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ABSTRACT 

Carbon dioxide (CO2) hydrogenation into methane (CH4) is a promising 
technique in environment conservation while producing sustainable fuel to fulfil the 
energy demand. In this study, mesoporous silica KAUST Catalytic Centre number 1 
(KCC-1) with a unique fibrous structure was successfully synthesized and compared 
with other silica-based catalysts to study the influence of catalyst support morphology 
on CO2 methanation. Different transition metals loaded on KCC-1 were prepared by 
impregnation method to investigate the enhancement of catalytic activity and different 
mechanism pathways of CO2 methanation. In addition, the bimetallic promoted KCC-
1 catalysts prepared via a co-impregnation method were studied with different 
promoter loading (2.5-10 wt.%). The catalysts were characterized using X-ray 
diffraction, nitrogen physisorption, field emission scanning electron microscopy, 
transmission electron microscopy, Fourier transform infrared (FTIR), pyrrole 
adsorbed FTIR, CO2 adsorbed FTIR, nuclear magnetic resonance, hydrogen 
temperature programmed reduction and electronic spin resonance. Catalytic activity 
was conducted at 423-723 K under atmospheric pressure. KCC-1 has significantly a 
higher number of basicity and oxygen vacancy than those of mobil composition of 
matter number 41 (MCM-41) and commercial silica (SiO2) which is directly correlated 
with the CO2 adsorption and catalytic performance. At 723 K, the CO2 conversion for 
KCC-1, MCM-41 and SiO2 was 9.2, 8.6 and 5.9 %, respectively. For different 
transition metal loaded on KCC-1, at 673 K, the catalytic activity follows the trend of 
nickel (Ni/KCC-1) > cobalt (Co/KCC-1) > zinc (Zn/KCC-1) with CH4 yield of 90.6, 
71.6 and 10.8 % respectively. It was discovered that Ni/KCC-1 and Co/KCC-1 follows 
a dissociative mechanism pathway in which CO2 molecule was dissociated on the 
surface of metal before migrating onto KCC-1 surface. The Zn/KCC-1 on the other 
hand follows an associative mechanism pathway where H2 plays a role in CO2 
dissociation which primarily occurs on KCC-1 surface. Vanadium (V) outperformed 
other second metals promoted Ni/KCC-1 such as chromium, manganese, iron, copper 
and zinc. The reaction light off temperature was lower on V-Ni/KCC-1 (423 K), 
compared to Ni/KCC-1 (473 K). At 623 K, the CH4 yield of 7.5V-Ni/KCC-1 reaches 
94.4 % while 77.6 % for Ni/KCC-1. This could be attributed to the presence of V 
mitigated the agglomeration of Ni metal, thus the highly dispersed and exposed Ni 
active sites. Moreover, the amphoteric properties of V provide additional adsorption 
sites of CO2 and in turn influencing the catalyst activity. The optimum CH4 yield 
predicted by Response Surface Methodology was 98.6 % at reaction temperature of 
641.3 K, GHSV of 10816.13 mL g-1 h-1 and H2:CO2 ratio of 5.8. The experiment 
carried out at these parameters yielded 95.8 % CH4 with an error of 1.44 %. The 
presence of O2 was found to inhibit the activity of the catalyst due to competitive 
adsorption of gases.This study reported for the first time, the utilization of unique silica 
morphology KCC-1 as a catalyst support and highlighted the contribution of promoted 
V-Ni/KCC-1 in the CO2 methanation research, particularly in the utilization of CO2 
towards greener environment. 
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ABSTRAK 

