
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 10, No. 2, May 2018, pp. 641~647 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v10.i2.pp641-647      641 

  

Journal homepage: http://iaescore.com/journals/index.php/ijeecs 

Novel Metamaterial Structures with Low Loss at Millimeter 

Wave Frequency Range 
 

 

B. A. F. Esmail
1
, H. A. Majid

2
, S. H. Dahlan3, Z. Z. Abidin4, M. K. A. Rahim5, R. Dewan6 

1,2Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia 

3,4Research Centre for Applied Electromagnetic, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia 
5,6Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 9, 2017 

Revised Jan 22, 2018 

Accepted Feb 21, 2018 

 

 Two novel millimeter-wave (MMW) metamaterials (MTMs) unit cells operate 

at 28 GHz for a future fifth generation (5G) mobile network applications had 

been designed, presented and numerically investigated. Two MTM structures 

are proposed; namely the double E-shaped resonator (DER) and T-U shaped 

resonator (TUSR). The DER and TUSR are consists of a double E and 

combined T-U shaped, each printed on front side of the substrate layer 

respectively. DER achieves a bandwidth of 0.5 GHz and a return loss of -34 

dB, whereas TUSR features a bandwidth of 0.3 GHz and a return loss of -18 

dB. The conventional split range resonator (SRR) was optimized to operate at 

similar frequency for comparison purpose. The simulation results revealed that 

the proposed DER and TUSR unit cells achieves the lowest loss as opposed to 

literature with -0.09 dB (0.99 in linear scale) and -0.23 dB (0.97 in linear scale) 

respectively. Moreover, a well-known algorithm was used to extract the 

constitutive parameters and the double negative nature of the two novel MTM 

structures is proven. 
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1. INTRODUCTION 

MTMs are artificial materials with unique responses to electromagnetic wave (EM). The MTMs are 

designed arbitrarily to realize many noteworthy properties such as the negative refractive index and the inverse 

Doppler shift due to the negative permittivity and permeability[1]. In 1967, these unnatural properties of the 

material were proven theoretically by Russian scientist Veselago and implemented in the experimentally stage 

by Pendry in 1998. [2,3]. Experimental results by Pendry depicting new phenomena and found numerous 

applications for these artificial materials such as the cloaking phenomena [4], perfect absorbers [5] and to 

enhance the performance and miniaturise the antenna [6-8]. In the literature, several techniques and processes 

had been usd to investigate and enhance the MTMs. However, the performance of the MTMs suffer from its 

narrow bandwidth and inherent MTMs losses that limits their spectrum applications and late enable MTMs 

based devices.  

At a high-frequency range such as millimeter wave (MMW) band, MTMs experience high losses [9] 

whereas, the losses are very low and the unique electromagnetic properties of the MTMs can still be achieved 

within the microwave band. The losses gives negative influences and adverse effects toward the realizations of 

the extraordinary EM properties of the MTMs. Hence, the introduction of novel MTM structures with low loss 

is highly demanded to enable MTMs based devices, especially at the high-frequency range.  



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 10, No. 2, May 2018 :  641 – 647 

642 

In the literature, several possible strategies for overcoming the issue of high losses in MTMs had been 

proposed such as the tailoring geometry of MTMs unit cell [10,11], exhibit electromagnetically induced 

transparency (EIT) phenomena [12], using active devices [13]. On the other hand, the availability of wide 

bandwidth, high speed and high capacity of MMW band make it as a suitable choice for many applications 

such as in the gigabit wireless communications, imaging sensors, and deep space communications [14,15]. 

These advantages make this band as the best candidate for 5G cellular networks by exploiting the enormous 

amount of spectrum to greatly increase communication capacity[16]. 

In this paper, two novel MTMs structures are designed, investigated and simulated at 28 GHz. The 

Split Ring Resonator (SRR) unit cell is optimized at the same frequency to compare the results. The proposed 

DER and TUSR structures show a very high performance than the conventional SRR structure at the 

corresponding frequency regions by providing the highest transmission peak, 𝑆21, as reported in the literature. 

