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ABSTRACT 

 

 

 

 

Inadequate hole cleaning often leads to challenges in drilling operations such 

as poor cuttings lifting that causes pipe sticking, losing tools, and difficulties in 

liner/casing placements. Designing a drilling mud with improved rheological 

properties that are facing minimal degradation under high temperature conditions 

would be a better solution to increase cuttings transportation efficiency. Static tests 

which included rheological properties, fluid loss, and fluid flow behaviour of the 

drilling mud with and without nanosilica were examined according to API standards.  

This study also involved dynamic tests which investigated the performance of 

nanosilica in degraded and non-degraded water-based drilling muds to improve 

cuttings lifting in inclined drilling operations. This research uses a jacketed mixing 

tank with a capacity of 200 litres and an operating temperature of up to 482℉ 

(250℃) to degrade drilling mud with and without nanosilica before testing them at 

ambient condition in a flow loop. Simulated cuttings of irregular shape and sizes 

ranging from 1.4 to 4.0 mm were used. Different inclination angles (0, 30, 60, and 

90°) have been considered in the dynamic tests with and without pipe rotation (120, 

150, and 180 rpm) to simulate the drilling conditions in a wellbore. It was found that 

the presence of nanosilica has increased the cuttings transportation efficiency (CTE) 

in all experiments. Results indicate that the presence of nanosilica in mud increases 

the colloidal interactions with cuttings and contributes to improvements in CTE by 

30.8 to 44%. At elevated temperatures, 12 ppg muds performed better than 9 ppg 

muds. However, after adding the optimum concentration of nanosilica of 1.0 ppb (by 

weight), the CTE improvement for 9 ppg muds was higher than that for the 12 ppg 

muds. The presence of nanosilica improves the CTE at elevated temperatures 

because the distribution of nanosilica in the mud is able to withstand the heat in high 

temperature conditions thus improving CTE when comparing to mud without 

nanosilica. The introduction of nanosilica in water-based drilling fluids shows 

promising results in hole cleaning process which will enable them to be used in 

extended reach drilling operations. 
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ABSTRAK 

 

 

 

 

Pembersihan lubang penggerudian yang tidak mencukupi sering membawa 

kepada cabaran dalam operasi penggerudian seperti pengangkatan keratan batu yang 

tidak memuaskan akan menyebabkan paip melekat, kehilangan alat, dan kesulitan 

dalam penempatan pelapisan/kelongsong. Mereka bentuk lumpur penggerudian 

dengan sifat-sifat reologi yang lebih baik yang mengalami kemerosotan minimum di 

bawah keadaan suhu tinggi akan menjadi penyelesaian terbaik untuk meningkatkan 

kecekapan pengangkutan keratan. Ujian statik yang merangkumi sifat-sifat reologi, 

kehilangan bendalir dan kelakuan aliran bendalir lumpur penggerudian tanpa 

nanosilica dan dengan nanosilika diperiksa mengikut piawaian API. Kajian ini juga 

melibatkan ujian dinamik yang menyiasat prestasi nanosilika dalam lumpur 

penggerudian berasaskan air yang terdegradasi dan tidak terdegradasi untuk 

meningkatkan penggerudian dalam operasi penggerudian condong. Kajian ini 

menggunakan tangki pencampuran berjaket dengan kapasiti 200 liter dan suhu 

operasi sehingga 482 ℉ (250 ℃) untuk merosotkan lumpur penggerudian dengan 

nanosilika dan tanpa nanosilika sebelum menguji mereka pada keadaan ambien 

didalam gelung aliran. Bentuk keratan yang digunakan tidak bersaiz tetap dan saiz 

keratan adalah bersaiz antara 1.4 hingga 4.0 mm. Sudut kecondongan yang berlainan 