Penghidrogenan karbon dioksida (CO2) kepada metana (CH4) adalah teknik 
yang berpotensi dalam pemuliharaan alam sekitar disamping menghasilkan bahan api 
lestari untuk memenuhi permintaan tenaga. Dalam kajian ini, silika mesoliang KAUST 
pusat pemangkin bernombor 1 (KCC-1) dengan struktur berserat unik telah disintesis 
dan dibandingkan dengan mangkin berasaskan silika lain untuk mengkaji pengaruh 
morfologi penyokong mangkin keatas metanasi CO2. Logam peralihan berbeza 
dimuatkan keatas KCC-1 telah disediakan dengan kaedah pengisitepuan untuk 
menyiasat penambahbaikan aktiviti pemangkinan dan perbezaan laluan mekanisme 
dalam metanasi CO2. Tambahan pula, mangkin penggalak dwilogam KCC-1 
disediakan melalui kaedah pengisitepuan bersama telah dikaji dengan muatan 
penggalak berbeza (2.5  10 wt.%). Mangkin telah dicirikan dengan pembelauan sinar-
X, penjerapan fizikal nitrogen, pengimbasan elektron pancaran medan, mikroskopi 
elektron penghantaran, inframerah jelmaan Fourier (FTIR), FTIR terjerap pirol, FTIR 
terjerap CO2, salunan magnet nuklear, penurunan suhu terprogram hidrogen dan 
salunan elektronik putaran. Prestasi pemangkin telah dijalankan pada suhu 423-723 K 
pada tekanan atmosfera. KCC-1 mempunyai bilangan nombor bes dan kekosongan 
oksigen yang lebih tinggi berbanding komposisi jirim mobil nombor 41 (MCM-41) 
dan silika komersil (SiO2) yang secara langsung berhubungkait dengan penjerapan 
CO2 dan prestasi pemangkinan. Pada 723 K, penukaran CO2 bagi KCC-1, MCM-41 
and SiO2 adalah masing-masing 9.2, 8.6 and 5.9 %. Bagi logam peralihan berbeza yang 
dimuatkan keatas KCC-1, pada 673 K, aktiviti pemangkinan mengikuti urutan nikel 
(Ni/KCC-1)> kobalt (Co/KCC-1)> zink (Zn/KCC-1) dengan hasil CH4 sebanyak 
masing-masing  90.6, 71.6 dan 10.8%. Penemuan bahawa Ni/KCC-1 dan Co/KCC-1 
mengikuti laluan mekanisme penceraian di mana molekul CO2 tercerai di permukaan 
logam sebelum berpindah ke permukaan KCC-1. Zn/KCC-1 sebaliknya mengikuti 
laluan mekanisme bersekutu di mana H2 memainkan peranan dalam penceraian CO2 
yang berlaku terutamanya pada permukaan KCC-1. Vanadium (V) mengatasi 
penggalak logam kedua Ni/KCC-1 lain seperti kromium, mangan, besi, tembaga dan 
zink. Permulaan suhu tindak balas adalah lebih rendah pada V-Ni/KCC-1 (423 K), 
berbanding Ni/KCC-1 (473 K). Pada 623 K, hasil CH4 oleh 7.5V-Ni/KCC-1 mencapai 
94.4% manakala 77.6% untuk Ni / KCC-1. Hal ini boleh dikaitkan dengan kehadiran 
V mengurangkan penggumpulan logam Ni, justeru tersebar dan terdedah oleh tapak 
aktif Ni. Selain itu, sifat-sifat amfoterik V memberikan tapak penjerapan CO2 
tambahan dan seterusnya mempengaruhi aktiviti mangkin. Hasil CH4 optimum yang 
diramalkan oleh kaedah sambutan permukaan adalah 98.6% pada suhu tindak balas 
641.3 K, GHSV 10816.13 mL g-1 h-1 dan nisbah H2:CO2 5.8. Eksperimen yang 
dijalankan pada parameter-parameter ini menghasilkan 95.8% CH4 dengan ralat 
1.44%. Kehadiran O2 didapati membantut aktiviti mangkin kerana persaingan 
penjerapan gas. Kajian ini melaporkan buat pertama kali, penggunaan morfologi silika 
unik KCC-1 sebagai penyokong mangkin dan menekankan sumbangan penggalak V-
Ni/KCC-1 dalam kajian metanasi CO2, khususnya dalam penggunaan CO2 ke arah 
persekitaran yang lebih hijau.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Increasing greenhouse gases (GHG) concentration in the atmosphere is one of 

the major problems contributing to global warming. Among the greenhouse gases, 

carbon dioxide (CO2) is the heaviest and the most rapidly amplified (Faralli et al., 

