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ABSTRACT 

 

 

 

Correlation on flow induced corrosion (FIC) for straight pipes and bends 

have been obtained by researchers via a two-dimensional numerical method and 

experimental techniques. However, for pipe bends, the correlations require further 

improvements as the flow in bends are more complicated. The objective of this 

research is to obtain more accurate correlations for FIC in bends using two-

dimensional and three-dimensional numerical and experimental techniques. In the 

numerical and experimental approach, several important parameters such as 

Reynolds number and selected discrete particle model (DPM) were used to obtain 

erosion rate for miter and smooth bend models. Validations for the modellings were 

compared with experimental results and locations of the eroded sections were 

observed to be in agreement. Then, the erosion rates were extracted and analyzed 

using shooting method. Finally, the new coefficients for the correlations were 

obtained. When the new equations were applied to the same two-dimensional 

models, it was shown that the previous two-dimensional models had over-predicted 

the mass transfer values. Furthermore, when comparisons were made between 

smooth and miter bends results under the same flow conditions, it was observed that 

mass transfer values calculated from miter bend models were much higher than that 

of smooth bends. Experimental results also showed similar behavior, when the 

surface morphology was examined under Field Emission Scanning Electron 

Microscope (FESEM). From numerical and experimental approach conducted, it is 

concluded that the inner diameter bends were the areas with the highest FIC 

behaviour for 300 and 450 smooth and mitre bends.  
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ABSTRAK 

 

 

 

Korelasi terhadap aliran kakisan (FIC) untuk paip lurus dan bengkok telah 

diperoleh oleh penyelidik melalui kaedah berangka dua dimensi dan eksperimen. 

Walau bagaimanapun, penambahbaikan pada korelasi sedia ada amat diperlukan bagi 

paip bengkok disebabken oleh aliran yang lebih rumit. Objektif kajian ini adalah 

untuk mendapatkan korelasi yang lebih tepat bagi aliran kakisan (FIC) dalam paip 

bengkok dengan menggunakan kaedah berangka dua dan tiga dimensi dan 

eksperimen. Dalam pendekatan berangka, beberapa parameter penting seperti 

nombor Reynolds dan particle model diskret (DPM) terpilih telah digunakan untuk 

mendapatkan kadar kakisan untuk model paip licin bengkok dan miter. Validasi 

untuk model dicapai melalui perbandingan hasil eksperimen padu lokasi bahagian 

terkakis. Selain itu kadar kakisan diambil dan dianalisis menggunakan teknik 

shooting. Akhir sekali, pekali baru untuk korelasi telah diperolehi. Apabila 

persamaan baru telah digunakan untuk dua dimensi model yang sama, ia 

menunjukkan bahawa model dua dimensi yang sebelumnya telah terlebih dahulu 

meramalkan nilai pemindahan jisim. Nilai pindahan jisim menunjukkan nilai yang 

melangkaui ramalan pada model dua dimensi yang sedia ada apabila persamaan baru 

digunakan pada kedua-dua model dua dimensi yang sama. Tambahan pula, hasil 

perbandingan antara paip licin bengkok dan miter pada keadaan aliran yang sama 

menunjukkan nilai pindahan jisim pada model paip bengkok miter adalah lebih tinggi 

berbanding paip licin bengkok. Hasil eksperimen juga menunjukkan hasil yang sama 

pada permukaan bentuk apabila diuji di bawah Mikroskop Pelepasan Bidang 

Imbasan Elektron (FESEM). Daripada pendekatan eksperimen dan ujikaji yang 

dijalankan, dapat disimpulkan bahawa garis pusat dalam paip adalah kawasan 

kelakuan FIC yang tertinggi untuk 30o dan 45o kawasan lian dan miter selekoh. 
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CHAPTER 1 

 

 

 

1INTRODUCTION 

 

 

 

1.1 Background of the Research 

 

The research works presented in this thesis address character of fluid flow in 

pipe bends. The production and processing industries are currently facing with 

problems of fluid flow induced corrosion (FIC) which results into degradation or 

deterioration in pipe lines, especially in bends, joints and valves, where severe 

deterioration is found to occur. The reason for severe degradation or high rate of 

degradation in bends is due to recirculation of fluid flow behaviour in these regions 

as a result of high wall shear stress (wss), high turbulent intensity and secondary flow 

which are the attributes of the growth of this degradation in bends (Njobuenwu and 

Fairweather, 2012; Sun et al., 2012). Furthermore, the problem in wide perspective, 

when fluid flow through the bends, is that the pipe usually experiences strong 

secondary flow and high wall shear stress in the plane normal to the pipe axis. This 

secondary flow and wall shear stress is believed to accelerate the mixing, and hence 

deterioration and degradation of the pipe wall elbow.  Moreover, this may lead to 

excess vibrations of the pipe as a results of fluid flow. 

 

 Generally, fluid flow plays an important role in every industry associated 

with Mechanical or Chemical engineering. In these industries, huge fluid flow 

networks are important to attain continuous transportation of products. However, 

because of the importance of fluid flow behaviour in bends, many numerical and 

experimental works on the straight line pipe have been conducted by many 
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researchers but due to the complexities, the numerical computation and experimental 

works in elbows have been untouched.  

