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ABSTRACT

Bioplastic such as poly(3-hydroxybutyrate) (PHB) is an alternative approach 
to replace petroleum-derived plastic. However, high substrate cost and slow extraction 
process have hindered wide application of PHB. In this research, genetically modified 
Phaeodactylum tricornutum was used as an alternative PHB producer because it is 
able to utilize carbon dioxide. Ammonium and nitrate were used as nitrogen sources 
in the cultivation to suppress and activate PHB synthesis of this strain, respectively. 
The first phase of this study aimed to simplify the cultivation process by substituting 
the ammonium at its complete depletion point on day 5 with nitrate and enhance PHB 
productivity by different light wavelengths strategy. In the simplified cultivation 
method or known as one-step cultivation (OSC) for PHB synthesis, the steps in cell 
harvesting were removed when switching the nitrogen sources. Findings revealed that 
OSC is feasible as no sign of PHB synthesis suppression was present. In fact, the PHB 
productivity has improved to 9.75±0.64 (117.02±7.73 mg/L) from 7.40±0.52 
mg/L/day (85.26±1.83 mg/L) which was achieved via multiple-step cultivation. In 
different light wavelength studies, red light was determined as better wavelength 
where the culture revealed higher specific growth rate and approximately 1.45-fold 
higher PHB productivity against white light culture. In the second phase of the study, 
PHB was extracted from wet biomass using microwave-assisted extraction (MAE) and 
propylene carbonate/isopropanol (PC/IPA). PC/IPA has high PHB solubility of 
94.8±1.5%, boiling point of 99.1 oC, good dielectric properties, and miscible with 
water. Two-level full factorial design was used to evaluate the effect of the parameters 
that were A: extraction temperature (65-85 oC), B: extraction duration (5-15 min), and 
C: solvent-to-biomass ratio (5-15 mL/g) in PHB MAE. The results revealed that factor 
A and C significantly influenced the PHB recovery. The PHB MAE was optimized 
using central composite design. Based on prediction, the optimum PHB recovery of 
97.89% can be achieved at 88 oC for 15 min with solvent-to-biomass ratio of 6.4 mL/g. 
The experimental PHB recovery of 95.63±0.70% with purity of 75±4% achieved by 
MAE method were significantly higher than conventional heating extraction (CHE) 
using chloroform (recovery: 79.53±2.87%, purity: 97±2%). The recovered PHB by 
MAE has high molecular weight of 1.4 x 106 Da. However, the melting point, melting 
enthalpy, and crystallinity were lower than PHB recovered from CHE using 
chloroform. The outcomes revealed the MAE system was excellent for PHB 
extraction as it offers high PHB recovery, cell breaking feature, safe processing 
conditions, wet biomass extraction and less hazardous compared to chloroform.
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ABSTRAK