2017). Huge emission amount over 30 Gt CO2 per year CO2 contributes to over 60% 

of global warming (Albo et al., 2010). This triggered intensive research into CO2 

mitigation. Many previous researchers have discussed CO2 capture and sequestration 

in term of various environmental and economic aspects such as fixation in carbonates, 

geological or ocean storage, or afforestation (Ghedini et al., 2010; Wang et al., 2011). 

Although various physical and chemical techniques have been proposed for the 

fixation of exhausted CO2, their immediate practical application has drawbacks in term 

of economic factors, safety, efficiency, and dependability  (Kim et al., 2010) 

Generally, three major pathways have been identified in order to reduce total 

CO2 emission into the atmosphere. Firstly, reduction of energy consumption on daily 

activities. This option requires efficient use of energy. Secondly, reduction of carbon 

intensive processes which requires switching to the use of non-fossil fuels. Lastly, 

enhancement of CO2 sequestration process by the development of technologies for 

CO2 capture and utilization. Hence the motivation behind this work is to utilize CO2 

over modified porous silica materials into fuels and to optimize the effectiveness of 

the conventional silica catalyst towards CO2 methanation process.  

Nowadays, CO2 has been applied in various industries, e.g., food, soft drink, 

welding, fire-extinguishers, foaming, propellant, agro-chemistry, or as a solvent/fluid 

in various process like water treatment packaging, separation, drying-cleaning, etc. 

Supercritical CO2 found its growing application as solvent for reactions, polymer 
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modification and separation process. Although there exist such feasible applications 

of CO2 utilization, their implication towards reducing total CO2 emission were less 

effective due to small market scale (Huang and Tan, 2014). Thus, converting CO2 as 

fuel would open new doors towards more feasible CO2 utilization. 

CO2 hydrogenation into methane also known as CO2 methanation or Sabatier 

reaction (Eq. 1.1) is the most favoured reaction in the series of CO2 hydrogenation due 

to its ease of operation and relatively simple process. (Li et al., 2018b). In the Sabatier 

process, CO2 reacts with hydrogen in the presence of catalysts to produce methane and 

water. It is likewise one of the favourable options in order to cut the CO2 emission in 

our environment. However, the reduction of CO2 into methane requires the transfer of 

eight electrons which leads to significant kinetic limitation. 

        (1.1) 

The reaction is highly exothermic and the removal of heat from the reactor is an 

important issue. Consequently, processes using high performance catalyst and 

adequate reactors are needed to achieve acceptable rates and selectivity (Hwang et al., 

2012).  

 Support plays an important role in the catalysis by providing high surface area 

and porosity to the catalytic system in order to provide abundance active sites. The 

role of support is not only restricted to adsorption centre for reactant, but also play role 

in the modification of catalyst properties. Previous study showed that CO2 

hydrogenation over unsupported catalyst is very low compared to supported catalyst 

(Aziz et al., 2014c). This is due to the fact that supported catalyst is an oxidized phase, 

which can act as a matrix to enhance the homogeneous distribution of active metals 

and prevent agglomeration due to crystallite migration. Other than that, the 

morphology of the support also influences the performance of CO2 methanation.  

Hence, in this study, several issues with respect to the morphology of porous silica 

have been investigated towards the CO2 adsorption capacity.  
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Silica is usually chosen as a catalyst support due to high surface area, high 

mechanical and thermal stabilities and also ease to modify (Zhang et al., 2013). 