(0, 30, 60, dan 90 °) telah dipertimbangkan dalam ujian dinamik tanpa putaran paip 

dan dengan putaran paip (120, 150, dan 180 rpm) untuk mensimulasikan keadaan 

penggerudian dalam lubang sumur. Kajian mendapati bahawa kehadiran nanosilika 

telah meningkatkan kecekapan pengangkutan keratan (CTE) dalam semua 

eksperimen. Keputusan menunjukkan bahawa kehadiran nanosilika dalam lumpur 

meningkatkan interaksi koloid dengan keratan dan menyumbang kepada peningkatan 

CTE sebanyak 30.8 hingga 44%. Pada suhu tinggi, lumpur 12 ppg mempamerkan 

prestasi lebih baik daripada lumpur 9 ppg. Walaubagaimanapun, selepas menambah 

kepekatan nanosilica optimum sebanyak 1.0 ppb (berat), peningkatan CTE untuk 

lumpur 9 ppg lebih tinggi daripada lumpur 12 ppg. Kehadiran nanosilika 

meningkatkan CTE pada suhu tinggi kerana taburan nanosilica dalam lumpur dapat 

menahan panas dalam keadaan suhu yang tinggi sehingga meningkatkan CTE jika 

dibandingkan dengan lumpur tanpa nanosilika. Pengenalan nanosilika dalam bendalir 

penggerudian berasaskan air menunjukkan prestasi baik dalam proses pembersihan 

lubang yang akan membolehkan mereka digunakan dalam operasi penggerudian 

jangkauan lanjutan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Oil and gas exploration have been improved by new levels of technologies 

where deeper and harsher environments are being drilled more than ever before. 

Drilling fluids play a vital role in drilling operations, such as cooling and lubricating 

the bit and drill string, cleaning the bottom of the hole, controlling formation 

pressure, improving drilling rate, among others (Bourgoyne et al., 1986). In recent 

years, drilling in harsh conditions, such as extended reach and deep-water drilling 

operations, highlighted the unsuitability of conventional muds for the successful 

drilling and hole cleaning process. Therefore, there is a demand for new drilling 

fluids that can perform efficiently in such conditions. Oil producers and service 

companies have been investigating more effective ways to tackle challenging 

environments in order to drill and produce in a safe and feasible manner. For 

example, oil-based drilling fluids treated with micronized barite were tested in the 

North Sea (Kageson-Loe et al., 2007). Oil-based mud showed promising 

performance in shale inhibition, bit lubrication and torque reduction (Caldarola et al., 

2016). However, drilling with oil-based mud is associated with high costs of 

procurement and toxic waste management. Thus, extensive research has gone into 

improving water-based mud because of their low cost and environmentally friendly 

attributes (Rafati et al., 2017). 
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 Water was the first drilling fluid used in drilling operations (Brantly, 1961). 

However, water is not able to suspend cuttings in static conditions, build an 

impermeable layer on permeable formations, and also it is not dense enough to 

balance formation pressure. Today, water-based muds contain several additives. 

These include alkalis, salts, surfactants, organic polymers in colloidal solution, and 

various insoluble weighting materials such as barite and clay. The selection of 

additives is based on the type of formation to be drilled, dispersive materials in the 

formation, and cost. According to Apaleke et al. (2012), increased drilling activities 

provided a market for heavy muds made by adding heavy minerals to increase mud 

density for pressure control, and this led to improvements of water-based mud. 

However, there are still significant limitations of water-based mud in their stability 

and cuttings lifting ability.  