Morever, the new structures can be used to tilt the main beam of the 5G antenna by loading the novel unit cells 

on the substrate of the antenna to produce different values of refractive index. 

 

 

2. RESEARCH METHOD 

2.1 Design of The Novel MTM Structures 

The configuration of the DER and TUSR unit cells are shown in Figure 1(a) and (b). DER unit cell 

consists of double E-shaped at the front face of the structure. The T-shape and U-shape are combined to form 

TUSR unit cell. The inductance and capacitance effect has been introduced by the closed square loops and gaps 

of the two MTM structures, respectively. The resonant characteristic of the two MTM structures can be 

controlled by proper arrangement of these two paramters. 

 

 
Figure 1. Metamaterial Structure of the a) Proposed DER Unit cell b) Proposed TUSR Unit Cell  

c) Conventional SRR Unit Cell with Dimensions of X= 3.6,Y= 3.7,X1= 3.3,Y1= 3.4, U= 0.25,W= 0.2 and 

G= 0.1.All the Dimension in mm. 

 

 

For comparison purpose, SRR unit cell is introduced and depicted in Figure 1(c). The DER, TUSR 

and conventional SRR are constructed on the substrate (Rogers RT5880) with a thickness of 0.254 mm, relative 

permittivity 2.2 and a tangent loss of 0.0009. Table 1 shows the parameters dimensions of the two new designs 

and the optimized SRR dimensions are described in the caption of Figure 1(c). The lossy metal copper is the 

metallic layer of the three structures with the thickness of 0.035 mm. The ports and boundary conditions are 
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assigned to excite the EM wave and to extract the effective constitutive parameters of the proposed unit-

cells.The perfect magnetic conducting (PMC) and the perfect electric conducting (PEC) boundary conditions 

are applied along the X- and Y-axis, respectively. The two waveguide ports are located in the z-direction. The 

CST Microwave Studio based finite integration technique had been used to simulate the three MTM structures 

in the time domain solver. 

 

 

Table 1. The DER and TUSR Dimensions at 28 GHz 
DER unit cell TUSR unit cell 

Parameter  Value (mm) Parameter Value (mm) 

X 3.4 X 3.4 

Y 3.5 Y 3.5 

Y1 2.6 X1 3 

Y2 0.77 Y1 2.1 

X1 1.6 W 0.25 

W 0.25 G 0.35 

G 0.35   

 

 

3. NUMERICAL RESULTS AND DISCUSSION  

3.1 Return Loss 

The implementation of the two new MTM structures and the conventional SRR unit cell that operate 

at MMW frequency range is described in this section in terms of the reflection coefficient. The two new 

structures are proposed to operate at 28 GHz band which is the candidate band for 5G technology.The 

conventional SRR is optimized to operate at the same frequency for the comparison purpose. The return 

loss,𝑆11 of the DER and TUSR and SRR unit cells is revealed in Figure 2. It can be seen that the DER unit cell 

achieves the best reflection coefficient and bandwidth over other unit cells where the reflection coefficient was 

-34 dB with a bandwidth of 0.5 GHz at 28 GHz. On the other hand, the proposed TUSR and the conventional 

SRR unit cells introduce a bandwidth of 0.3 GHz and 0.14 GHz, respectively. In comparison with the 

conventional SRR, our proposed structures present better results despite the common drawback of the narrow 

bandwidth of MTMs. 
 

 

 
 

Figure 2. Reflection Coefficients, 𝑆11 of the Proposed DER and TUSR and Conventional SRR Unit Cells 

 

 

3.2 Low Loss MTMs 

The MTM losses is a great challenge in the real environment due to its applications limitations, 

especially at high frequency range. The losses in MTMs at MMW frequency range are a big issue and the 

seeking for a low-loss structure at this range is highly demanded to enable the MTMs based devices. In this 

subsection, the losses of the proposed and the conventional MTM structures at 28 GHz are analyzed and 

numerically investigated. The insertion loss (𝑆21) is used to measure the losses of the MTM structures. For low 

loss, the near zero (0) dB in (dB scale) or near one (1) in (linear scale) of the transmission peak is highly 
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demanded at the desired frequency. Figure 3 displays the transmission coefficients, 𝑆21, of the proposed DER 

and TUSR unit cells and the conventional SRR structure.  

