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ABSTRACT 

 

 

 

 

The objective of this research was to develop a neutron diffractometer system 

at a low power reactor TRIGA PUSPATI in Malaysia. Neutron diffractometer system 

consists of a number of vital instrumentations, namely collimator, monochromatic 

device and detector. However, this study only focus on the design and fabrication of 

the collimator. The value of neutron and gamma fluxes measured on beam-port 1 of 

reactor without collimator was 2.12x108 ncm-2s-1 and 1.97x107 γcm-2s-1, respectively 

which are suitable for development of the system. Design of the collimators were done 

using the Monte Carlo N-Particle simulation software. The collimator is an aluminium 

tube containing suitable shielding components to filter and shape the neutron beam. 

Characterization of the shielding materials for the collimator were performed using 

thermo-luminescence detector devices and the Monte Carlo N-Particle software to 

investigate the materials with high attenuation coefficient on ionising radiations. The 

length of collimator was then optimized to obtain high value of thermal neutron flux 

for neutron diffractometer system. The beam was optimized by using the shortest 

length of collimator as it produced 6.24x106 ncm-2s-1 which is 20 % higher compare to 

the ideal flux required of 1.40x105 ncm-2s-1. The selected design of the collimator for 

neutron diffractometer system was installed inside beam-port 1 of reactor TRIGA 

PUSPATI. The research was useful to obtain measured fluxes from radial beam-port 

1, to identify the ideal design of collimator, and to optimize neutron beams for 

development of neutron diffractometer system at reactor TRIGA PUSPATI in 

Malaysia.  
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ABSTRAK 

 

 

 

 

 Objektif penyelidikan ini adalah untuk membangunkan sistem belauan neutron 

di reaktor TRIGA PUSPATI berkuasa rendah di Malaysia. Sistem belauan neutron 

terdiri daripada beberapa instrumen penting iaitu kolimator, peranti monokromatik dan 

alat pengesan. Walaubagaimanapun, kajian ini hanya memberikan tumpuan terhadap 

reka bentuk dan fabrikasi kolimator sahaja. Nilai fluks neutron dan fluks gama yang 

diukur pada tiub alur 1 di reaktor tanpa kolimator masing-masing adalah 2.12x108 ncm-

2s-1 dan 1.97x107 γcm-2s-1 iaitu sesuai untuk pembangunan sistem ini. Reka bentuk 

kolimator telah dilakukan dengan menggunakan perisian simulasi Monte Carlo N-

Partikel. Kolimator adalah tiub aluminium yang mengandungi komponen pelindung 

yang sesuai untuk menyaring dan membentuk arus neutron. Pencirian bahan perisai 

untuk kolimator telah dilakukan dengan menggunakan peranti meter dos pendarkilau 

haba dan perisian Monte Carlo N-Partikel untuk mengkaji bahan yang mempunyai 

pekali pengurangan yang tinggi terhadap radiasi mengion. Panjang colimator tersebut 

kemudiannya dioptimumkan untuk mendapatkan nilai neutron terma yang tinggi untuk 

sistem belauan neutron. Arus neutron itu dapat dioptimumkan dengan menggunakan 

kolimator terpendek kerana menghasilkan 6.24x106 ncm-2s-1 iaitu 20 % lebih tinggi 

berbanding fluks ideal yang diperlukan iaitu 1.40x105 ncm-2s-1. Reka bentuk kolimator 

yang terpilih untuk sistem belauan neutron telah dipasang di dalam tiub alur 1 di 

reaktor TRIGA PUSPATI. Penyelidikan ini adalah berguna untuk mendapatkan fluks 

yang diukur dari jejari tiub alur 1, mengenal pasti reka bentuk ideal kolimator, dan 

mengoptimumkan fluks neutron untuk pembangunan sistem belauan neutron dalam 

reaktor TRIGA PUSPATI di Malaysia. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Research Background 

 

 

Neutron diffraction (ND) is one of the applications of neutron scattering to 

probe the magnetic and atomic structure of a material. ND is defined as the interference 

process which occurs when neutrons are scattered by the atoms within solids, liquids 

or gases. In term of physic, ND is a form of elastic scattering where the neutron exiting 

has more or less the same energy as the incident neutrons. The technique of ND, x-ray 

diffraction (XRD) and strong x-ray synchrotron diffraction (SD) are quite similar 