 

 

Hall et al. (1950) stated that the removal of cuttings and sloughs is one of the 

most important functions of drilling fluids. According to Hakim et al. (2018), drilled 

cuttings removal is critical especially in horizontal wells. In addition to reducing 

rates of penetration by accumulated cuttings in the wellbore, inefficient hole cleaning 

increases the possibility of stuck pipe. Wellbore cleaning is highly affected by mud 

rheology. However, previous studies showed contradictory findings regarding mud 

rheology and their performance in the hole cleaning process. A study done by Ford et 

al. (1990) showed that high viscosity values increase cuttings lifting performance in 

inclined wellbores. Kelessidis & Bandelis (2007) however concluded that the 

performance of hole cleaning worsened when the viscosity of drilling mud was 

increased in horizontal wells. This contradiction might be due to the transition of 

turbulent flow to laminar flow when viscosity increases, which deteriorates the 

performance of drilling fluid to clean the wellbore. In another study, Walker & Li 

(2000) confirmed the findings of Kelessidis & Bandelis (2007), provided that the 

flow regime is turbulent. They reported this condition works mainly in horizontal or 

highly deviated wellbores. They recommended that for vertical or slightly deviated 

wellbores, a viscous drilling mud with a laminar flow regime should be used. 
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Hole inclination plays a tremendous role in determining the performance of 

drilling mud to carry cuttings out of a borehole. There are many complex well 

trajectories targeting deep reservoirs. Typical well designs in extended reach drilling 

operations have high inclination and dog-leg severity to reach pay zones. Many 

researchers have reported that inclination angles between 40° and 60° (deviation 

from vertical position) are critical angles where most of the accumulation of cuttings 

happens and it is difficult to transport cuttings out of the hole (Seeberger et al., 1989; 

Peden et al., 1990; Brown et al., 1989; Onuoha et al., 2015; Ogunrinde & Dosunmu, 

2012). The formation of cuttings beds is one of the most common problems that 

occurs at critical angles when drilling fluid fails to transport cuttings up to the 

surface. In deviated or horizontal drillings, transportation of cuttings is mainly 

influenced by net vertical forces. If the net vertical force is downwards, there will be 

formation of cuttings bed in the annulus.  

 

 

The cuttings’ shape and size determine their dynamic behaviour in a flowing 

drilling mud. The properties and dimensions of the cuttings in drilling fluids affect 

their removal from downhole to the surface. There are different findings on the effect 

of cuttings size on the hole cleaning process. Martins et al. (1996) found that cuttings 

with bigger sizes are difficult to transport to the surface; other researchers (Peden et 

al., 1990; Walker & Li, 2000) stated that cuttings with smaller sizes are the most 

difficult to transport. However, if the viscosity of the drilling mud and rotating speed 

are high, cuttings that are smaller in size can be transported efficiently to the surface 

(Sanchez et al., 1999). Furthermore, Ford et al. (1990) observed that as cuttings size 

decrease, the minimum transport velocity required for cuttings rolling and suspension 

decreases. This means, in terms of minimum transport velocity, smaller cuttings are 

easier to transport. 

 

 

Duan et al. (2009) suggested that different fluids are required for different 

purposes. Water is usually required for cleanout and polymer solutions are required 

for drilling operations. They also reported that the increasing number of highly 

inclined and horizontal wells through unconsolidated reservoirs signifies the 

challenge for the transportation of smaller cuttings during drilling operations. Based 
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on the results from a study conducted by Ozbayoglu et al. (2004) the most effective 

drilling parameter in the development of cuttings bed is the flow rate of mud, or the 

annular fluid velocity. As the flow rate increases, cuttings bed development can be 

prevented. Therefore, the most effective hole cleaning process is during turbulent 

flow regime, which reduces the chance of cuttings bed development by efficient 

cuttings transportation (Piroozian et al., 2012). Other researchers like Sifferman et al. 

(1974) and Larsen et al. (1997) found that the acceptable annular velocity for 

cuttings transport for typical drilling mud is in the range of 1 to 4 ft/sec. The annular 

velocity of fluid depends pump rate and the hole diameter. Flow rate is usually 

monitored to ensure the risk of formation of cuttings beds is minimized in dynamic 

conditions. 

