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ABSTRACT

An advanced treatment technology of oilfield produced water (PW) is required 
because of the incapability of physical separation technologies to produce high quality 
treated water. Recently, hollow fiber membranes (HFMs) have been widely utilized 
since it is recognized as one of the most effective PW treatment technologies. 
However, membrane fouling is the main drawback of commercial polymeric 
membranes while commercial ceramic membranes are extremely expensive. 
Therefore, the aim of this research is to develop HFM from natural low cost ceramic 
material which is raw bauxite to counter these problems. The bauxite hollow fiber 
membranes (BHFMs) were developed using Malaysian raw bauxite with different 
bauxite loadings (45-60 wt.%) and sintering temperature (1250-1450 °C) via phase 
inversion and sintering technique. From the results obtained, BHFM with 50 wt.% of 
bauxite loading and sintered at 1350 °C showed the best morphological structure with 
sufficient mechanical strength of 135 MPa, suitable porosity value of 15.54 % and the 
medium average pore size of 0.78 |im. The BHFM also showed excellent water 
permeation of 195 L/m2.h.bar and 99% of oil rejection. The results of the contact angle 
revealed that the membranes are super-hydrophilic and super-oleophobic membrane. 
The fouled BHFM was further evaluated for its self-cleaning ability via ultraviolet 
(UV) driven photocatalytic test. The results showed the water permeation of the UV 
radiated BHFM increased by 30% compared to non-radiated BHFM. Then, the fouled 
BHFM was tested again for another two runs with the long term photocatalytic test to 
observe the efficiency of the self-cleaning properties. The result showed that the long­
term study does affect the water permeability of the BHFM, which decreased to 169 
L/m2.h.bar in the 3rd run of the self-cleaning test. The results of the oil rejection do not 
affect by the long-term photocatalytic test which stay in the range of 99%. The BHFM 
need some modification in the pore size of the membrane to maintain the self-cleaning 
properties. In conclusion, this study would provide a new insight on the application of 
BHFM as the cost-effective, self-cleaning membrane for the PW treatment.
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ABSTRAK

Teknologi rawatan termaju untuk air sisa campuran minyak (PW) diperlukan 
kerana teknologi pemisah fizikal tidak mampu menghasilkan air terawat berkualiti 
tinggi. Baru-baru ini, membran gentian berongga (HFMs) telah banyak digunakan 
sejak ia dikenali sebagai salah satu teknologi rawatan PW yang paling berkesan. 
Bagaimanapun, kotoran membran adalah kelemahan utama bagi membran polimer 
komersial manakala membran seramik komersial adalah sangat mahal. Oleh itu, tujuan 
penyelidikan ini adalah untuk membangunkan HFM dari bahan seramik kos rendah 
dan semula jadi iaitu bauksit mentah bagi mengatasi masalah tersebut. Membran 
gentian berongga bauksit (BHFMs) dibangunkan dari bauksit mentah Malaysia dengan 
muatan bauksit berbeza (45 % berat -60 % berat) dan suhu pensinteran berbeza (1250 
°C -1450 °C) melalui teknik penyongsangan fasa dan pensinteran. Dari hasil ujian yang 
diperoleh, BHFM dengan 50 % berat muatan bauksit dan sinteran pada 1350 °C 
menunjukkan struktur morfologi terbaik dengan kekuatan mekanikal yang mencukupi 
iaitu 135 MPa, nilai keliangan yang sesuai iaitu 15.54% serta dengan purata saiz liang 
yang optimum iaitu 0.78 p,m. BHFM juga menunjukkan kebolehtelapan air yang baik 
iaitu 195 L/m2.h.bar dan 99% penolakan minyak. Hasil kajian dari sudut sentuhan 
menunjukkan bahawa membran adalah membran super-hidrofilik dan super- 
oleofobik. BHFM tercemar seterusnya dinilai untuk keupayaan pembersihan-diri 
melalui ujian fotobermangkin menggunakan ultra-ungu (UV). Hasilnya menunjukkan 
kebolehtelapan air BHFM diradiasi UV meningkat sebanyak 30% berbanding dengan 
BHFM tanpa diradiasi dengan UV. Seterusnya, BHFM yang tercemar diuji untuk dua 
kali ujian fotobermangkin dengan jangka masa yang lebih panjang untuk melihat 
kecekapan sifat pembersihan-diri. Hasil ujian menunjukkan bahawa kajian 
pembersihan-diri fotobermangkin dengan masa yang lebih panjang ini mempengaruhi 
kebolehtelapan air BHFM, yang menurun kepada 169 L/m2.h.bar pada ujian kali ke-3 
pembersihan-diri. Keputusan penolakan minyak pula tidak dipengaruhi oleh ujian 
fotobermangkin pada jangka panjang kerana masih berada di sekitar 99%. BHFM 
memerlukan beberapa pengubahsuaian dalam saiz liang membran untuk mengekalkan 
sifat pembersihan-diri. Kesimpulannya, hasil kajian ini akan memberikan satu 
wawasan yang baharu mengenai penggunaan BHFM sebagai membran berkos efektif 
dan keupayaan pembersihan-diri untuk rawatan PW.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Huge amount of produced water (PW) generated throughout the oil and gas 