Development of silica catalyst as support have gone through tremendous changes to 

tailor its properties to fit specific applications. Based on previous studies, open 

framework silica catalyst with two-dimensional (2D) structure such as mesoporous 

silica structure MCM-41 and SBA-15 have been attracting great concern over the years 

because of their potential ability to be a catalyst and behave as great surface-

assimilative materials for large molecule of reactant. This is due to their unique 

properties such as high surface area, homogeneous pore size distribution and plenty of 

well distributed active sites. However, these porous silica nanomaterials comprised 

close-packing spherical empty cages with body-centred cubic symmetry which leads 

to poor accessibility to the active sites inside the pores, thus limiting their application 

 et al., 2010) 

 In recent years, fibrous mesostructured silica catalyst (KCC-1) emerged as a 

new morphological structure and the surface area mainly attributed from the silica 

fibres (Polshettiwar et al., 2010). In contrast to the two dimensional (2D) porous silica 

materials with cylindrical pore structure such as MCM-41 and SBA-15, KCC-1 has 

open silica fibrous, dendritic like structures. Fibrous morphology allows bulk mass 

transfer of gas reactant, as a consequence, it will shorten the CO2 adsorption-

desorption cycle time and lead to increase in the reaction kinetics. Thus, tremendously 

affects the catalytic performance (Singh et al., 2016). Previous study showed that 

KCC-1 had been used in drug delivery system, adsorbent in removing drugs and heavy 

metals in waste water streams (Singh and Polshettiwar, 2016). Moreover, Patil et al. 

tested KCC-1 in CO2 adsorption and better adsorption was found on KCC-1 compared 

to MCM-41 (Patil et al., 2012). Herein, this study utilizes the KCC-1 in the gas phase 

reaction in order to identify the effect of modified porous silica nanomaterials toward 

the catalytic activities of CO2 methanation. It is predicted that the altering of silica 

morphology from the two dimensional (2D) porous silica into fibrous morphology will 

optimize the catalytic activities.  

Tailoring the surface morphology and electronic structure of the catalyst 

support is one of the promising approaches for the formation of abundant and specific 
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surface defect sites on the catalyst surface (Aziz et al., 2014a). This is due to the 

abundance of oxygen-deficient sites on the catalyst surface which influence the CO2 

attraction, thus increasing the adsorption capabilities of catalyst. Therefore, the nature 

of the catalyst support such as basic strength, total oxygen vacancies and electron 

properties of the catalyst support will determine the interaction between the support 

and the reactant, thus determines the catalytic performance of CO2 methanation 

reaction. 

 Metal loaded on silica-based catalysts were studied vastly in CO2 methanation 

reaction. Typically, ruthenium and nickel are the most studied active metal for very 

long time. The ruthenium is superior in term of catalytic activity and mild reaction 

condition (Abdel-Mageed et al., 2016). Nickel, on the other hand, also provide 

comparable activity at lower material cost. Cobalt was also studied as CO2 

methanation catalyst. Since cobalt is well known to perform in Fisher-Tropsch (FT) 

synthesis (Lögdberg et al., 2017), researcher expected formation of higher 

hydrocarbon during the reaction. However, upon changing reactant from CO gas to the 

mixture of CO2 and H2 gas, cobalt catalyst displayed methanation favoured catalyst 

rather than FT catalyst (Bratt, 2016). Akin and co-worker observed that almost 70% 

of methane was formed using Co/Al2O3 catalyst (Akin and Önsan, 1997).  Previous 

study also found that metal such as rhodium, ruthenium, nickel, iridium gave good 

catalytic activity while zinc, vanadium, chromium and aluminium were inactive for 

CO2 methanation (Aziz et al., 2014c).  