 

 

In drilling operations, the drill string has the tendency to rest on the low side 

of the borehole because of gravity, especially in inclined sections of a hole. This 

creates an eccentric narrow gap in the annulus below the pipe, where fluid velocity 

will be extremely low. Effectively, the drilling fluids’ ability to transport cuttings to 

the surface in this part of the annulus will be low. As eccentricity increases, the 

particle and fluid velocities would decrease in the narrow gap, especially in high 

viscosity fluids. However, such adverse impacts on the hole cleaning process may be 

unavoidable because the pipe eccentricity is governed by well trajectories during 

drilling operations. Therefore, as pipes shift away from concentric status, cuttings 

removal efficiency decreases (Tomren et al., 1986). 

 

 

Drilling in deeper formations adds more challenges for drilling fluid to lift 

drilled cuttings effectively to the surface. Conventional bio-polymers are no longer 

capable of maintaining rheologically stable fluids at temperatures above 300℉. Shah 

et al. (2010) stated that drilling fluids exhibit sagging behaviour under extreme 

conditions. Drilling fluids also exhibit syneresis which is known as the expulsion of 

liquid from the gel structure under these circumstances. 

 

 



 

5 
 

Dynamic tests on mud performance in a flow loop system are especially 

crucial, because results obtained from static tests (rheological properties) do not 

necessarily translate into dynamic performance of drilling fluids. An experimental 

study conducted by Wang et al. (1995) showed that drill string rotation could 

significantly reduce cuttings bed height. Rotational speed is more effective in 

inclined wells compared to vertical wells (Tomren et al., 1986; Sanchez et al., 1999; 

Yu et al., 2007). This indicates that cuttings transportation at the narrow side of an 

eccentric wellbore can be improved by rotating drill pipes. Sifferman et al. (1992) 

concluded that at highly deviated wellbores, low rates of penetration and small 

cuttings are the most desirable conditions for using pipe rotation effectively. 

Formation of Taylor vortices (beyond a specific rotational speed) can further assist in 

improving the lifting efficiency in horizontal sections (Sanchez et al., 1999). 

Therefore, for the removal of small drilled cuttings, the drill pipe rotation factor is a 

very important parameter to be considered (Duan et al., 2006; Saeid & Busahmin 

2016). 

 

 

To analyse dynamics of flow in the hole cleaning process, Ettehadi et al. 

(2015) conducted an investigation where different amounts of cuttings were injected 

into an experimental rig with various air and water flow rates in a multiphase flow 

system. They compared experimental data with developed models and found that 

frictional pressure losses can be predicted with reasonable accuracy. In another 

study, Ogunrinde & Dosunmu (2012) investigated critical factors affecting cuttings 

removal and bit hydraulics in different inclination angles. They developed a model to 

determine the optimum flowrate and rate of penetration to reduce non-productive 

time. Similarly, Guan et al. (2016) studies different hole cleaning parameters using 

the multi-dimensional ant colony algorithm to optimize drilling operation in 

horizontal wells. They concluded that hole cleaning for horizontal wells can be 

improved by increasing the flow rate and pressure-bearing capacity of the system. 

Recently, Boyou et al., (2018) used polymer beads (polypropylene) in water-based 

drilling fluids to improve its lifting capability of muds. They examined the cuttings 

transport efficiency using different sizes of cuttings in inclined static annuli and 

found that small cuttings were transported more efficiently compared to large 
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cuttings due to drag force on cuttings introduced by polymer beads. However, as the 

cutting sizes approached the size of beads, cuttings transport efficiency decreased. 