(Farhi et al., 2015). However, due to the different scattering properties and penetration, 

ND and XRD provide complementary information. In term of measurement, ND is 

suited for bulk measurements within thick specimens, SD is appropriate for shallow 

depths and thin specimens and XRD are suited for surface measurements (Paranjpe, 

2005). There are some limitations of XRD method where it needs to recognize between 

elements of same atomic number while ND can differentiate such atoms type for a 

similar element with different isotopes (Klooster, 2001). 

 

 

Nowadays, ND technique has been widely used for applications such as 

measuring strain within metallic and ceramic components, study the structure and 
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composition of the solid, liquid and amorphous materials, study the structure of atomic 

length scales and much more (Brückel et al., 2012). There are about 250 operational 

research reactors in the world (Farhi et al., 2015). However, only about 30 of these 

reactors are equipped with the ND facility, also known as a neutron diffractometer 

system (NDS) (Farhi et al., 2015). Mostly, the reactors that are equipped with this 

system are the reactor with high power operation with a maximum power more than 

10 MW. For examples, a four-circle diffractometer has been fully working in multi-

purpose research reactor with maximum power of 30 MW at HANARO (Lee et al., 

2000), installation of neutron diffractometer system in SAFARI-1 research reactor 

which operate with 20 MW power (IAEA, 2011), and utilisation of NDS in ANSTO 

research reactor with power of 20 MW (Kennedy et al., 2000).  There are still very 

less low power research reactors with a maximum power of below 5 MW implemented 

NDS in their reactor.   

 

 

Researchers and practitioners are very concern to study more about the 

utilization of NDS, especially in low power research reactor. Various studies have 

shown that NDS can be implemented at the beam port facilities of low power research 

reactor (Tunkelo and Kajamaa, 1965). For example, a diffractometer system was 

installed at the 100 kW TRIGA Mark II in Finland. A recent study by Farhi et al. 

(2015) has claimed that a TRIGA Mark II research reactor named as Reactor TRIGA 

PUSPATI (RTP) located in Malaysia operated with a maximum power of 1 MW has 

a capability to build NDS. Although several studies have been made at low power 

research reactors, there is still a few in South-East Asian countries. Hence, the present 

study attempts to design and fabricate the instruments of NDS at Reactor TRIGA 

PUSPATI (RTP) of Malaysia. 
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1.1 Problem Statement 

 

 

ND technique has been commonly used to analyse the strain-stress of material, 

locate the alloy location, phase transition induced and determine the crystalline and 

magnetic structures in a material (Mergia et al., 2004). In view of medical and 

education, this technique is used to determine the molecular structure of a medical 

material and study about the behaviour of neutron interaction respectively. As ND 

technique has been applied in many countries all over the world, this has led to many 

research interest to obtain deeper understanding about the technique.  

 

 

NDS has been implemented in various high power reactors but very rare in low 

power reactors. This is because of some of the limitations when installing NDS at low 

power reactors such as low neutron flux intensity at the sample location which led to 

unfavourable time consumption for collecting data. However, past study has found out 

that NDS can be installed in a low power reactor with power below 1 MW by 

optimizing the beams from the core (Tunkelo and Kajamaa, 1965). 

 

 

There are some studies reported to install the NDS at low power reactor such 

as TRIGA reactor in Pavia, Italy (Di Tigliole et al., 2014), Vienna, Austria (Böck et 

al., 2013), Ljubljana, Slovenia (Snoj and Smodis, 2011), and Bangi, Malaysia (Sufi et 

al., 1997). A recent study has been made in order to determine whether Malaysia has 

the ability and suitable condition to implement this system. Furthermore, the 

development of NDS is needed to enhance the utilization of reactor beam ports in 

Malaysian research reactor located at Bangi. This is because, since the RTP was 

commissioned in 1982, the utilization of neutron beam ports was only for neutron 

radiography (NR) and small angle neutron scattering (SANS) which were 

implemented at radial beam port 3 and radial beam port 4 respectively (Mohamed et 

al, 2003).  
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In view of this, to improve the utilization of reactor, radial beam port 1 was 

selected to develop a NDS. Additionally, there are few studies has been conducted to 

implement NDS at 1 MW research reactor in Malaysia. Considering this, the present 

study is focused on the characterization and design of neutron collimator in order to 

develop a NDS at TRIGA Mark II research reactor with an optimized beam. Indirectly, 

the utility of beam facilities in RTP can be maximised. 

