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ABSTRACT

The rising oil consumption in oil and gas industries has exacerbated the 

disposal of oil waste into the water stream. Hence, oily wastewater treatment is 

required to prevent threats to the human and environment. With some great advantages 

such as lower membrane fouling rate, lower energy requirement and higher water 

recovery rate compared to the conventional pressure-driven membrane processes, 

forward osmosis (FO) has been recognized as a potential candidate for oily wastewater 

treatment. In this study, zwitterionic polymer, poly[3-(N-2-methacryloylxyethyl-N,N- 

dimethyl)-ammonatopropanesulfonate] (PMAPS) was incorporated into thin film 

composite (TFC) membrane to render excellent anti-fouling properties to the 

membrane. PMAPS was blended with polyethersulfone (PES) polymer solution and 

cast into PES support layer. Interfacial polymerization technique was applied to form 

a thin polyamide layer a top of the PES support layer. The PMAPS incorporated TFC 

membranes were characterized for their morphology and surface hydrophilicity. The 

oily wastewater treatment performance of the PMAPS incorporated TFC membrane 

was evaluated through the FO process. The resultant 1% PMAPS-TFC membrane 

exhibited high water flux of 15.79±0.3 L/m2.h and oil flux of 12.54±0.8 L/m2.h when 

tested in FO mode for oil removal from oily wastewater using 1000 ppm emulsified 

oily solution as the feed solution and 2M sodium chloride as the draw solution. The oil 

rejection up to 99% was also obtained and most of the clean water was extracted from 

the feed solution. Most significantly, PMAPS incorporated TFC membrane 

outperformed neat TFC membrane with a lower fouling propensity for oily waste 

treatment. When treating 10000 ppm oil emulsion, PMAPS-TFC was able to achieve 

an average flux recovery rate of 97% while neat TFC was only able to achieve 70.8% 

of average flux recovery rate. Overall, the PMAPS incorporated TFC membrane has 

a great potential as it possesses superior hydrophilicity and strong anti-fouling 

behavior which helps to save the periodic cost of membrane replacement.
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ABSTRAK

Peningkatan penggunaan minyak dalam industri minyak dan gas semakin 

memburukkan fenomena pembuangan sisa minyak ke aliran air. Oleh itu, rawatan air 

sisa berminyak amat diperlukan untuk mencegah ancaman terhadap manusia dan alam 

sekitar. Dengan beberapa kelebihan seperti kadar pengotoran membran yang rendah, 

keperluan tenaga yang lebih rendah dan kadar perolehan air yang lebih tinggi 

berbanding dengan proses membrane dipacu tekanan konvensional, osmosis hadapan 

(FO) telah diiktiraf sebagai cara yang berpotensi untuk rawatan air sisa berminyak. 

Dalam kajian ini, polimer zwitterion, poli [3- (N-2-metakriloilxietil-N, N-dimetil) - 

ammonatopropanasulfonat] (PMAPS) digabungkan dengan membran komposit filem 

nipis (TFC) dengan sifat anti-kotoran yang sangat baik. PMAPS diadun dengan larutan 

polimer polietersulfona (PES) dan dituang ke dalam lapisan sokongan PES. Teknik 

pempolimeran antara muka digunakan untuk membentuk lapisan poliamida nipis di 

atas lapisan sokongan PES. Membran TFC yang digabungkan dengan PMAPS telah 

dicirikan dari segi morfologi dan sifat hidrofilik permukaannya. Prestasi rawatan air 

sisa berminyak daripada PMAPS yang digabungkan dengan membran TFC telah 

dinilai melalui proses FO. Membran 1% PMAPS-TFC yang dihasilkan menunjukkan 

fluks air yang tinggi, iaitu 15.79 ± 0.3 L / m2.h dan fluks minyak 12.54 ± 0.8 L / m2.h 