Bioplastik seperti poli(3-hidroksibutirat) (PHB) adalah pendekatan alternatif 
bagi menggantikan plastik berasaskan petroleum. Walau bagaimanapun, kos substrat 
yang tinggi dan proses pengekstrakan yang perlahan menghalang aplikasi PHB secara 
meluas. Dalam kajian ini, Phaeodactylum tricornutum terubah suai genetik telah 
digunakan sebagai penghasil PHB alternatif memandangkan ia boleh menggunakan 
karbon dioksida. Ammonium dan nitrat masing-masing telah digunakan sebagai 
sumber nitrogen dalam penanaman untuk menghalang dan mengaktifkan sintesis PHB 
oleh mikroorganisma ini. Fasa pertama kajian bertujuan untuk mempermudahkan 
proses penanaman dengan menggantikan ammonium pada titik penghabisannya pada 
hari ke-5 dengan nitrat dan meningkatkan produktiviti PHB melalui strategi 
gelombang cahaya yang berlainan. Dalam kaedah penanaman mudah atau dikenali 
sebagai penanaman satu langkah (OSC) bagi penghasilan PHB, langkah penuaian sel 
telah dikeluarkan semasa penukaran sumber nitrogen. Hasil kajian menunjukkan OSC 
boleh dilaksanakan kerana tiada tanda halangan yang wujud pada sintesis PHB. Malah, 
produktiviti PHB telah meningkat kepada 9.75±0.64 (117.02±7.73 mg/L) daripada 
7.40±0.52 mg/L/hari (85.26±1.83 mg/L) yang telah dicapai melalui penanaman 
langkah berganda. Dalam kajian gelombang cahaya yang berbeza, cahaya merah 
merupakan gelombang cahaya lebih baik yang mana kultur menunjukkan kadar 
pertumbuhan spesifik yang lebih tinggi dan produktiviti PHB lebih tinggi sebanyak 
1.45 kali ganda lebih tinggi berbanding kultur di bawah cahaya putih. Dalam fasa 
kedua kajian, PHB telah diekstrak daripada biojisim basah menggunakan 
pengekstrakan berbantukan gelombang mikro (MAE) dan propilena 
karbonat/isopropanol (PC/IPA). PC/IPA mempunyai kelarutan PHB yang tinggi iaitu 
94.8±1.5%, takat didih 99.1 oC, sifat dielektrik yang baik dan larut dalam air. Reka 
bentuk dua peringkat faktorial penuh telah diguna untuk menilai kesan parameter A: 
suhu pengekstrakan (65-85 oC), B: tempoh pengekstrakan (5-15 minit) dan C: nisbah 
pelarut kepada biojisim (5-15 mL/g) di MAE. Keputusan menunjukkan bahawa faktor 
A dan C mempengaruhi perolehan PHB secara signifikan. MAE bagi PHB telah 
dioptimumkan menggunakan reka bentuk komposit sentral. Berdasarkan ramalan, 
perolehan PHB optimum sebanyak 97.89% boleh dicapai pada 88 oC, 15 minit dengan 
nisbah pelarut kepada biojisim 6.4 mL/g. Perolehan PHB secara ujikaji adalah 
95.63±0.70% dengan ketulenan 75±4% dicapai oleh kaedah MAE dan nilai ini jauh 
lebih tinggi daripada pengekstrakan pemanasan konvensional (CHE) menggunakan 
kloroform (perolehan: 79.53±2.87%, ketulenan: 97±2%). PHB yang diperoleh melalui 
MAE mempunyai berat molekul yang tinggi iaitu 1.4 x 106 Da. Namun, takat lebur, 
entalpi lebur dan kekristalan lebih rendah daripada PHB yang diperoleh daripada CHE 
menggunakan klorofom. Hasil kajian menunjukkan sistem MAE ini amat baik untuk 
pengekstrakan PHB kerana ia menawarkan perolehan PHB yang tinggi, ciri 
pemecahan sel, pemprosesan yang selamat, pengekstrakan menggunakan biojisim 
basah, dan kurang berbahaya berbanding dengan penggunaan klorofom.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Plastics are organic polymer commonly synthesized using petrochemicals such 

as polyethylene, polyvinyl chloride, and polystyrene. These petrochemicals are 

obtained by catalysis of their monomers through polymerization and polycondensation 

process. Due to its outstanding properties which can be moulded into desired shape 

and performance better than metal and wood, plastics have wide variety of industrial 

applications (Alvarez-Chavez et al., 2012). Hence, the demand for plastics is 

increasing while the petroleum reserves are declining. According to Qualman in 2017, 

over 400 million tons of plastics were produced by 2017. However, the wide 

applications of plastics have raised abundance of environmental issues. The high 

molecular weight of plastics which ranged from 50 to 1,000 kDa has made the plastics 

non-biodegradable and persist in the environment for a long time (Kumaravel et al.,

2010). This eventually led to severe pollutions, landfill problem, and climate change 

(Barker et al., 2007; Law et al., 2010; Philp et al., 2013). In order to reduce the use of 

petrochemical-derived plastics, attempts were made to develop potential sustainable 

green alternatives.

Bioplastics are advance materials derived from renewable sources and can be 

biodegraded. These materials were developed to replace problematic petroleum-based 

plastics. The bioplastics can be classified into starch-based plastics, chemically 

synthesized bioplastics, and polylactic acid plastics (Jabeen et al., 2015). There is 

another group of bioplastics known as organism-based bioplastics which are 

synthesized by microorganisms using starch or glucose (Tan et al., 2014). 

Polyhydroxyalkanoates (PHAs) are a type of saturated poly-a-hydroxy esters 

synthesized by bacteria. Under stress condition, bacteria produce enzymes that 

convert acetyl-CoA to PHAs. These polyesters have physical properties which are



similar to polypropylene but are 100% biodegradable and biocompatible (Singh, 2015). 

Due to these properties, PHAs received attention from the industry and can be 

potentially used in medical applications.

One of the applications of PHAs is in food packaging material. Besides being 

biodegradable, these polyesters have low water vapour permeability which is an 

advantage over other biopolymers. The most common type of PHAs is poly(3- 

hydroxybutyrate) (PHB), which is the mostly used PHA in food packaging. This 

polyester is applied in bulk shrink packaging and flexible intermedia bulk containers 

(Jabeen et al., 2015). Furthermore, PHB has also been utilized in bone scaffold 

development in tissue engineering. In medical industry, PHB has been utilized in 

sustained drug delivery systems and medical devices. In tissue engineering, 

scaffolding materials should satisfy several criteria such as biocompatible which are 

non-immunogenic, non-cytotoxic, and non-inflammatory. Besides, the materials 

should possess great mechanical properties, particularly for bone scaffold to support 

bone tissue regeneration and prevent structural failure during patient’s normal 

activities. Hence, PHB is a potential candidate for achieving ideal bone scaffold 

(Shrivastav et al., 2013).

