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ABSTRACT 

 

 

 

 

The multiple benefits of membrane technology have promised the feasible 

application in large scale for carbon dioxide (CO2) removal. Mixed matrix membrane 

(MMM) is an organic polymeric phase that is dispersed with inorganic fillers. MMM 

has become a promising type of membrane for CO2 removal as it combines high 

processability of polymeric materials with superior gas separation properties of 

inorganic materials. In this study, an asymmetric mixed matrix hollow fiber 

membrane (MMHFM) was prepared by incorporating graphene oxide (GO) into 

polysulfone (PSf) polymer matrix for CO2 removal. Graphite was used as a filler 

precursor and was subjected to surface modification by oxidation process to produce 

graphene oxide (GO). Different loading of as-synthesized GO in the range between 

0.05 to 1.0 wt.% was physically mixed with PSf polymer for dope preparation. The 

asymmetric MMHFM were spun via dry-wet technique. The transmission electron 

microscopy and atomic force microscopy analysis have confirmed that the 

synthesized GO was in the nanosheets form structure. The addition of GO was found 

to change the formation of MMHFM substructure layer as well as the thickness of 

MMHFM dense selective layer. The active functional groups of GO have facilitated 

the uniform filler dispersion within the PSf polymer matrix. GO loading of 0.25 

wt.% was found to be the optimum loading to enhance the overall membrane 

properties and gas separation performance with CO2 permeance of 74.47 GPU. Both 

CO2/N2 and CO2/CH4 selectivity of MMHFM were enhanced by 310% and 211%, 

respectively, as compared to that of the neat PSf membrane. The well dispersed GO 

improves the CO2 separation by fully utilized its π-π conjugated bond and creates a 

path for small molecule gas (CO2) by restricting larger molecule gases (N2 and CH4) 

to pass through the membrane. However, the excessive of GO loading with more 

than 0.25 wt.% would lead to agglomeration and restacking problem, and this 

condition could deteriorate the MMHFM gas separation properties.  
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ABSTRAK 

 

 

 

 

Kepelbagaian manfaat teknologi membran menjanjikan keboleh-upayaan 

aplikasi untuk menyingkirkan karbon dioksida (CO2) dalam skala yang besar. 

Membran campuran matriks (MMM) ialah fasa polimer organik yang diserakkan 

dengan bahan pengisi bukan organik. MMM telah menjadi membran yang 

menjanjikan keberkesanan untuk penyingkiran CO2 kerana ia menggabungkan 

kebolehprosesan bahan polimer yang tinggi dengan bahan bukan organik yang 

bersifat unggul dalam pemisahan gas. Dalam kajian ini, membran gentian 

geronggang campuran matriks asimatri (MMHFM) telah disediakan dengan 

menggabungkan grafin oksida (GO) ke dalam matrik polimer polisulfon (PSf) untuk 

menyingkirkan CO2. Grafit digunakan sebagai bahan pengisi utama dan menjalani 

pengubahsuaian permukaan melalui proses pengoksidaan untuk menghasilkan GO. 