extraction constituted the majority of waste effluent in the petroleum industry (Hussain 

et al., 2014). PW is a natural water layer which located under the layer of hydrocarbon 

in the reservoir which composed of dispersed oil, aromatic hydrocarbon, a broad 

variation of salts, fine silts of both clay and silicon composition, and also contain active 

biological materials. Hussain et al. (2014) stated that, in 1995, The American 

Petroleum Institute (API) estimated 18 billion barrels of PW was generated in the US 

region which is only from onshore platform. They also stated that values keep 

increasing in 2007 and 2011 which is in between 70 to 100 billion barrels of PW, with 

only a small part treated for the beneficial reuse. For the purpose of disposal and other 

beneficial reuse, PW needed to be treated first using water treatment technologies until 

to appropriate extent with the required quality which in accordance to permissible 

discharge level. Conventionally, PW treatment were limited to remove large 

suspended particles and free oil before discharge in the sea or injection into the 

disposal wells (Dores et al., 2012).

Current technologies such as gravity separation, hydrocyclone, centrifuging, 

gas floatation and filtration cannot stand alone without using the expensive chemicals 

to achieve the desired cleanliness standard. New and unconventional technologies 

should be established to discard dissolved oil and other smaller component without the 

use of chemicals. Igunnu & Chen (2012) stated that the general permissible discharge 

level for the disposal of PW into the sea is 40 ppm Oil-in-Water (OIW). However, they 

also stated that many countries had changed the standards into more stringent value. 

As example, Paris agreed the maximum discharge value reduced to 30 ppm OIW, US 

region also set the daily maximum discharge value at 42 ppm of oil. Lower value also



was set for Australia and China which are 30 ppm and 10 ppm of oil and grease 

content. In 2000, some of the region was aimed to ‘zero discharge’ in order to protect 

the aquatic environment. Since that, most oil and gas operators are now searching for 

a new and better technology to implement the zero environmental harmful discharge 

which apparently unable to achieve by the current technologies.

Hence, oil and gas operators have looked forward toward membrane filtration 

technology due to the potential to counter the disposal issues associated with the 

conventional purification technologies. Membranes technology have become one of 

the most effective methods in some separation and purification applications especially 

for onshore and offshore oilfield PW treatment (He & Jiang, 2008). These membranes 

play on important roles because of their ability of breaking off the emulsion without 

using high cost chemical, high oil removal efficiency, high removal of chemical 

oxygen demand (COD) and total organic carbon (TOC) and their facilities being more 

compact rather than the current technologies. Membrane filtration processes, such as 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis 

(RO), have some potential in removing the smallest particle which is less than 10 |im 

and most stable oil droplets, suspensions and dissolved components. These membranes 

are effective for obtaining sufficiently high quality of water for other beneficial use 

and disposal.

