyme bead using 

portable digital microscope before and after reaction.  
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b) Investigation on the enzyme kinetic with the best parameter (T-shape impeller; 

250 rpm agitation speed; 40 ºC) in MRB to verify the effectiveness of the 

design. The analysis of lactose and glucose was performed with glucose 

analyzer and high performance liquid chromatography (HPLC). 

c) Comparison of the MRB (15 mL) performance with bench-top STR (250 mL 

and 450 mL) in terms of production of glucose from lactose hydrolysis using 

immobilized β-galactosidase.  

d) Investigation of kinetic of adsorption in immobilized enzyme using two 

different kinetic models i.e., i) pseudo-first order and ii) pseudo-second-order to 

describe adsorption in the batch bioreactor (MRB and bench-top STR). The 

model was used to describe the nature of adsorption between the substrate and 

immobilized enzyme beads.  

e) Determination of β-galactosidase activity at 40ºC using enzyme assay which 

was measured with spectrophotometer. Kinetic of β-galactosidase was 

calculated with Michaelis Menten model. 

 

 

 

 

1.5 Significance of the Study  

 

 

The design of MRB introduces a low cost bioreactor system.It is low cost because 

it is made of polymers and operated with only 15mLof substrate/enzyme per experiment. It 

is also easy to handle and the data obtained in the MRB are readily translated to a larger 

scale of operation. In microtiter plate operation or shake flasks, mixing is based on shaking 

principle. On the contrary, in MRB, mixing scheme analogy to an industrial scale 

bioreactor is implemented. In this manner, the hydrodynamics of the MRB can be assumed 

to be at least almost similar to what usually obtained in the larger bioreactor system. The 

proposed miniature bioreactor design has the capacity to change the mixing mechanism 

using various impeller designs to best fit any reaction in mind. 
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 Meanwhile, an enzymatic reaction in MRB used a free form immobilized beads 

that will provide high contact time and optimum enzymatic reaction. Immobilize enzyme 

in MRB mimics the conventional bioreactor and could overcome limitations found in 

shake flasks and microtitre plate, by maximizing the enzyme activity. Especially with the 

3D printer, it gives flexibility and composite drawing in designing various types of 

impellers. In addition, the miniature impeller from the 3D printer can provide favourable 

mixing properties as compared to the conventional impeller.  

 

As a matter of fact, MRB has been shown to be applicable to perform lactose 

hydrolysis of milk utilizing immobilized-enzyme beads system in an MRB. The feasibility 

of MRB can be applied using other biocatalystsfor other hydrolysis reactions. Moreover, 

online control system could provide kinetic and efficiency of the reaction by manipulating; 

temperature, flow rate and agitation speed. MRB can be adopted and adapted as teaching 

material in laboratories and preliminary study in research and development by academia.   
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