Muatan GO yang telah disintesiskan yang berbeza dalam julat 0.05 hingga 1.0 

berat% dicampurkan secara fizikal dengan polimer PSf bagi penyediaan larutan 

cecair. MMHFM asimatri telah dipintalkan melalui teknik kering basah. Analisis 

mikroskop penghantaran elektron dan mikroskop daya atom mengesahkan struktur 

GO yang telah disintesiskan adalah dalam bentuk kepingan nano. Penambahan GO 

didapati telah mengubah pembentukan lapisan sub-struktur MMHFM serta ketebalan 

lapisan terpilih padat bagi MMHFM. Kumpulan berfungsi aktif GO membantu 

penyerakan yang sekata dalam matrik polimer PSf. Muatan GO sebanyak 0.25 

berat% didapati menjadi muatan optimum untuk meningkatkan ciri-ciri membran 

secara keseluruhan dan juga meningkatkan prestasi pemisahan gas dengan nilai 

penelapan CO2 sebanyak 74.47 GPU. Kedua-dua kememilihan gas CO2/N2 dan 

CO2/CH4 bagi MMHFM meningkat masing-masing sebanyak 310% dan 211%, 

berbanding matrik polimer PSf yang asli. GO yang diserakkan dengan baik 

menambah baik pemisahan CO2 dengan menggunakan sepenuhnya ikatan 

konjugurasi π-π serta mewujudkan laluan gas bermolekul kecil (CO2) dengan 

menghalang gas bermolekul besar (N2 dan CH4) melepasi membran. 

Walaubagaimanapun, muatan GO yang berlebihan yang lebih daripada 0.25 berat% 

akan menyebabkan masalah pembentukan gumpalan dan pelekatan semula yang 

mana situasi ini akan mengakibatkan kemerosotan sifat pemisahan gas MMHFM.  
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Carbon dioxide (CO2) is a colourless and odourless gas that can be naturally 

found in the Earth’s atmosphere, various water sources as well as in the deposition of 

petroleum and natural gas. CO2 in real is a non-toxic gas. However, in high and 

uncontrolled concentration, it becomes acidic and harmful to the environment where 

it is fulfilled. CO2 is also known as a greenhouse gas. The excessive CO2 in Earth’s 

atmosphere becomes a pollutant and results in climate change that directly or 

indirectly affect both human and environmental health (Singh et al., 2015). It has 

very long lifetime in the atmosphere; 50% is about 30-95 years and 20% is about 

thousands of years to decay, which implies that its quantities will continuously 

concentrated in Earth’s atmosphere without any degradation over time (Milan, 2018). 

Coal gasification, fossil fuel combustion and natural gas exploration by human are 

the source of CO2 emission to atmosphere (Wu et al., 2011). Apart from that, CO2 

existence in natural gas (NG) is another subject to be highlighted. CO2 exists in NG 

as impurity that would decrease NG heating value and corrode the pipeline stream, 

which consequently increase the operational and maintenance cost (Zhang et al., 

2013). Thus, the procedure to filter CO2 produced from those human activities before 

the emission to the atmosphere and its removal from natural gas are necessary.   
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The common conventional methods applied in industries to remove CO2 gas 

are chemical absorption by solvents (e.g. amine scrubbing), chemical adsorption by 

sorbent (e.g. pressure swing adsorption (PSA)) and cryogenic separation (Basu et al., 

2010). Each process offers different separation mechanism with certain advantages 

and limitations. Chemical-based absorption requires absorbents to react with CO2 

where high energy consumption is needed for the regeneration. Furthermore, the 

adsorbents used in PSA are not suitable for large scale of CO2 separation and 

relatively high energy consumption (high cost). Meanwhile cryogenic separation is 

only suitable for stream that contains high concentration of CO2 and the process also 

requires high energy consumption for cooling. Moreover, the problems such as 

flooding, excessive loading, weeping, foaming and entrainment also frequently arise 

during the process. These bottlenecks have led to the exploration of new approach 

such as membrane separation technology to address aforementioned problems. 

 

 

Membrane separation promises some advantages such as easy control and 

operation, easy to scale-up, small foot print, high reliability, environmentally 

friendly, reduced energy consumption as well as low capital and operating cost 

(Bernardo et al., 2009; Li, 2008). Basically, membrane can be categorized to 

polymeric (organic) and non-polymeric (inorganic) membrane. Some polymeric 

membrane have already been commercially applied in industry which are made of 

polyimide (PI), polysulfone (PSf) and cellulose acetate (Scholes et al., 2010). 