 

 

In recent years, the application of nanomaterials has been on the rise, 

especially within the scientific community. There is broad range of applications for 

nanomaterials in the fields of drilling fluids and reservoir protection that is beneficial 

for petroleum development and production (Li et al., 2012). There are studies that 

show significant rheological improvements of water-based drilling fluids due to the 

presence of nanomaterials (Abdo & Haneef, 2013; Cedola et al., 2016; Noah et al., 

2016; Samsuri & Hamzah, 2011; Sharma et al., 2012; Smith et al., 2018; William et 

al., 2014; Yang et al., 2015). A study reported by Yasir (2016) found that nano 

drilling fluids performed better in terms of bit cooling, reduced torque and drag, 

enhanced viscous behaviour and low friction factors compared to conventional 

drilling fluids. Furthermore, improvements in thermal stability up to 160°C were 

reported by different studies, in which nanoparticles such as silica, carbon nanotubes 

and aluminium oxide were added to water-based drilling fluids (Cai et al., 2012; 

Kang et al., 2016; Smith et al., 2018; Yang et al., 2015; Yuan et al., 2013). 

Hoelscher et al. (2012) reported physical plugging of nanometer-sized Marcellus and 

Mancos shale pores by using nanosilica which resulted in reduced pressure 

transmission in shale. Many studies have reported the use of nanomaterials for 

filtration control, rheological enhancement etc. that are beyond the scope of this 

study. Overall, nanoparticles have been used to overcome a variety of issues related 

to drilling fluids, such as enhancing the thermal stability of mud at high-temperature 

conditions, reducing filtrate volume and thickness of mud cake, modifying friction 

factor, among others; a detailed review of these studies can be found elsewhere 

(Rafati et al., 2017; Sharma et al., 2016). Although much literature has focused on 

the use of nanoparticles to enhance the rheological properties of drilling fluids but 

there is no investigation on the enhancement of cuttings transport in wellbore during 

hole cleaning process. There is also no reported investigation of degraded drilling 

fluids with nanoparticles for wellbore cleaning.  
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In this study, important factors in hole cleaning processes are discussed, and 

an experimental flow loop simulator was modified to analyse the impact of 

nanoparticles on cuttings transport efficiency in directional drilling operations. The 

dynamic performance of degraded drilling mud after heated at different temperatures 

with and without nanoparticles is also analysed. The setup is capable of simulating 

the hole cleaning process in the annulus with different rotational speeds and 

inclinations. Furthermore, different cuttings sizes are studied to understand the effect 

of cuttings size on dynamics of flow. It is assumed there is no pipe eccentricity and 

mud properties remain unchanged during the hole cleaning process. Through analysis 

of the results, the performance of nano-enhanced water-based muds can be 

summarised. 

 

 

 

 

1.2 Problem Statement 

 

 

In recent years, drilling for oil and gas exploration encounters complex and 

harsh conditions in deep and ultra-deep formations such as high temperature and 

high pressure (HTHP) (Yang et al., 2017). API data show that the cost of drilling 

increases exponentially with increasing depth (Smith, 2001). Offshore exploration 

drilling and appraisal wells in the development of an oilfield are among the highest 

capital costs up to 60% (US Energy Information Administration, 2016). The success 

of any drilling operation highly depends on the performance of drilling fluids 

especially in extended reach and deep-water drillings (Smith et al., 2018).  

 

 

Wellbore cleaning has been an integral part of a drilling operation in oil and 

gas exploration and field development. Challenges of wellbore cleaning in deep and 

harsh environments increase due to mud degradation in high temperature conditions 

(Bland et al., 2006; Bybee, 2001; Elward-Berry & Thomas, 1994). Consequently, the 

degraded mud loses its carrying capacity over time and forces the oil operator to take 
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a longer time to completely drill a hole. This means the oil operator experiences 

higher non-productive time and cost for drilling operation, thus affecting its 

profitability (Shaughnessy et al., 2003). Therefore, a better understanding of how 

degraded mud affects cuttings lifting performance is a key component for deep hole 

drilling in extreme conditions.  

 

 

In recent years, oil-based muds are often required for deep drilling in harsh 

conditions because of their stability in high pressure and high temperature 

environments. However, due to their challenging toxic waste management and high 

cost of procurement and handling, extensive research works are re-aligned towards 

improving water-based mud performance in such conditions (Amani et al., 2012; 

Srivatsa & Ziaja, 2011).  