apabila diuji dalam mod FO untuk penyingkiran minyak dari air sisa berminyak 

menggunakan larutan emulsi berminyak 1000 ppm sebagai larutan suapan dan 2M 

natrium klorida sebagai larutan luaran. Penolakan minyak sebanyak 99% juga 

diperolehi dan kebanyakan air bersih telah diperahkan dari larutan suapan. Yang paling 

ketara, membran TFC yang digabungkan dengan PMAPS lebih unggul daripada 

membran TFC kawalan dengan kecenderungan kotoran yang lebih rendah untuk 

rawatan sisa berminyak. Apabila merawat emulsi minyak 10000 ppm, PMAPS-TFC 

dapat mencapai kadar perolehan fluks purata sebanyak 97% manakala TFC kawalan 

hanya dapat mencapai 70.8% daripada kadar perolehan fluks purata. Membran TFC 

yang digabungkan PMAPS amat berpotensi tinggi kerana ia mempunyai sifat 

hidrofilik dan anti-kotoran yang baik yang mana membantu menjimatkan kos berkala 

penggantian membran.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

Oily wastewater is one of the primary pollutants to the environment. The 

raising oil consumption in oil and gas industries has further exacerbated the disposal 

of oil waste into the water stream without further treatment (Yu et al., 2013). Generally, 

the wastewater comprises of suspended solids, dispersed oils and dissolved solutes 

which are harmful to the environment and the water sources. There are few means 

where wastewater can endanger human such as affecting quality and purity of drinking 

water and other aquatic sources, threatening human health and aquatic lives, causing 

meteorological pollution, decreasing crop production as well as devastating natural 

landscape (Poulopoulos et al., 2005). Therefore, finding promising approaches for oily 

wastewater treatment has become a crucial task for the water community.

Membrane technology is a viable approach for oily wastewater treatment as it 

is useful in completely removing suspended solids and biological degradable organic 

components from the oily wastewater. A few types of membrane technologies, such 

as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), are readily 

available for oily wastewater treatment. However, UF is known to be ineffective in 

reducing waste with high oily concentration to a disposable level. Hereby, a secondary 

treatment using NF and RO is required to completely remove the remaining oil (Park 

and Barnett, 2001; Kasemset et al., 2013). High pressure and high energy are required 

to work on all these processes. Meanwhile, frequent membrane cleaning as well as 

larger membrane area are also needed to ensure continuous production (Hickenbottom 

et al., 2013; Duong et al., 2014). Lately, by applying same principle as other membrane 

technologies but less energy required, forward osmosis (FO) has won itself an 

important place in wastewater treatment. The osmotic pressure gradient is utilized as
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the driving force in FO to separate pure water from feed solution. In addition, 

compared to pressure-driven membrane processes, FO is also known for its other 

advantages such as lesser energy required, lower membrane fouling tendency, easier 

fouling removal (Mi and Elimelech, 2010) and higher water recovery rate (Martinetti 

et al., 2009) (Song et al., 2015). Owing to these advantages, FO has been 

acknowledged as a potential candidate for oil removal (Zhang et al., 2014). However, 

despite the lower membrane fouling compared to other pressure driven processes, the 

adverse effects of fouling cannot be neglected hence has to be treated carefully to 

ensure the durability of membrane (Lau et al., 2015).

Conventional asymmetric FO membrane usually has very large pores ranging 

from 0.5 p,m to 5.0 p,m which is hard to separate very tiny particles (Liang et al., 2017). 

So, thin film composite (TFC) is developed to enhance the membrane performance. 

Generally, fabrication of TFC involves the coating of an ultra thin film layer atop its 

substrate layer. In this study, the active layer atop substrate layer which is polyamide 

(PA) layer contains very fine pores to allow the separation of ultrafine particles. More 

improvement is necessary to improve membrane performance and also application 

range for membrane separation. One way for this is the incorporation of foreign 

materials onto membrane. Recently, various types of nanomaterials are used to 

fabricate the membrane to further enhance the membrane performance. The common 

nanomaterials used are metal or metal oxide, zeolite, silica, carbon nanotubes (CNTs) 

and graphene oxide (Tiraferri et al., 2011b). The incorporation of nanomaterials could 

enhance membrane efficiency in several means. It can improve ‘additional porosity’ 

which provides pathway for low-resistant solvent transport. It can also improve 

additional hydrophilicity and alter the membrane structure (Van Goethem et al., 2018). 