Meanwhile, non-polymeric membrane like zeolite membranes are proven to have 

excellent CO2 separation performance due to their molecular sieve ability and 

adsorption affinity (Jha and Way, 2008). Inorganic membrane however is difficult to 

be produced at large scale due to its complication and long-time consumption of 

fabrication as compared to polymeric membrane. Moreover, both polymeric and non-

polymeric membranes suffer trade-off of selectivity and permeability which means 

membranes with high permeability/permeance have low selectivity and vice-versa 

(Robeson, 1991). 

 

 

Hence, the idea of combining both polymeric and inorganic compound was 

developed to overcome the aforementioned problems. Mixed matrix membrane 

(MMM) is the combination of polymeric membrane as continuous phase and 
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inorganic materials are normally present in particle size as dispersed phase. 

Graphene oxide (GO) is an emerging nanomaterial of graphene-based family which 

has the same carbon sheet structure as graphene and additional oxygenated functional 

groups attached on its planar sheet. It is interestingly found that the active functional 

groups such as epoxy, hydroxyl and carboxyl groups can help to enhance its good 

dispersion in polymer substrate, which in turn contribute to enhance gas separation 

performance (Kuila et al., 2012; Yang et al., 2013). When it is incorporated into the 

polymer matrix, GO acts as barrier to create tortuous path in the membrane to allow 

the gas with smaller molecules to effortlessly pass through the composite membranes 

meanwhile the gas molecules with larger size are hindered from passing through the 

membranes (Li et al., 2015; Berean et al., 2015). Also, the presence of GO in 

polymeric matrix was proven to induce improvement in the nanocomposite 

membrane thermal and mechanical stability (Ionita et al., 2015) and demonstrated 

improvements for gas separation performance (Checchetto et al., 2014) as compared 

with that of neat membrane. With the exceptional properties possessed by GO, the 

resultant MMM holds good potential to surpass the Robeson separation trade-off 

boundary by overcoming the polymeric membrane drawbacks. 

 

 

Despite the progress and efforts made in the development of MMM, the 

application of GO as a nano-filler in PSf mixed matrix hollow fiber membrane 

(MMHFM) for CO2 removal has not been reported. Most of previous studies related 

to GO as a filler were fabricated as a dense membrane (Wang et al., 2015; Zhao et 

al., 2015) and some of them were focused only on membrane characterization 

without studying their effect on gas separation performance (Ionita et al., 2014). So, 

this study is the first attempt of making the asymmetric PSf MMHFM embedded 

with GO for CO2 removal. The main objective of this study is to develop MMHFM 

by incorporating GO into PSf polymeric matrix, expecting to improve the 

characteristic of fabricated MMHFM especially for gas separation application. 
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1.2 Problem Statement 

 

 

Selection of the inorganic phase fillers is an important factor in determining 

the properties of the resultant MMM. Various types of potential fillers such as 

zeolite, metal organic framework (MOF) and carbon nanotubes (CNT) have been 

commonly used as the nanofillers. These fillers are found to have excellent sieving 

characteristic which allows smaller penetrants to diffuse at higher rate compared to 

that of larger sized penetrants. Despite of having speciality in gas separation 

application, poor interaction between two phases of filler and polymer become the 

major problem to be solved in order to achieve the desired performance of the 

resulting MMM (Goh et al., 2011). One of the strategies of improving the 

compatibility of filler in MMM is through the introduction of surface functional 

groups. In this aspect, the unique surface functionalities of graphene oxide (GO) 

seem to offer an attractive solution. GO is an emerging nanomaterial of graphene-

based family which has the same carbon sheet structure as graphene and additional 

oxygenated functional groups attached on its planar sheet. It is interestingly found 

that, the oxidative functional groups attached on the GO surface, such as epoxy, 

hydroxyl and carboxyl groups can help to enhance its good dispersion in polymer 

substrate, which in turn contribute to enhance gas separation performance by 

improving the linkage-bridge between polymer and filler. 