 

 

There are a lot of studies focusing on improving water-based muds by adding 

nanoparticles, however all of the previous studies have only included tests in static 

conditions (Abdo & Haneef, 2013; William et al., 2014; Yang et al., 2015; Noah et 

al., 2016; Nasser et al., 2013; Mao et al., 2015; Baghbanzadeh et al., 2012; Samsuri 

& Hamzah, 2011). Thus, a research gap exists because there is no study which 

focuses on the use of nanosilica in water-based muds in dynamic conditions. This 

research not only studies hole cleaning efficiency of water-based muds without and 

with nanosilica, but also studies the cuttings transport efficiency of degraded muds 

without and with nanosilica to bridge the gap in this area.  
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1.3 Objectives 

 

 

This study embarks on the following objectives: 

 

(1) To comparatively characterise the rheological properties, fluid flow 

behaviour and filtration properties of non-degraded and degraded water-based 

mud both with and without nanosilica.  

(2) To study cuttings transportation efficiency of non-degraded and degraded 

water-based mud with and without nanosilica at various inclination holes (0° 

to 90°). 

(3) To analyse cuttings transport efficiency of non-degraded and degraded water-

based mud with and without optimum concentration of nanosilica in lifting 

different drill cuttings sizes with and without drill pipe rotations. 

 

 

 

 

1.4 Hypotheses 

 

 

The hypotheses of this research works are as follow: 

 

(1) The presence of nanosilica in drilling fluids decreases shear stress vs. shear 

rate readings which could reduce the pump pressure required for mud 

circulation in drilling operations, especially when heavy mud is needed to 

drill deep formations to balance formation pressures. 

(2) Well distribution of nanosilica particles in the mud disrupts excessive gel 

formation between gelling agents. This gel disruption reduces the attractive 

forces which is crucial for heavy muds and reduces progressive gels.   

(3) Particle distribution of nanosilica in flowing mud increases cuttings transport 

efficiency. This is because as the mud flows in a turbulent state towards the 

surface, the presence of nanosilica in dispersed form which possesses high 
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surface area to volume ratio increases the interaction with drilled cuttings and 

enhances colloidal forces.  

(4) Degraded mud affects cuttings lifting performance. Silica nanoparticles can 

improve drilled cuttings lifting performance in degraded mud because it 

reduces the degradation of rheological properties and thus improve lifting 

capacity of the mud as compared to mud without nanosilica.  

(5) Drill pipe rotation plays an important role in cuttings transportation 

improvement for non-degraded and degraded water-based mud without and 

with nanosilica. However, after the optimum drill pipe rotation is reached, 

drill pipe rotation has no additional contribution to hole cleaning. 

 

 

 

 

1.5 Scope of Study 

 

 

The scope of study for this research works are:  

 

(1) The experimental rig was modified to study the cuttings transport efficiency. 

Pipe ID (hole) of 2.75 inches and a pipe OD (drill pipe) of 1.05 inches were 

used as annular size. The scale of the experimental flow loop used in this 

research work was a scaled down representation of an actual hole drilled 

offshore Peninsular Malaysia (Ming et al., 2014). The actual well was drilled 

using heavy mud (17.8 – 18.1 ppg) in an 8.5 inches hole, at a flow rate of 

about 380 gpm to reach over-pressurized zones in TA field. The experimental 

flow loop and the parameters used in this research was a scaled down replica 

of that well. The size of the well and the flow rate used were (annular size: 

2.75 × 1.05 in, flow rate: 74 gpm). In this research, two different mud 

weights (9 and 12 ppg) were used for better understanding and comparison of 

cuttings transport efficiency to improve future predictions of different mud 

weights in cuttings transport performance. The test section used in this 

experimental work is 20 ft long. An experimental investigation of cuttings 

transport efficiency done by Ozbayoglu & Sorgun (2010) showed reasonable 
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accuracy of 10% from their empirical correlation and experimental data using 

a 12 ft annular test section. Thus, for this research work, a test section of 20 ft 

is used to gain higher accuracy of cuttings transport performance.  