However, the consensus on different pathways of reactant to product is still not 

clear. Two major mechanistic routes were proposed: direct hydrogenation route and 

CO-intermediate route. CO-intermediate route could be further specified by two 

pathways namely: associative and dissociative pathways. Few researches were 

conducted on mechanism of CO2 methanation over different metal-based catalyst 

(Wang et al., 2011). Major problem of metal-based catalyst for CO2 methanation is 

thermal sintering. This phenomenon occurs due to mobilization of metal during 

elevated temperature (Zeng et al., 2013). One of the main strategies to attenuate this 

problem is by controlling the metal particle size by either increasing dispersion of 

metal or immobilization of metal through confinement effect (Gálvez et al., 2015).  
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Secondary metals or metal oxides as binder and promoter are gaining attention 

to overcome this limitation and improving activity of the catalyst. Emerging promoter 

includes cobalt (Wu et al., 2019), magnesium (Bacariza et al., 2017), vanadium 

(Jalama, 2017), cerium (Wang et al., 2018), and lanthanum (Quindimil et al., 2018). 

Oxygen exchange capacity of CeO2 could reversibly store and release oxygen species, 

this promoting adsorption and desorption of CO2. Other than that, the presence of CeO2 

over Ni/MCM-41 was found to enhance the dispersion of Ni, thus promoting the 

activity (Wang et al., 2018). Vanadium showed interesting effect on adsorption of COx 

species. Carabiniero et al., concluded that oxygen acceptor-donor properties of 

vanadium which come from different oxidation states of vanadium promotes activity 

of carbon gasification of CO2 to produce CO (Carabineiro et al., 2000). Nicholas et al., 

found that addition of K4V2O7 produced oxyvanadate ions and in turns promotes the 

solvent adsorption of CO2 (Nicholas et al., 2014).  

In this thesis, KCC-1 as new morphology of silica was utilized as support for 

CO2 methanation. It was expected that due to unique fibrous morphology of KCC-1, 

both metal dispersion and reactant accessibility would be enhanced. Therefore, three 

critical modifications were identified and studied which are type of porous silica 

material with different morphology (KCC-1, MCM-41 and SiO2), the effect of 

transition metal type (nickel, cobalt and zinc) and lastly effect of vanadium promoter 

towards CO2 methanation activity. Response surface methodology was also utilized to 

optimize the reaction conditions for the best catalyst. 

1.2 Problem Statement 

Carbon dioxide (CO2) is one of the major greenhouse gases that need to be 

captured and utilized. One of the feasible ways to utilize CO2 gas is by converting into 

fuels such as methane. However, the CO2 methanation reaction is highly exothermic. 

Therefore, efficient catalyst and catalytic processes are needed. Other than that, the 

selection of catalyst support for the CO2 methanation is one of the critical parameters. 

Common support includes alumina (Al2O3), ceria (CeO2), and silica (SiO2) were 

usually chosen due to their ability to disperse the metal and adsorb the reactant. Silica 
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is usually chosen as a catalyst support due to high surface area, high mechanical and 

thermal stabilities and also ease to modify. Le et al., (2017) studied methanation 

reaction over different support such as Al2O3, SiO2, TiO2 and CeO2. CeO2 was found 

to be perform best due to high surface area, better metal dispersion and strong CO2 

adsorption capabilities. Interestingly, ease of modification properties of silica-based 

catalyst would allow tuned surface area and CO2 adsorption capabilities, rendering 

silica an attractive choice for catalyst support. In general, there is need to design a 

robust especially highly stable and active catalyst for enhanced low temperature CO2 

methanation. 

Two dimensional (2D) mesoporous silica such as MCM-41 and SBA-15 with 

cylindrical pore structure have been widely used as a catalyst support in CO2 

methanation (Fu et al., 2015). This is due to high surface area, homogeneous pore size 

distribution and plenty of well distributed active sites for CO2 adsorption. However, 

these porous silica materials comprised of closely-packed spherical empty cages which 

allows only one way of gas flow will lead to poor accessibility of bulk reactant to the 

active sites located inside the pores, thus limits their applications (Singh and 

Polshettiwar, 2016).  