 

 

 

 

1.2 Objectives 

 

 

The main goals of this study is to design a collimator for neutron diffractometer 

for low power nuclear research reactor. The specific objectives are: 

 

i) To design an ideal convergent collimator for the NDS at radial beam port 1. 

ii) To optimize the neutron beams in terms of flux intensity. 

iii) To measure background of neutrons and gamma fluxes produced from beam 

port 1. 

 

 

 

 

1.3 Scopes of Study 

 

 

 In order to achieve the objectives of this study, the following scopes of study 

have been identified: 

 

a) Simulation of material characterization and collimator geometries were 

performed using Monte Carlo N-Particle (MCNP) software. 

b) Suitable neutron and gamma shielding materials for the collimators obtained 

from MCNPX simulation results. 
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c) Optimization of the neutron beam was obtained by selection of collimator with 

appropriate length depends on the size of beam port.  

d) Collimation of neutron beams from 20 cm diameter to 5 cm diameter with 

thermal neutron intensity at least 1.4x105ncm-2s-1. 

e) Measurement of neutrons and gamma doses using Thermo-luminescence 

Detectors (TLD) at beam port 1. 

f) Calculation of neutrons and gamma fluxes yielded from beam port 1 using 

conversion equation. 

g) Fabrication of the selected design of collimator for neutron diffractometer 

system at radial beam port 1 in the RTP. 

 

 

 

 

1.4 Significance of Research 

 

 

This research has its significance by contributing to basic knowledge, improved 

technologies and usage of effective neutron applications. Most of the prior studies have 

considered about the application of ND in high power reactor with a power more than 

10 MW. Whereas, the present study examines the suitability of the NDS installation at 

low power research reactor with a maximum power of exactly 1 MW.  

 

 

Furthermore, the findings of this study will give more data for fabrication and 

operation of the NDS facility at low power research reactor in South-East Asian 

countries. Indirectly, the utilization of RTP in Malaysia can be enhanced. This way, 

local communities of neutron scattering users can arise around these facilities in order 

to train young scientists and disseminate the possibility to use these methodologies 

which are more advanced technology. It is expected that this study would help 

researchers and practitioners, especially around South-East Asian countries to have a 

better understanding and eventually guide them in order to implement NDS in low 

power research reactor. 
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1.5 Structure of Thesis 

 

 

The work summarized in this thesis explains the characterization of neutron 

and gamma shielding materials and selection of suitable collimator for NDS facility at 

radial beam port 1 of RTP. Basically, the flow of this thesis was organized as follows: 

 

 

Chapter 1 highlights a general introduction on the ND techniques and the 

importance of ND applications in various fields including industrial, medical and 

educational. In addition, problem statements, objectives and scopes of the studies are 

listed out in this chapter.  

 

 

Chapter 2 contains the theoretical background of ND techniques. The examples 

of the ND facilities from the other studies from around the world is presented. The 

procedure of ND applications and characterization of ideal neutron beams for ND 

techniques are discussed in the literature reviews included in this chapter.  

 

 

In chapter 3, the materials and methodologies of this research were discussed. 

All of the materials used in characterization of shielding materials and measurement 

of radiation doses were explained in detail. Furthermore, methodology used in 

simulation, characterization, measurement and fabrication of neutron collimators ware 

also presented.  

 

 

Chapter 4 discussed the results and discussions of characterization of suitable 

shielding materials for collimators. The simulation and calculation of neutron and 

gamma fluxes yielded from radial beam port 1 were defined. The discussion was 

extended further with the results of ideal collimator geometries selected based on the 

neutron and gamma intensity which suitable for ND application. Finally, the 

conclusion of this thesis and recommendation for the future works are presented in 

Chapter 5.  
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