To increase the availability and reduce the production cost of PHB, several 

organisms had been genetically modified to synthesize the polymer. Besides bacterial 

expression system, plant-based expression systems are also used to produce PHAs. 

Plant-based expression systems utilize photosynthesis process and do not require 

external organic source in PHAs synthesis. This low-cost expression system is very 

attractive when applied in large scale production as it reduces the production cost. 

Despite its advantages, this expression system is not ideal for application as it 

competes the land use with subsistence crops, disperses uncontrollably, and has 

extremely slow growth rate (Daniell et al., 2009). Another expression system which 

uses microalgae (Phaeodactylum tricornutum) was introduced to solve the problems 

faced while sharing the advantages of plant-based expression systems. Hence, the 

microalgae expression system is relatively desirable to act as a low cost platform for 

PHB production (Hempel et al., 2011a). To the best of our knowledge, the 

enhancement of cultivation for this genetically modified microalgae strain has yet to

2



be proposed. Since microalgae are strongly influenced by light quality, the growth 

and PHB synthesis of genetically modified P. tricornutum were enhanced by 

subjecting the cells to different light wavelengths.

Since PHB is accumulated as intracellular granules, it has to be extracted and 

it typically involves cell rupture and dissolution of PHB granules. Generally, the 

extraction methods can be classified into solvent extraction methods, chemical-based, 

and enzyme-based digestions methods. Solvent extraction is the most well-established 

and commonly used among all the methods due to the high purity of PHB obtained 

(Tan et al., 2014). The solvent helps to improve the permeability of the cell wall and 

dissolves the polymer. In order to increase the recovery of PHB, additional mechanical 

treatments such as bead milling and high pressure homogenization were also 

supplemented to the extraction process (Kunasundari and Sudesh, 2011). Beside these 

treatments, several types of mechanical method such as microwave and ultrasonic had 

also been applied to extract intracellular components.

Microwave-assisted extraction (MAE) is an alternative of conventional heating 

method utilizing microwave radiation as the heating source for extraction. The 

application of this radiation helps to accelerate the extraction process where the heat 

and mass transfer occur from inside to outside of substrate. Besides short processing 

time, this method offers high recovery, lesser solvent consumption, and product 

degradation (Veggi et al., 2013). All the pros make the extraction method widely 

applied to extract natural products, for instance flavonoids from radix astragali (Xiao 

et al., 2008), solanesol from tobacco leaves (Zhou and Liu, 2006), and zerumbone 

from Zingiber zerumbet (Ghasemzadeh et al., 2017). However, there is no report on 

the application of MAE in PHB recovery. Hence, the very first extraction of PHB 

using microwave radiation was demonstrated in this study.

1.2 Problem Statements

Poly(3-hydroxybutyrate) (PHB) possesses commercial potential for the mass 

production of thermoplastic (Sudesh et al., 2000). Despite the advantages of PHB, the
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application of this bioplastic is still in its infant stage in the industry. This was due to 

the high cost of PHB which has hampered their commercial applications. In 2014, the 

cost of PHA was in the range of $ 4.6 to 9.3/kg (Bolck, 2014). The high cost of PHB 

was caused by the high purity substrate price which accounts for 45% of the total cost 

and high downstream processing cost (Kourmentza et al., 2017).

According to Yousuf in 2017, the cost for PHB extraction was predicted to 

occupy half of the production cost. Besides the high fermentation cost, PHB extraction 

is also time consuming and tedious (Chen and Wu, 2005; Kunasundari and Sudesh,

2011). Majority of the reported solvent extraction methods of PHB take few hours or 

even one day (Dalcanton, 2006; Fei et al., 2016; Manangan and Shawaphun, 2010; 

Ramsay et al., 1994). Moreover, large amount of solvent is required in the extraction 

process. The additional step for cells rupture increased the complexity of extraction 

process and energy consumption which make the step not economically feasible 

(Kunasundari and Sudesh, 2011). Hence, the extraction process might be a challenge 

to a cost effective industrial upscale production for large amounts of PHB.