However, extra precaution needs to be taken as incompatible nanomaterials could 

severely disrupt the crosslink network. It can induce unwanted outcomes such as 

hindering the polymer end groups to react with other monomers, destroy the layer’s 

stability and create larger defects (Chan et al., 2016). Apart from nanomaterials, some 

researchers have discovered that incorporation of zwitterions into the membrane active 

layer creates positive insight. Briefly, a zwitterion is a compound having positive and 

negative charged groups in a same monomer group, while maintaining the overall 

charge neutrality. The strong dipole moments induced thus creates good interaction

2



between PA layer and the substrate layer. Zwitterion can form stronger and more stable 

electrostatic and hydrogen bonds with water compared to most of the hydrophilic 

materials. The inter and intra-interactions between group of opposite charges thus 

create a ‘free water’ hydration layer on the surface of zwitterion. Therefore, it could 

reduce unwanted fouling as the foulants get adsorbed on the hydration layer instead of 

the membranes surface and can be easily removed by rinsing with water (Ohya et al., 

1997; Li et al., 2014b) According to Chan et al. (2013), the zwitterion-functionalized 

single-walled CNTs (Z-SWNT) shows significant improvements in salt rejection and 

water permeation flux. Additionally, the surface fouling in the TFC membrane is 

reported to be lower as well.

Based on the desired anti-fouling properties possessed by zwitterion, the 

current study was conducted to investigate the effects of incorporation of zwitterion in 

the polymer substrate of TFC for oily wastewater treatment. Poly[3-(N-2- 

methacryloxyethyl-N,N-dimethyl)-ammonatopropanesulfonate (PMAPS) was chosen 

for this study as it exhibited oil detachment behaviour in both water and aqueous NaCl 

solution (Kobayashi et al., 2013). The PMAPS incorporated TFC yielded good anti- 

fouling behavior prior to the oil detachment behavior of PMAPS while maintaining 

the water flux. The overall performance of zwitterion incorporated TFC membrane for 

oily wastewater treatment was evaluated based on the oil rejection rate, water flux and 

anti-fouling properties.

1.2 Problem Statement

Oily wastewater possesses threats to environments and human beings. The oil 

droplets retained in the wastewater is not practical to be separated from wastewater 

source without proper methods and technologies. Even with the existing technologies, 

there are still some shortcomings such as high costing, long duration and fouling issue 

when dealing with oil separation. Previously, UF, NF and RO are some promising 

membrane technologies used for oily wastewater treatment. However, when the oil 

feed concentration is too high, UF is not able to scale down the oil concentration of
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oily wastewater to a disposable level. It requires a secondary treatment using NF and 

RO to further remove the residual oil (Park and Barnett, 2001; Kasemset et al., 2013). 

All these processes require high pressure and high energy to work on. To ensure 

continuous productivity, higher frequency of membrane cleaning as well as larger 

membrane area are also possibly required (Hickenbottom et al., 2013; Duong et al., 

2014). Hence, FO as one of the emerging membrane technologies, that is favorable as 

the pressure required is relatively low compared to other processes. Instead of high 

pressure, FO utilizes the concentration gradient between feed solution and draw 

solution to allow water permeation across semi-permeable membrane. Thus, the 

energy consumption is desirably low as well.

Despite the low energy consumption, the oil droplets entrapped within the TFC 

FO membranes during separation process could potentially cause membrane 

contamination. Thus, even though it is able to separate oil from water, TFC FO 

membranes still suffer from fouling issue which unfavorably deteriorates the 

performance of the FO membranes. Apart from that, the phenomenon causes high 

maintenance cost and the membrane needs to be replaced periodically. The 

introduction of zwitterionic polymer has been evidenced as a promising approach to 

improve the surface hydrophilicity, as well as the anti-fouling properties of the 

modified FO membranes. However, current approaches mainly focused on the grafting 

or coating of zwitterions on the PA layer of the FO membrane (Zhang et al., 2018). 