Metal component of catalysts is the active site for H2 dissociation in the 

catalytic reaction of CO2 methanation. Transition metals have been used as an active 

metal in heterogeneous catalyst system which showed comparable activity as noble 

metal-based catalyst. However, transition metal, especially nickel suffers from fast 

deactivation due to metal sintering. To overcome these problems, immobilization of 

metal through confinement effect of mesoporous silica was suggested. However, this 

also leads to accessibility problem as the active metal is located inside of pores (Xu et 

al., 2011). Other the that, the dispersion of metals was also limited in the confined 

space.  

Although CO2 methanation could be carried out at moderate temperature with 

high activity, possibilities of low temperature reaction remain attractive in industrial 

perspective. This would provide cost efficiency and ensuring safe operation. CO2 was 

mainly utilized from high purity sources such as natural gas processing and ammonia 
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synthesis. However, major CO2 production comes from power plant (12-15 mol% 

CO2), cement (14 2), and steel (20  industries were not utilized 

as scarce report on the influence of impurities. Specifically, the content of flue gas 

from cement industry includes 77% N2, 13% CO2, 5% H2O, 4% O2, and trace amount 

of other gases. Water impurities was studied previously and were found to inhibit 

methanation reaction (Xu et al., 2003). Research focusing on O2 impurities should also 

be carried out in order to utilize CO2 from this area. Other than that, source of hydrogen 

should also be taken into consideration. As most hydrogen today is produced from 

fossil hydrocarbons, its conversion to methane is not a sensible idea unless an 

inexpensive and renewable source of hydrogen is found (e.g. biomass or water). 

Provided that hydrogen is generated from renewable energy sources such as water 

electrolysis (Centi et al., 2009), methanation reaction could be perceived as means of 

energy storage and transportation. 

1.3 Hypothesis 

To overcome the above-mentioned problems, unique fibrous morphology of 

silica could be utilized to promote high accessibility of bulk gas reactants. Therefore, 

it will shorten the adsorption-desorption cycle of CO2 reactant, thus increased its 

kinetics. It was hypothesized that the dispersion of metal on fibrous based silica 

catalyst will be high and more exposed. This is due to attachment of metal on the 

dendritic fibres of the silica and not in the pore as with conventional silica. It is also 

expected that incorporation of different transition metals would lead to different 

mechanistic pathways. Addition of promoter would result in both increase of CO2 

adsorption sites and allows for reaction to take place at lower temperature. Previous 

study also shown that addition of promoter could enhance dispersion of metal 

(Nicholas et al., 2014). The presence of oxygen is expected to negatively affect the 

reaction as oxidization of metal would passivate the active sites. 

 



8 
 

1.4 Objective of Study 

Objective of this study is to synthesize vanadium promoted nickel supported 

on silica catalyst for enhanced methanation of carbon dioxide. The objective of this 

study could be specified as follows; 

1 To prepare and characterize different silica-based catalysts for CO2 

methanation  

 
2 To investigate the effect of different transition metals towards CO2 

methanation activity and mechanism pathway  

 
3 To evaluate the effect of second metal promoter and presence of O2 on 

CO2 methanation activity 

 

4 To optimize the CO2 methanation parameters over promoted catalyst 

by Response Surface Methodology (RSM). 

1.5 Scope of Study 

The scopes of this study consist of five parts namely: effect of support on CO2 

methanation, effect of metals and promoter on CO2 methanation, effect of O2 species 

and optimization of CO2 methanation. The details are described as follows: 

I. The effect of supports on CO2 methanation was studied by preparing a series 

of silica-based catalysts with different morphology (KCC-1, MCM-41 and 

SiO2). KCC-1 was prepared via microemulsion method as reported in previous 

literature (Febriyanti et al., 2016). The growth of pore size of KCC-1 was 

controlled by the cationic surfactant cetyltriammonium bromide (CTAB), 

while toluene as a non-polar solvent act as a media to retain the surfactant to 

facilitate the growth of dendrimers. The prepared catalysts were characterized 

by XRD, N2 physisorption, FESEM, TEM, UV-DRS, Pyrrole-FTIR, CO2-
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FTIR, ESR, TPR and NMR. Catalytic testing on CO2 methanation was done at 

temperature range of 423-723 K and atmospheric pressure. 