 

 

GO special properties offers several advantageous towards carbon dioxide 

(CO2) separation, which the other carbon-based materials cannot provide it. GO is 

reported to have specific adsorption affinity to CO2 molecules with the presence of 

polar groups such as hydroxide and carboxylic groups attached on its surface and 

edge planar sheets. Other than that, the π-π bond conjugated at GO chemical 

structure have strong interaction with CO2 molecules that can facilitate the CO2 

sorption which in turns improved the membrane separation properties performance 

when it is incorporated into polymer matrix. However, commercialized GO with 

specific size and characteristic is considerably expensive and would certainly 

increase the cost production of GO/polymer membrane. Hence research to produce 

GO with economically feasible is worth and would be special interest to the material 

development. Various research has been conducted by previous researchers on 
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synthesizing GO in bulk, but somehow some of it are not eco-friendly. As example, 

Brodies’ method applying potassium chlorate (KClO3) and nitric acid (HNO3) in the 

process of synthesizing GO, which will produce an explosive chlorine dioxide (ClO2) 

gas and acid fog respectively throughout the procedure. Also, the use of sodium 

nitrate (NaNO3) for the process of synthesizing GO by Hummers’ method release 

toxic gas (i.e. nitrogen dioxide (NO2) and nitrogen tetroxide (N2O4)) and produce the 

residual of sodium ion (Na+) and nitrate ion (NO3
-) which are difficult to be removed 

from the waste water formed from the process. An improved Hummers’ method 

without the addition of those harmful chemical has been introduced and offers green 

approach to the environmental with maintaining the yield production of GO. 

 

 

The incorporation of GO to form MMM in flat sheet has been attempted 

(Zhao et al., 2015). However, as flat sheet configuration generally shows poor 

permeability, it is rarely attractive for industrial aspect. Asymmetric membrane 

configuration is more relevant for practical applications since it is more permeable 

and mechanically stable compared to dense membrane. Apart of that, hollow fiber 

membrane offers several advantages as it provides high surface/volume ratios (lower 

the cost production), which can reduce the equipment (footprint) overall dimensions 

and the overall cost operation. These membrane characteristics overcome the 

drawback of densed symmetric/flat sheet membrane. Moreover, the GO based 

asymmetric mixed matrix hollow fiber membrane (MMHFM) are still rarely reported 

since GO material is relatively new. Hence, it is necessary to investigate the common 

problems in its preparation such as filler size, filler loading and membrane 

preparation since it would affect membrane performance differently from that 

reported in dense flat sheet MMM. In this work, asymmetric MMHFM of PSf based 

polymer incorporated with GO was fabricated via the phase inversion dry-wet 

spinning technique for CO2 separation. The morphological changes, mechanical and 

thermal properties as well as gas separation properties for different loading of GO 

were investigated in order to optimize the characteristic of fabricated MMHFM.  
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1.3 Objectives of Study 

 

 

Based on the aforementioned problems, the current study is conducted to 

focus on the following objectives: 

 

1. To synthesize and study the physico-chemical properties of GO 

nanosheets obtained from Hummers’ method. 

2. To investigate the influence of different GO loading on the fabricated 

asymmetric PSf MMHFM.  

3. To evaluate and compare the pure gas separation performance of the 

fabricated asymmetric PSf MMHFM with different loading of GO in terms 

of their permeability and selectivity using carbon dioxide (CO2), nitrogen 

(N2) and methane (CH4) gas. 

 

 

 

 

1.4 Scopes of Study 

 

 

In order to achieve the objective of this research, the following scopes are 

listed: 

 

1. Synthesizing of GO from raw graphite via chemical oxidation process 

using Hummers’ method. 

2. Characterizing the synthesized GO using atomic force microscopy 

(AFM), transmission electron microscopy (TEM), Raman spectroscopy, 

X-ray diffractometer (XRD), Fourier transform infrared spectroscopy 

(FTIR) and thermogravimetric analysis (TGA). 