 

Therefore the present research focus is on effect of fluid flow on local 

deterioration rates to develop and modify the new correlation in relation to flow 

induced corrosion experiment and computational fluid dynamics method 

respectively. The study therefore, considers two (2) types of pipe bends, mitre and 

smooth bends, which are made up of low carbon steel (industrial grade).  

   

 The flow of fluids in networks of pipes is very common in many areas such 

as desalination plant, oil and gas industries, refineries, water cooling networks, steam 

and condensate networks, ventilation systems, and municipal water utilities 

(Tominaga and Nagao, 2000).  

 

Aqueous degradation is often accompanied by the formation of deterioration 

products on the metal surface. Integral layers of degradation products or insoluble 

scale deposits on the pipe bend surface can act to protect the underlying metal from 

attack. Biofilms formed by the colonization of solid surfaces by microorganisms 

present a special case. 

 

Meanwhile, the pipe bends as well as elbows in water plants are exposed to 

various deterioration mechanisms. Wall thinning, in particular, is considered as a key 

degradation mechanism in pipe elbows.  In the past, researchers considered 900 bend 

with rectangular cross section as the main shape of configuration, but in this research 

a configuration of mitre bend and smooth bend was considered (Azzola et al., 1986). 

 

The study therefore, focused and aimed to obtain the effect of flow behaviour 

in pipe bends through the newly modified correlation analysis and fluid flow induced 

corrosion behaviour by weight loss. 
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1.2         Statement of the Problem 

 

Flow degradation failures in pipe bends continue to occur despite the 

standards, connections, industry codes having been followed and proper base 

selected (Babu and Natarajan, 2008). The production and processing industries are 

currently facing problems of severe damage due to FIC that occurs in pipe fittings, 

turbines, pumps, flow line, valves and header especially in bends and joints, where 

severe degradation is found to occur (Schefski et al., 1995; Wood, 2008). The reason 

for severe deterioration or high rate of degradation in bends is due to extreme fluid 

flow behaviour in these regions as the result of recirculation of flow, high turbulent 

intensity and mass transfer coefficient that are attributed to the growth of degradation 

of elbow (Schefski et al., 1995; Ahmed, 2012). To put the issue in perspective, fluid 

flowing through the bends, experiences strong reverse flow in the plane normal to the 

pipe axis. This mass transfer and wall shear stress as well as high turbulent intensity 

is believed to accelerate the mixing, and hence the degradation of the pipe wall. 

However, subsequent degradation can cause sudden explosion and breakdown in the 

production and processing industries, thus requiring another better computational 

fluid dynamics (CFD) and experimental analysis. The degradation of flow line 

equipment costs the industry millions of dollars every year (Sun et al., 2012). This 

research, therefore, intends to modify simplified correlation to predict maximum 

mass transfer coefficient in bends based on many simulations. 

 

 

1.3 Objectives of the Research 

 

 The objectives of this research are categorized as follows: 

    1 To quantify maximum mass transfer coefficients with 2D and 3D models 

in mitre and smooth bends. 

    2 To characterize and correlate degradation parameters between the bends 

through the flow induced corrosion study. 

    3 To improve and modify for maximum prediction of maximum mass 

transfer coefficients in bends. 
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1.4 Significance of the study 

 

Most published research works on the effect of fluid flow on degradation 

behaviour in pipe bends are concerned mainly with numerical analysis, while the 

experimental study and simplified correlation to predict maximum mass transfer 

coefficient for validation has received no much attention due to the difficult and 

complex nature of the process. Currently, reports on experimental analysis on flow 

effect on degradation behaviour in elbows are still lacking (Wood, 2008; Ahmed, 

2012). Thus, bend geometries has become highly significant to be investigated and 

studied in detail in order to improve and correlates degradation parameters as it has 

practical implication in industries. 

 

 

1.5     Research scope 

 

1.       Two types of bends were selected among types of bends used in production 

          industries. 

2.       The flow degradation parameters in pipe bends geometry were obtained from 

          CFD. 

3.       Modify simplified correlation to predict maximum mass transfer coefficient in 

          bends.  

4.       Numerical results are validated with mass transfer coefficient predictions and  

          experimental results. 

 

 

1.6       Thesis outline 

 

This thesis contains five chapters. The first chapter contains a general 

introduction and background of the thesis. Objectives, scope and significance of 

study are outlined. The rest of the chapters are described below. 
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Chapter 2 starts by quoting or reviewing several researches work on effect of fluid 

flow behaviour on fluid flow in pipe elbows and related areas. It then provides the 

review of literature and theoretical frame work of the research area done by the past 

researchers. The important theoretical background is included in this chapter. 

 

Chapter 3 presents the research methodology and describes the CFD approaches, 

verified method through k   turbulence model combine with discrete phase 

models, techniques used for an experimental to analyse FIC and MTC modified 

equations. 

 

Chapter 4 presents the results of CFD through k   combine with discrete phase 

models (DPM) that was conducted, verified by an experimental techniques will be 

used to analyse FIC test and the results will be correlated with MTC modified 

equation. 

 

Chapter 5 is the concluding part of the research. This summarizes, recommends and 

concludes the research that has been carried out in this study. Further work will be 

suggested at the end of this chapter. 
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