Solvent extraction is capable to achieve high recovery and purity of PHB, but 

negative environmental impact caused by the generation of hazardous waste is the 

greatest current concern. Most of the developed solvent extraction methods involve 

the use of chlorinated organic solvents such as methylene chloride (Ramsay et al.,

1994), 1,2-dichloroethane (Holmes and Lim, 1990), and chloroform which possess 

high efficiency in extraction of PHB. But, these chlorinated organic solvents are toxic, 

hazardous towards the environment and human, expensive, and may cause PHB 

degradation (Hahn et al., 1994). Although several green solvents such as 1,2- 

propylene carbonate (Fiorese et al., 2009), and butyl acetate (Aramvash et al., 2015) 

had been reported in previous PHB extraction studies, most of them were used without 

much evaluation in the aspect of waste issues, degree of environmental and health 

impact, and processing safeness. In addition, the extraction process conditions using 

green solvents are still lengthy and involved high extraction temperature which are not 

desirable. Moreover, the recovery yield has not been optimized yet.
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Thus, in this extraction study, solvent extraction was performed under 

microwave radiation to extract PHB from biomass and this method is known as 

microwave-assisted extraction (MAE). The significant parameters and effects of 

microwave radiation on the extraction of PHB were determined and the process was 

further optimized.

1.3 Objectives

The main objective of this study is to enhance the overall production of PHB 

by improving both the cultivation technique and extraction method. In order to achieve 

the ultimate goal, the following integrated objectives need to be fulfilled:

(i) To improve the PHB productivity of genetically engineered Phaeodactylum

tricornutum in a single step (without transferring it from the medium with NH4+ 

which inhibits PHB synthesis to another medium with NO3' for gene 

expression) under blue and red LED light wavelengths.

(ii) To select solvent system based on dielectric properties, boiling point and PHB

solubility.

(iii) To extract PHB using microwave-assisted extraction method under the selected 

green solvent and optimize MAE parameters.

1.4 Research Scopes

The scope of research are as follows:

1. (i) The one-step cultivation for PHB production by genetically modified

(GM) Phaeodactylum tricornutum through direct shifting nitrogen source from 

ammonium chloride to sodium nitrate was performed. The complete depletion 

day of ammonium in culture medium was determined. The growth and PHB 

accumulation by P. tricornutum cultivated under one-step and medium shift 

cultivations were compared.
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(ii) Different light wavelengths were used to enhance the PHB productivity 

of P. tricornutum. The blue, red, and white wavelengths were used as the 

treatment in the study. The growth and PHB accumulation by P. tricornutum 

cultivated under different light wavelengths were determined.

2. Development of green solvent system for recovery of PHB through 

microwave-assisted extraction. Several solvent systems such as acetone (Ace), 

ethanol (EtOH), isopropanol (IPA), propylene carbonate (PC), PC:Ace, 

PC:EtOH, PC:IPA, and PC:EtOH:Ace were evaluated in the aspects of 

dielectric properties, boiling point and PHB solubility.

3. (i) The factors varied in the microwave-assisted extraction are extraction 

temperature (65-85 oC), extraction duration (5-15 minutes), and solvent-to- 

biomass ratio (5.00-15.00 mL/g) on PHB extraction and experiments were 

performed using full factorial design. The significance of the factors and their 

interactions were determined.

(ii) The extraction parameters were optimized using research surface 

methodology to recover maximum amount of PHB. The central composite 

design was utilized to develop the response surface. A polynomial model for 

the prediction of PHB recovery in MAE was developed. The model was 

verified by various diagnostic plots and the error percentages between the 

predicted and experimental PHB recovery.

(iii) Recovered PHB was characterized by determining its molecular weight, 

melting point, and melting enthalpy.

(iv) The effects of different solvent systems and extraction methods on PHB 

recovery percentage, purity percentage and properties of extracted PHB were 

compared.

(v) The effects of microwave radiation on cells disruption were determined. 

The cells disruption percentages by conventional and microwave heating using 

PC:IPA were determined and compared. The cell morphological changes 

under different treatments were investigated by scanning electron microscope.
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1.5 Significance of Study

The outcomes of this study are redounded for cost effective PHB production 

by solving the problems in the microalgae cultivation and PHB extraction. A 

simplified cultivation method for PHB production by GM P. tricornutum was 

developed. Light wavelength was used as the factor affecting the PHB productivity of 

P. tricornutum. Besides that, microwave-assisted extraction (MAE) was reported for 

the first time in PHB extraction. In the extraction study, a new green solvent system 

with high PHB solubility, high boiling point, good dielectric properties, and soluble in 

water was developed for PHB MAE. The MAE capable to recover most of the PHB 

from biomass in 15 minutes and below solvent’s boiling point. The microwave 

radiation was proved to improve the dissolution of PHB and no sign of PHB 

degradation was detected where the recovered PHB possesses high molecular weight.
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