One significant drawback of this approach is the stability of the zwitterion layers as 

they might detach from the membrane surface during the filtration process (Mahdavi 

and Rahimi, 2018). A more reliable modification route is desired to ensure the integrity 

of the zwitterion modified membranes. In this study, PMAPS zwitterionic polymer 

was incorporated into the substrate layer through physical mixing prior to the phase 

inversion technique. Through this facile approach, the PMAPS can be feasibly 

introduced in a single-step procedure and can be effectively used to alter the structural 

properties of the TFC substrate. The PMAPS incorporation was expected to reduce the 

fouling rate and improve membrane reusability based on its oil detachment behaviour.

4



13  Objective of Study

Based on the preceding issues, this study was set out with the following 

objectives:

i. To fabricate and characterize PMAPS blended polyethersulfone (PES) 

substrate and TFC membranes.

ii. To evaluate the oily wastewater separation of PMAPS incorporated TFC 

membranes in terms of flux and oil rejection performance using FO system.

iii. To evaluate the separation and anti-fouling performances of the resultant 

PMAPS blended TFC for oily wastewater using several oil feed concentrations.

1.4 Scope of Study

In order to achieve the objectives of this study, the following scopes of study 

had been determined.

i. Formulating polymer dope solution containing PES, N-methyl-2-pyrrolidone 

(NMP), polyvinylpyrrolidone40 (PVP40) with weight percentage of 18%, 81% 

and 1% respectively.

ii. Blending PMAPS into the dope solution with dope weight ratio of 1%, and 5%.

iii. Casting of PES flat sheet substrate through phase inversion technique.

iv. Performing interfacial polymerization (IP) atop substrate layers using organic 

phase (trimesoyl chloride (TMC)/ Cyclohexane) and aqueous phase (meta­

phenyl diamine (MPD) /H2O) to produce the PA layer.

v. Characterizing the TFC membranes using Fourier Transform Infrared 

Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy 

(FESEM), Atomic Force Microscopy (AFM) and Optical Contact Angle 

(OCA), mercury porosimeter, and zeta potential measurement.

vi. Evaluating the oily wastewater removal performance of the TFC in terms of 

water permeate flux, oil rejection rate, and anti-fouling behavior.
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vii. Evaluating the performance of TFC in treating oily wastewater as feed solution 

with concentration of 1000 ppm, 5000 ppm and10000 ppm and 2M NaCl 

solution as draw solution using active layer facing draw solution orientation.

viii. Performing anti-fouling test by comparing oil rejection rate and water flux over 

periods of time, repeated for few cycles.

1,5 Significance of Study

Although TFC is deemed commonly used in membrane separation, however 

the incorporation of zwitterion is still new to be explored. The findings aimed to 

pioneer the advancement and knowledge of zwitterion incorporation in oily 

wastewater separation. Especially in oil and gas industries, the findings provided a 

new alternative to the oily wastewater treatment in a much efficient way, by having 

high oil rejection rate and superb anti-fouling behavior at the same time maintaining 

decent water flux. Thus, it could be of great interest and importance of this research to 

find out how would the incorporation of PMAPS into the TFC membrane affects the 

hydrophilicity, oleophobicity, anti-fouling behaviour and water permeation flux of the 

TFC formed.

1.6 Limitation of Study

i. This study represented the first attempt to incorporate PMAPS-TFC membrane. 

Hence the optimal weight ratio of PMAPS will be obtained through trials and 

errors approach.

ii. The parameters between each batch of experiments were varied, but the 

parameters of IP were remained constant. Since the main concern of the study 

was not on the manipulation of parameters such as duration, stirring speed and 

temperature, hence the minor manipulation of these parameters were ignored.
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