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ABSTRACT

The prolonged use of the vibrating hand-held tools can cause discomfort,
muscle fatigue and ergonomic injuries to the users which are known as hand-arm
vibration syndrome (HAVS). The undesired vibration decreases the tool performance
and the user productivity. Therefore it is very important to design a vibration
suppression tool that can isolate or suppress the vibration transmission to the worker’s
hand to protect them from HAVS. This work is carried out to design a vibration
control approach that can be applied to the anti-vibration gloves to reduce the vibration
transmission from the vibrating tool to the users so that it can keep the vibration level
within the healthy caution zone which is less than 2.5 m/s2 for 8 hours exposure time.
While the anti-vibration glove which includes viscoelastic materials is used as the
passive vibration control approach, for the active vibration control we need to produce
an actuation signal to cancel the vibration by using active elements along with the
sensors and controller. Therefore, in this work first, an active model of the glove-hand
system is considered and then by obtaining the mathematical model of the system,
a fuzzy parallel distributed compensation (PDC) controller is designed in a way that
it can perform well for different users with different hand masses. The capability
and reliability of the proposed controller are evaluated through simulations and then
the results are compared with the other active vibration control techniques including
proportional integral derivative (PID) controller and active force controller (AFC).
The simulation results show the excellent performance of the designed controller over
the other types of controllers and its significant capability in reducing the transmitted
vibration to the user’s hand.
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ABSTRAK

Penggunaan peralatan mudah alih secara berpanjangan boleh memudaratkan
badan, melemahkan otot-otot dan menghasilkan kecederaan ergonomik kepada
penggunanya. Kesan ini dikenali sebagai ”hard-arm vibration syndrome (HAVS).
Vibrasi yang tidak dikehendaki boleh mengurangkan prestasi alat dan juga produktiviti
pengguna. Oleh itu, adalah amat penting untuk mereka-cipta satu alat penghalang
atau pengurang getaran yang dapat mengasingkan serta menghalang trasmisi getaran
alat tersebut kepada penggunanya. Kerja ini telah dijalankan dengan untuk mereka
satu cara untuk mengawal getaran yang dapat digunakan pada sarung tangan anti-
getaran agar dapat mengawal kadar getaran pada tahap yang selamat terhadap
penggunanya, iaitu kurang daripada 2.5 m/s2 dalam masa 8 jam sepanjang tempoh
penggunaan. Walaupun sarung tangan anti-getaran dihasil dengan menggunakan
material viscoelastic yang dapat bantu mengawal getaran secara pasif, namun begitu
satu cara aktif juga diperlukan untuk bantu membatalkan getaran dengan menghasilkan
isyarat actuation menggunakan elemen-elemen aktif serta pelbagai sensor dan alat
pengawal. Oleh itu, dalam kerja ini kita terlebih dahulu perlu mempertimbangkan
satu model aktif system sarung tangan, dan diikuti dengan memperolehi satu sistem
model matematik sistem yang dikehendaki, sebuah ”Fuzzy paralled distributed
compensation (PDC) controller” akan direka-cipta agar ia sesuai diguna oleh pengguna
yang mempunyai pelbagai jisim tangan yang berbeza. Tahap keupayaan dan tahap
kebolehpercayaan kontroller yang dicadangkan akan diuji menggunakan program
simulasi dan hasilnya akan dibandingkan dengan cara kawalan getaran yang lain
seperti ”Proportional integral derivative (PID) controller” dan juga ” Active force
controller (AFC). Hasil simulasi menunjukkan prestasi alat pengawal yang direka
adalah amat menakjubkan berbanding dengan alat pengawal yang lain serta tahap
kemampuannya yang bagus dalam mengurangkan transmisi getaran kepada tangan
pengguna.
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CHAPTER 1

INTRODUCTION

The health risks caused by the vibration of the hand-held tools has been focus of
many researches during the past decades. The effects of anti-vibration (AV) gloves on
reducing the health risks of the vibrating tools have been investigated in many studies
and various types of anti-vibration gloves have been introduced to the market such
as the gel-filled, air-filled or leather AV gloves. It is shown that the efficacy of the
designed AV gloves depends not only on the glove material, but also on tool operating
conditions, the frequency and direction of vibration, the amount of various force
applied, operators, etc [3]. So it has been tried to improve the efficacy of the AV gloves
by adding an active elements to them and make an active system. In active vibration
control (AVC) an actuator is utilized to apply an external force or displacement based
on the measurement of the system response through feedback control. The levels of
acceleration, displacement or velocity measured by sensors is entered to the control
system which provides the control signals for actuators based on the chosen control
strategy.

1.1 Problem Statement

Many types of control schemes have been employed to generate the control
signal needed for the active AV mechanism. Design of the control scheme could
be quite challenging in this area since there are many parameters effecting the
performance of the controller. Beside that, the vibration of different body parts occurs
at different frequencies. For example, the hand-arm system vibration occurs at 30−100

Hz and the vibration above 100 Hz will affect the hand in particular [4].

In designing of a robust AVC system, modelling of structural dynamics and
considering the uncertainties of the system parameters such as changes of the vibration
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frequency and range for different tools, the type of AV glove used, the amount of force
applied, and the characteristics of different users in the model play an important role.
So in this work, we have considered a simple but precise model for the gloved-hand
system based on the changes of the system characteristics for different users and then
the controller is designed to be robust to these changes in the system.

In the available robust control schemes applied to AV systems, the robust
performance of the controller with respect to the variation of the hand masses i.e.
different operators that work with the tool is not considered. In this study, based on the
uncertainty of the mass of hand considered in the glove-hand model, a robust controller
is designed that can attenuate the vibration for different users.

The designed controller later is applied to control the vibration of a two-stroke
engine which has a wide range of applications including grass trimmer machine, chain
saws, lawnmowers, motorcycles, scooters and palm-oil fruit harvester but its vibration
hasn’t been studied well in previous works.

1.2 Objective

The objectives of this study are:

i) To derive the mathematical modelling of the considered passive and active
gloved-hand system

ii) To design a proper type of controller for suppressing the vibration in active
system

iii) To investigate the vibration isolation effectiveness of the designed controller
to be employed in AV glove

iv) To validate the robust performance of the designed controller with respect to
changes of the hand masses

1.3 Research Scope

i) The model considered in this work is based on the hand system only
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ii) The type of controller used in this work is the model-based control

iii) The case study under consideration in this research is a two-stroke engine

1.4 Contributions

i) Applying the control techniques used for the AV systems such as proportional
Integral derivative (PID) and active force control (AFC) controllers on the
gloved-hand model

ii) Design and development of a disturbance rejection fuzzy parallel distritbuted
compensation (PDC) controller which:

• Has the ability to reject the vibration with the designed control input
that is enforced to be bellow a maximum value according to the effective
range of the implemented actuator.

• It is robust to the changes of the hand masses.

1.5 Dissertation Organization

This dissertation is organized as follows.

i) Chapter 1: Introduction

ii) Chapter 2: Literature review

iii) Chapter 3: Research methodology

iv) Chapter 4: Results and discussion

v) Chapter 5: Conclusions and future work

In Chapter 1 the problem statements, the objectives to be achieved and the
scopes of work and the contribution of the research are presented. Chapter 2 contains
the models for demonstrating the hand and glove system and the limitations in
designing the anti-vibration gloves. In Chapter 3 the proposed methods used in this
research in order to achieve the final results are described. The results obtained in this
work are analyzed in Chapter 4. Finally, in Chapter 5 the conclusions and suggested
future works are given.
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