 
 

II. The effect of metals on CO2 methanation was studied by preparing a series of 

transition metal promoted KCC-1 with various metals (Ni, Co, Zn, V, Cr, Mn, 

Fe and Cu). Preparation of metal promoted on KCC-1 catalysts were 

synthesized by impregnation method with 5 wt.% metal (Garbarino et al., 

2014). From the screening result, three metals (Ni, Co and Zn) were chosen to 

further analyses to understand the influence of different transition metals. The 

prepared catalysts were characterized by XRD, N2 physisorption, FESEM-

EDX, Pyrrole-FTIR, and TPR. Catalytic testing on CO2 methanation was done 

at temperature range of 423-723 K and atmospheric pressure. The general 

reaction mechanism of CO2 methanation over different transition metal was 

studied using in situ CO2-ESR and in situ CO2+H2-FTIR spectroscopy.  

 
 
III. The effect of second metal promoter on CO2 methanation was studied with 

different metals (V, Zn, Cr, Mn, Fe and Cu). Vanadium showed good 

interaction with CO2, and was chosen to be further characterized. (Nicholas et 

al., 2014). A series of vanadium promoted Ni/KCC-1 was prepared with 

various vanadium loading (2.5, 5, 7.5 and 10 wt. %). Preparation of vanadium 

promoted Ni/KCC-1 catalysts were synthesized by co-impregnation method. 

The prepared catalysts were characterized by XRD, N2 physisorption, Pyrrole-

FTIR, CO2-FTIR and TPR. Catalytic testing on CO2 methanation was done at 

temperature range of 423-723 K and atmospheric pressure. The effect of O2 

species on CO2 methanation was studied using 7.5V-Ni/KCC-1 as a catalyst. 

Different ratio of O2:CO2 was used (0.25, 0.5, 1 and 2). The catalyst was also 

tested for prolong effect of O2 species. FTIR O2 on preadsorbed CO2 was 

carried out to investigate the influence of O2 on CO2 adsorption. 

 
 

IV. The optimum condition for CO2 methanation over 7.5V-Ni/KCC-1 was 

identified by RSM using central composite design (CCD) developed by 

Statistica 6.0 StatSoft. The variables selected in the study are reaction 

temperature (623-723 K) (Kesavan et al., 2018), GHSV (7500  22500 mL g-1 
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h-1) (Aziz et al., 2015) and H2 to CO2 ratio (2-6) (Hoekman et al., 2010). These 

variables were chosen based on results from literature and preliminary studies 

that have been conducted. From preliminary results, the activity of the catalyst 

already reached plateau at temperature 773 K, thus, the lower range of 723 was 

chosen. The performance of the catalyst was evaluated by analyzing the 

response of CH4 yield. 

1.6 Significant of Studies 

 In this study, the KCC-1 supported catalyst is a new and emerging morphology 

of modified silica nanoparticle catalyst. As compared to other cylindrical silica 

nanoparticle system such as MCM-41 and SBA-15, KCC-1 has unique fibrous 

morphology with dendrimer like structure. This fibrous morphology is unique due to 

several catalyst properties such as allowing bulky mass transfer of gas reactant into the 

active sites, high thermal stability and high oxygen-defect thus high basic sites. As a 

consequence, fibrous morphology shortens CO2 adsorption-desorption cycle time of 

catalytic reaction which leads to increase in the reaction kinetics. Furthermore, loading 

of metals on the KCC-1 support will be easier due to the fact that more active metals 

can be placed onto its open access morphology. Besides, detailed investigation on 

transition metal loaded KCC-1 and promoted metal KCC-1 reveals different 

mechanism pathway and higher activity of the catalyst. Optimization by RSM 

highlighted the factors influencing catalytic methanation. Additionally, it will be a 

significant contribution to the research and science community, especially in the 

utilization of the greenhouse gases into more valuable synthetic natural gases. 
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