However, previous field and laboratory tests showed some of the membranes 

have faced problem regarding to the membrane fouling (Li & Lee, 2009). Even though 

most membrane can be cleaned, however this process requires extra chemical, energy 

and downtime of the treatment instalment, resulting in increasing operating cost of the 

treatment. Many researches have tried to overcome the fouling problem, which 

involving of pre-treatment of feed solution, adjustment of membrane properties, 

operation conditions improvement and module arrangement optimization. Most of the 

mentioned method had successfully reduced the fouling problems to acceptable level, 

but they still need the cleaning method to be employed as always. The cleaning method 

can be categorized into four types, which are mechanical cleaning, hydraulic cleaning, 

electrical cleaning and chemical cleaning (Abadi et al., 2011). Among of these 

cleaning methods, the most extensively used is chemical cleaning. There are many
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types of chemicals have been used for the chemical cleaning of the membrane such as 

NaOCl, Na-OH based formula and surfactants (Madaeni & Mansourpanah, 2004). In 

membrane treatment plant, membrane filtration process must be shutdown regularly 

for membrane cleaning to maintain the membrane performance. Frequent cleaning 

affects the increment of the labour cost also complexity of the membrane filtration 

process. The worst part is, chemical cleaning of the membranes results on the problem 

of chemical waste disposal and yet affects the membrane durability.

Recently, the ceramic membranes have been used in field run test for the PW 

treatment as a full-scale facility (Igunnu & Chen, 2012). The results indicated that the 

treated effluent produced after the treatment was free from suspended solids and 

almost all of the non-dissolved organic carbon has been removed. Both ceramic MF 

and UF membrane can be conducted using cross-flow and dead-end filtration modes 

and they acquire a longer lifetime (more than 10 years) which can be considered longer 

compared to polymeric MF and UF membranes (Li & Lee, 2009). Ceramic membranes 

also offer more advantages compared to polymeric membranes in term of ability to 

resist such harsh physical and chemical surroundings like high contain of organic 

solvent, acid and base solution, oxidative and reductive condition also high thermal 

and pressure condition. Some ceramic membranes also resistance toward 

microorganisms and organic matter which can cause membrane fouling (Abadi et al., 

2011). Thus, this study is basically focused on the application of ceramic hollow fiber 

membrane for the PW treatment with the ability to counter the fouling problem.
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1.2 Problem Statement

The ceramic membranes are commonly fabricated using micron-sized pure 

alumina powder due to their magnificent stabilities in term of structure, chemical and 

temperature. But, the pure alumina needs a high sintering temperature which is usually 

greater than 1500°C to achieve desired porosity and mechanical strength (Mestre et 

al., 2019). Due to high sintering temperature and pure alumina which is relatively 

expensive, a rising number of studies have been focused on the ceramic membranes 

preparation using inexpensive materials like natural ore and other inorganic industrial 

wastes such as cordierite (Zhang et al., 2009), sepiolite (Zhou et al., 2011), clays, 

industrial coal fly ash wastes (Dong et al., 2008a) and bauxite.

However, the studies on the fabrication by utilizing raw bauxite minerals to 

replace the pure alumina are less reported (Li et al., 2016). In general, bauxite is an 

aluminum ore that compose high quantity of alumina and low content of silicon 

dioxide. Bauxite also contain some impurities such as titanium dioxide and iron oxide. 

The amount of silicon dioxide in the bauxite not only helps in decreasing the desired 

sintering temperature but also they can act as a reactant to form chemically stabilize 

mullite through a secondary mullitization reaction with the inherent alumina. It also 

offered better porosity, lower average pore size, strong mechanical strength and 

excellence in chemical resistance. In addition, bauxite also hydrophilic characteristic 

which can counter the fouling problems.

Fouling has become main drawback in the practical of membrane technology 

in PW treatment. Membrane fouling not only affect the performance of the 

membranes, but also shorten the lifetime of the membranes. To solve the problems, a 

recently study merged the ceramic membrane with photocatalyst like TiO2 to degrade 

the pollutants on membrane surface with the UV radiation (Mohtor et al., 2018). Few 

researchers have published an anti-fouling properties of the membranes with TiO2 by 

coating the composite membrane with TiO2 particles and photodegradation under UV 

light. But, this coating method might have some drawbacks when applied on daily PW 

treatment which are the detachment of the coating particles from the membrane surface 

due to repetitive, which eventually can block pores of the membrane.
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Bauxite possess great potential to overcome most of the problem related to the 

membrane technology for the PW treatment since the impurities like TiO2 of the 

bauxite can incorporate with the aluminum source to form a better membrane including 

the anti-fouling properties (Bai et al., 2015). Several studies have showed that 

membranes with TiO2 were great in degrading the foulants, thus improving the 

membrane filtration performance. Damodar et al. (2009) have successfully fabricated 

modified PVDF membrane by adding different amount of TiO2 particle into the casting 

solution, and the membranes showed their photocatalytic and anti-fouling properties 

under the UV light exposure.