As can be seen from Figure 3, the loss in the proposed DER unit cell is relatively smaller due to the 

proper geometrical arrangement where it achieves -0.09 dB (0.99 in linear scale). This shows that the proposed 

unit cell achieves nearly the full transmission at the resonant frequency, 28 GHz. Otherwise, the TUSR unit 

cell introduces a loss of -0.23 dB (0.97 in linear scale). The DER and TUSR unit cells present the lowest loss 

in comparison with the recent literature [17]. However, the highest loss is produced by the conventional SRR 

which is approximately -1 dB (0.9 in linear scale). 

 

 

 

 

Figure 3. Transmission Coefficients, 𝑆21 of Proposed DER and TUSR and Conventional SRR Unit Cells  

 

 

The constitutive parameters are retrieved using the robust method as described in [18]. In this method, 

the effective refractive index 𝑛 and the impedance 𝑧 are first obtained from the extracted complex reflection 

and transmission coefficients as follows: 

 

𝑧 = √
(1+𝑆11)2−𝑆21

2

(1−𝑆11)2−𝑆21
2        (1) 

 

𝑒𝑖𝑛𝑘𝑑 =
𝑆21

1−𝑆11
𝑧−1

𝑧+1

        (2) 

 

The refractive index is given by  

 

𝑛 =
1

𝑘𝑑
[{𝐼𝑚𝑔[ln (𝑒𝑖𝑛𝑘𝑜𝑑)] + 2𝑚𝜋} − 𝑖[Re(ln(𝑒𝑖𝑛𝑘𝑜𝑑))]]    (3) 

 

Where 𝑘𝑜the wave number and 𝑑 is is the thickness of the MTM structure. 𝑛 is the refractive index; 

z is the impedance and 𝑚 is the branch of the sinusoidal function periodicity. Then the permittivity and 

permeability can be calculated as follows: 

 

 =
𝑛

𝑧
          (4) 

 

μ = n ×  z         (5) 

 
Figure 4 depicts the real parts of the refractive index, 𝑛 of the proposed DER, TUSR, and conventional 

SRR unit cells. The double negative nature is verified here by the negative refractive index, 𝑛 at the 28 GHz 

for all three-unit cells. The negative 𝑛 is the most interesting classes of MTMs due to the possibility of 
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diffraction unlimited imaging. We discuss the negative refractive index in the range of 25 to 30 GHz as 

displayed in Figure 4. It is observed that the TUSR unit cell presents two regions of negative 𝑛 below and 

above the 28 GHz while the DER structure displays region of negative 𝑛 above the resonant frequency. On the 

other hand, the negative 𝑛 area is above the 28 GHz for SRR unit cell. 

 

 

 
 

Figure 4. Real Parts Refractive Index of Proposed DER and TUSR and Conventional SRR Unit Cells 

 

 

4. CONCLUSION  

In conclusion, two novel MTM structures which are DER and TUSR are designed and numerically 

investigated at 28 GHz which is the candidate band for 5G mobile network applications. The SRR unit cell is 

optimized to operate at the same frequency for comparison purpose. The DER, TUSR and SRR cells present 

bandwidth of 0.5 GHz , 0.3 GHz and 0.14 GHz, respectively. Moreover, DER and TUSR provide low loss by 

-0.09 dB (0.99 in linear scale) and -0.23 dB (0.97 in linear scale), respectively in comparison with SRR where 

the loss is -1 dB (0.9 in linear scale). In addition, the double negative nature of the two novel MTM structures 

and conventional SRR unit cell is proven using a well-known algorithm where the real parts of the 𝑛 are 

negative at the resonant frequency. The proposed unit cells can be loaded to the 5G antenna to steer the main 

beam. 
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