(2) Characterization of rheological properties of basic water-based mud and 

degraded water-based mud without and with nanosilica with concentrations 

from 0.5 to 1.5 ppb. Types of fluid flow behaviour were also covered.  

(3) Performance study of basic water-based mud and degraded water-based mud 

in lifting drilled cuttings in different inclination holes (0° to 90°) without and 

with pipe rotation (0 to 180 rpm). The condition of the flow loop experiment 

was studied under turbulent flow regime (9 ppg mud: Re = 4047.1; 12 ppg 

mud: Re = 5136.7). 

(4) Cuttings transportation efficiency was studied with various cuttings sizes that 

were irregular in shape ranged from 1.4 to 4.0 mm. These cuttings sizes were 

according to the range of sizes studied by Walker & Li (2000), Ramadan et 

al. (2004), and Duan et al. (2006).  

(5) Water-based mud with and without nanosilica were degraded to 50℃, 80℃, 

and 120℃ in a jacketed heating tank before cuttings transportation efficiency 

was studied. This temperature range was chosen because the conventional 

water-based mud starts to degrade at 43℃ and completely fails at 120℃ 

(Amani et al., 2012). A similar study was also conducted by Smith et al. 

(2018) where they investigated the performance of nano aluminium oxide and 

nanosilica in water-based mud at 50℃ and 80℃ in static condition. 
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1.6 Significance of Study 

 

 

The significance of study for this research works are: 

 

(1) This research can contribute an additional knowledge on cuttings transport in 

high temperature environments by studying the performance of nanosilica in 

degraded water-based mud. Cuttings transport efficiencies were studied in 

different inclination angles to simulate directional drilling. This research 

work complements previous works done by other researchers (Piroozian & 

Ismail, 2011; Abimbola et al., 2014; Cai et al., 2012; Yuan et al., 2013; Yang 

et al., 2015; Kang et al., 2016) on drilled cuttings transport by presenting 

experimental results of non-degraded and degraded water-based mud with 

nanoparticles in wellbore cleaning. 

(2) The oil and gas industry may utilize nonpolymeric additives such as 

nanoparticles (i.e. nanosilica) to improve the performance of water-based 

mud in high temperature wells. The findings from this research work 

improved cuttings transportation efficiency by 30.8 to 44% at room 

temperature and up to 15% at elevated temperatures which would increase the 

likelihood of successful extended drilling operations using nano-enhanced 

water-based mud.  

(3) Nanosilica is a non-toxic additive and is highly available in Malaysia. Apart 

from being abundant, it is also able to increase the rheological properties of 

drilling mud under high temperatures.  
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1.7 Chapter Summary  

 

 

 Deeper holes are being drilled more frequently and high temperature holes 

are becoming a big problem because of the tendency of drilling mud to degrade thus 

affecting cuttings transport performance. There are numerous findings on the benefit 

of using nanomaterials in drilling mud for high temperature environments, however 

all these studies are conducted in static conditions. Literature on cuttings 

transportation of water-based mud with the presence of nanomaterials are still scarce 

in dynamic conditions.  

 

 

This study investigates the effect of nanosilica in water-based mud in an 

experimental flow loop at various angles without and with pipe rotation. Cuttings 

transportation efficiency is also investigated after mud degradation. Nanosilica is 

introduced into water-based mud because of its thermal stability. This will mitigate 

mud degradation in high temperature holes and increase the rheological properties of 

the mud.  

 

 

The experimental works were divided into three parts. All these parts were 

conducted using degraded water-based mud with and without silica nanoparticles. 

The first part was to study the rheological and fluid loss properties, the second part 

was to study the rheological behaviour of the mud, and the third part was to study the 

cuttings transportation efficiency in different hole inclinations and without and with 

different pipe rotations.  
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