3. Preparing dope solution containing PSf, N,N-dimethylacetamide, 

tetrahydrofuran, and ethanol with compositions of 30 wt.%, 35 wt.%, 30 

wt.% and 5 wt.% respectively. 

4. Incorporating GO into PSf dope solution with varies loading ranging from 

0.05 wt.% to 1.0 wt.% (per total solid). 

5. Fabricating asymmetric PSf/GO MMHFM through phase inversion 

technique via dry-wet spinning process (7 cm air gap, 1 cm3/min dope 
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extrusion rate, 0.5 cm3/min bore fluid flow rate, 4.8 Hz collection speed, 

and bore fluid composition DMAc/H2O : 80/20). 

6. Characterizing the fabricated asymmetric PSf/GO MMHFM through field 

emission scanning electron microscopy (FESEM), XRD, TGA, 

differential scanning calorimetry (DSC), and mechanical strength 

analysis. 

7. Evaluating asymmetric PSf/GO MMHFM performance towards pure 

nitrogen (N2), carbon dioxide (CO2) and methane (CH4) gas in term of its 

permeance and selectivity at 5 bar operating pressure and room 

temperature. 

 

 

 

 

1.5 Significance of Study 

 

 

Despite the progress and efforts made in the development of GO for 

composite materials, the application of GO as a nanofiller in PSf MMHFM for CO2 

removal has not been reported. In addition, this is the first attempt of making the 

asymmetric PSf membrane embedded with GO in hollow fiber configuration for CO2 

removal. GO appears to be a new filler and currently there is no massive study on it.  

It is well known that PSf is a glassy polymer which possesses high resistance 

towards plasticization effect and hence can be a good candidate for CO2 removal 

applications. Apart of that, asymmetric membrane comprises of thin dense selective 

layer which is responsible for the separation and low resistance microporous/ 

macroporous substrate layer which is responsible for high permeation of gas. 

Besides, membrane in hollow fiber configuration offers more advantages compared 

to that of membrane in flat sheet configuration. The MMHFM is commercially 

attractive as it holds the potential to address the drawbacks encountered by the 

conventional membrane for practical industry application.  
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1.6  Limitation of Study 

 

 

In many of their nanocomposite applications, GO has been modified to 

improve the surface chemistry for better dispersion in the matrix. However in this 

study, the as-synthesized GO was directly used as the nanofillers without further 

surface functionalization. The main objectives of this study are to investigate the 

roles of GO and the effects of different GO loadings to improve the physico-

chemical properties and further enhance the gas separation performance.  

 

 

Gas separation membrane is a pressure-driven process. Hence, pressure is one 

of important factors to be studied with. CO2 separation for post-combustion activities 

usually operated at low pressure, meanwhile for natural gas processing high pressure 

is always required to separate desired gas. The delicate nature of hollow fiber 

membranes with their limited maximum allowable transmembrane pressure 

especially when fabricated for lab scale used discourage researchers to conduct their 

experimental work at high feed pressure. Moreover, the resistance of hollow fiber 

towards high pressure operation, however, can be sustained in the real footprint of 

membrane installation. Normally the operating system is fixed at one elevated 

pressure and temperature. Besides, this study is not focusing on the effect of different 

pressure on gas separation performance. These explained why only one operating 

pressure is applied (5 bar) in this experimental work. 

 

 

Other than that, the investigation of MMHFM should be further tested on 

mixed gas so that the result of gas separation performance would be more reliable to 

be applied in real industry. However, other effects caused by mixed gas (i.e. coupling 

effect) will cause complexity to identify the ideal characteristic of fabricated 

MMHFM. Due to the constraints in dealing with complexity behaviour of mixed gas, 

the pure gas system was examined in this study. Other than that, pure single gas 

would have behaviour of an ideal gas, which is can be the best indicator for 

MMHFM separation performance characteristic. If the value of MMHFM 

permeation and separation characteristic are high for pure single gas, it is most likely 

the similar finding will also be obtained for mixed gas. 
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