In this research, the ceramic hollow fiber membrane was fabricated using 

Malaysia raw bauxite by phase inversion and sintering technique. The characterization 

of the prepared membrane was employed to find the optimum mechanical strength of 

the membrane, hydrophilicity, average pore size and the suitability of the membrane 

for the PW treatment. Then, the BHFM was further studied for the self-cleaning 

property. The BHFM was radiated with UV radiation before the oil rejection test and 

the result was compared with the system without UV exposure.

1.3 Research Objectives

The main objective of this study is to develop a bauxite hollow fiber membrane 

(BHFM) with self-cleaning property using Malaysian raw bauxite for the oilfield PW 

treatment. The specific objectives of the study are:

1. To establish the relationship of bauxite loading and sintering temperature on

the structural, physical and chemical properties of the BHFM.

2. To evaluate the rejection of oil and permeate flux performance of BHFM in the

PW treatment.

3. To assess the potential of BHFM as a self-cleaning membrane.
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1.4 Scopes of Research

In order to achieve all of the objectives, the specified scopes have been 

organized for this research. The scopes are:

1. Preparing and characterizing raw bauxite obtained from Pahang, Malaysia as 

the alternative ceramic material:

a. Drying the raw bauxite in oven before used. Grinding the dried raw 

bauxite into powder form. Lastly, sieving the bauxite powder to get the 

bauxite powder with particle size less than 36 ^m  through sieving 

process.

b. Investigating the chemical composition and crystalline phase of the raw 

bauxite powder and crushed BHFM using x-ray fluorescence 

spectrometry (XRF) and x-ray diffraction (XRD).

2. Fabricating the BHFM by using the phase inversion and sintering technique:

a. Preparing the ceramic suspension containing bauxite powder as the 

chosen ceramic material at different composition of suspension (45 

wt.% - 60 wt.% of bauxite loading), ^-methyl pyrrolidone (NMP) as 

solvent, Arlacel P135 as dispersant and polyethersulfone (PES) as 

binder, in order to find the most suitable formulation.

b. Analyzing the viscosity of ceramic suspension prepared at different 

bauxite loading (45 wt.% - 60 wt.%) using viscometer.

c. Fabricating the prepared ceramic suspension into bauxite hollow fiber 

precursor through tube-and-orifice spinneret using phase inversion 

technique.

d. Forming the BHFM through sintering process at target temperatures 

ranging from 1250°C - 1450°C.
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3. Characterizing the properties of BHFMs.

a. Measuring the internal diameter (ID), outer diameter (OD) and 

thickness of cross-section morphology of BHFMs using scanning 

electron microscopy (SEM) analysis.

b. Measuring the hydrophilicity and oleophobicity of the BHFMs using 

contact angle measurement.

c. Investigating the mechanical strength of BHFMs using three-point 

bending test analysis.

d. Measuring the average pore size and porosity of the membrane using 

mercury porosity test.

4. Performing the performance test of the selected BHFMs towards oil rejection 

in PW treatment using synthetic PW through cross-flow filtration mode in term 

of permeate flux and oil rejection:

a. Preparing the synthetic PW with 1000 ppm using commercial heavy 

crude oil collected from PETRONAS Melaka Refinery Complex and 

then mixed with distilled water. The cross-flow system for the oil 

rejection was tested under the operation conditions of 30°C and 3 bar.

b. Performing the water permeation test initially before running the 

rejection test.

c. Investigating the effect of bauxite loading on the performance of the 

BHFMs by measuring the permeate flux and the oil rejection by using 

ultraviolet-visible (UV-vis) analysis.

d. Investigating the effect of sintering temperature on the performance of 

the BHFMs by measuring the permeate flux and the oil rejection by 

using ultraviolet-visible (UV-vis) analysis.

e. Comparing the results between the BHFMs to find which one showed 

the best performance.

7



5. Evaluating the bauxite membranes self-cleaning performance:

a. Conducting the self-cleaning test of the BHFM using UV radiation. The 

BHFMs were radiated by UV light in the distilled water for 3 hours 

then the radiated BHFM were tested for oil rejection test.

b. Comparing the results of the non-radiated membrane with radiated 

membrane by using ultraviolet-visible (UV-vis) analysis, to compare 

the rejection of oil.

c. Conducting the long-term self-cleaning test to the BHFM to compare 

the condition of the BHFM after several run.

d. Investigating the condition of BHFM after radiated again with UV and 

the result were compared with the first time UV radiation.

1.5 Significance of Research

Even though the study regarding to the treatment of PW by membrane 

technology are well known in the past few years, but the focus of previous studies was 

more on the polymeric and polymeric-based composite membranes compared to the 

ceramic membrane. But, when it comes to the application of ceramic membranes for 

the PW treatment, ceramic membranes also have some drawback which include the 

cost of the fabrication. So, recent studies on the ceramic membrane have been focused 

on the low cost ceramic materials with high chance to replace the commercial ceramic 

materials. However, fabrication of inexpensive ceramic hollow fiber membrane using 

raw bauxite especially Malaysia bauxite is less reported.

The other problem faced by ceramic membrane is membrane fouling that 

probably occur in the long time period of utilization. Cleaning method like chemical 

cleaning should handle the problem but this method could damage the membrane and 

lower its rejection performance. The needs of inexpensive ceramic hollow fiber with 

fouling resistance is crucial especially when applying to the oily PW treatment. PW 

contain finer particle and dissolved oil to be remove for better quality of water. Current
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technologies have some problems in rejecting the smaller particle and dissolved oil. 

So, new advanced membrane technology like ceramic hollow fiber membrane is 

needed to fulfill oil and gas industry strict rules for water disposal into the sea and 

water reinjection to the hydrocarbon reservoir. In this study, the fabrication of bauxite 

hollow fiber membrane is more focused on the ability of the membrane to reject the 

dissolved oil while maintaining its rejection performance. This study can become the 

pioneer of research regarding to the utilization of bauxite hollow fiber membrane 

(BHFM) with self-cleaning ability for the PW treatment since there is no reported yet.

1.6 Organization of the Thesis

This thesis is divided into five chapters, which are introduction, literature 

review, research methodology, results and discussion and conclusion and 

recommendations.

Chapter 1 describes the brief introduction on the PW includes its problems 

and the current technology that were used to treat PW. Then, the details of the problem 

statement, objectives and scopes of the study, also the significant of the study have 

clearly stated.

Chapter 2 displays the literature reviews of the topic of interest in this thesis. 

In this first part of the chapter, the PW are discussed thoroughly in terms on its 

compositions, problems and the conventional technologies of the PW treatment. Then, 

the next part of the chapter is more focused on the membrane technology which 

includes the application of conventional polymeric and ceramic membranes and the 

ceramic membrane materials used for the PW treatment. This part of chapter 

deliberates the advantageous and the limitation of the current membrane technology. 

Next part of the chapter is involved the low cost materials for the ceramic membrane 

which go thoroughly until the explanation of the bauxite material. After that, the 

chapter continue with the explanation of the fabrication BHFM and the 

characterization of BHFM. Before the summarization of the chapter, the last part of

9



the chapter is discussed on the self-cleaning membrane and the mechanism of the self­

cleaning properties.

Chapter 3 emphases on the materials, fabrication and sintering techniques, 

characterization approaches, water permeation setup for the oil removal in PW and the 

self-cleaning setup.

Chapter 4 discusses the characterization of bauxite powder and BHFM 

including the chemical properties, crystalline phase, rheological study and also 

hydrophilicity and oleophobicity of the membrane. The next part discussed on the 

relationship of the bauxite loading and sintering temperature on the properties of the 

BHFM. In this part, the most acceptable properties of BHFM were chosen in term of 

its morphology, mechanical strength, porosity and average pore size. The self-cleaning 

properties discusses on the last part of the chapter in term of water permeation of the 

BHFM.

Finally, Chapter 5 stated the general conclusion for each objective that has 

been mentioned in the thesis. The suggestion and recommendation for the future work 

have also discussed in this chapter.
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