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ABSTRACT

Enhanced Oil Recovery (EOR) processes are used to recover bypassed and 
residual oil trapped in a reservoir after primary and secondary recovery methods. Recently, 
polymeric nanofluid, a novel material formed from the incorporation of polymer and 
nanoparticle has gained prodigious attention and is proposed for EOR due to its sterling 
and fascinating properties. Nonetheless, previous studies have focussed more on the 
suitability of inorganic silica and non-metallic polymeric nanofluids (PNFs). Besides, the 
performance evaluation of PNFs on pore scale displacement efficiency remains obscure 
while the mechanistic understanding of this novel material for heavy oil recovery in typical 
reservoir conditions is elusive in literature. The aim of this study is to explore and exploit 
the effect of nanoparticles on rheological properties of partially hydrolysed 
polyacrylamide (HPAM) at varying electrolyte concentration and temperature conditions. 
Besides, IFT and wettability alteration potential of the PNFs in the presence of heavy oil 
were evaluated. Herein, two PNFs namely silicon dioxide (SiO2) and aluminium oxide 
(AhOs), formulated from the combination of the individual nanoparticles and HPAM were 
exclusively studied. The nanoparticles were characterised using transmission electron 
microscopy, while the formulated PNFs were characterised using Fourier transform 
infrared microscopy and thermo gravimetric analysis to determine the morphology and 
thermal stability respectively. The rheological properties of the PNFs and HPAM were 
determined using Brookfield RST. Furthermore, the behaviour of the PNFs and HPAM at 
oil-water interface was investigated using Kruss tensiometer. Moreover, the wettability 
effect of the fluids in sandstone cores was examined using DataPhysics optical contact 
angle equipment. Finally, heavy oil displacement in mid-permeability sandstone cores at 
typical reservoir condition was carried out using HPHT core flooding equipment. 
Experimental results show that the rheological properties improved while degradation of 
HPAM molecules was inhibited due to the addition of NPs. At 2,000 ppm HPAM solution 
(27 mol % hydrolysis degree), 0.1 wt.% NP concentration was found to be the optimal 
choice for AhO3 and SiO2 NP which gives rise to the highest viscosity on the rheological 
characterization. PNFs exhibited better steady shear viscosity performance under the 
different electrolyte concentration and temperature studied due to shielding effects. 
Besides, PNFs lowers IFT of heavy oil due to irreversible adsorption of the NP’s at the 
oil-water interface. Moreover, PNF’s alter wettability of sandstone cores from oil-wet to 
water-wet due to structural disjoining pressure mechanism. Field emission scanning 
electron microscope and energy-dispersive x-ray analysis confirm adsorption of 
nanoparticles on the sandstone cores. Finally, heavy oil displacement test in mid­
permeability sandstone cores showed that incremental oil recoveries of AhO3 and SiO2 

PNFs at their optimum concentration were 10.6% and 6.1% respectively over HPAM. 
Physical filtration phenomena lowered the efficiency of the PNF’s at higher 
concentrations. The synergic combination of NPs and polymer resulted in enhanced 
properties of HPAM, hence, culminating in enhanced sweep and pore scale displacement 
efficiencies. This study is beneficial for extending the frontiers of knowledge in 
nanotechnology application for EOR.
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ABSTRAK

Proses perolehan minyak tertingkat (EOR) digunakan untuk memperoleh minyak 
terpintas dan baki minyak terperangkap di dalam reservoir selepas kaedah perolehan primer 
dan sekunder. Ketika ini, nanobendalir polimer, iaitu bahan novel yang terbentuk daripada 
gabungan polimer dan nanopartikel telah menarik banyak perhatian dan dicadangkan 
penggunaannya dalam EOR berikutan sifatnya yang menarik. Walau bagaimanapun, kajian 
terdahulu lebih tertumpu terhadap kesesuaian nanobendalir polimer silika tak organik dan 
nanobendalir polimer bukan logam (PNF). Selain itu, penilaian terhadap prestasi PNF pada 
kecekapan anjakan skala liang masih kabur, dengan kefahaman tentang mekanisma bahan 
novel ini untuk memperoleh minyak berat pada keadaan tipikal reservoir masih terhad dalam 
literatur. Tujuan kajian ini adalah untuk meneroka dan mengeksploitasi kesan nanopartikel 
terhadap sifat reologi poliakrilamida separa hidrolisis (HPAM) pada kepekatan elektrolit yang 
berbeza dan keadaan suhu yang berlainan. Di samping itu, nilai IFT dan potensi perubahan 
keterbasahan PNF dengan kehadiran minyak berat turut dikaji. Dua jenis PNF, iaitu silika 
dioksida (SiO2) dan aluminium oksida (A^Os), yang dirumus daripada gabungan nanopartikel 
individu dan HPAM telah dikaji secara terperinci. Pencirian nanopartikel dilaksana menerusi 
penggunaan alat mikroskop elektron penghantaran, manakala pencirian formulasi PNF 
menggunakan alat mikroskop inframerah jelmaan Fourier dan analisis termogravimetrik 
bagi menentukan sifat morfologi dan kestabilan terma masing-masing. Sifat-sifat reologi PNF 
dan HPAM diperoleh menerusi penggunaan alat Brookfield RST. Selain itu, tingkah laku PNF 
dan HPAM pada keadaan antara muka minyak-air telah dikaji menerusi penggunaan 
tensiometer Kruss. Di samping itu, kesan keterbasahan bendalir di dalam teras batu pasir dikaji 
dengan mengguna pakai alat sudut sentuh optik datafizik dengan perisian analisis imej terbina. 
Akhirnya, anjakan minyak berat di dalam teras batu pasir berkebolehtelapan sederhana pada 
keadaan reservoir telah dilaksana menerusi penggunaan alat banjiran teras HPHT. Keputusan 
ujikaji menunjukkan bahawa sifat rheologi bertambah baik berikutan penambahan NP, dengan 
degradasi molekul HPAM mengalami kerencatan. Pada larutan HPAM 2,000 ppm (27 mol % 
hidrolisis), kepekatan 0.1% berat NP menjadi pilihan optimum bagi NP AhOs dan SiO2 yang 
mampu menghasilkan kelikatan tertinggi. PNFs memberikan prestasi kelikatan ricih yang 
lebih mantap pada kepekatan elektrolit yang berbeza dan suhu yang dikaji berikutan kesan 
pemerisaian. Selain itu, PNF mengurangkan IFT minyak berat kerana berlakunya penjerapan 
tidak berbalik NP pada antara muka minyak-air. Tambahan lagi, PNF boleh mengubah 
kebolehbasahan teras batu pasir daripada bersifat basah-minyak kepada basah-air berikutan 
kesan mekanisme struktur tekanan terpisah. Analisis mikroskop elektron imbasan pancaran 
medan dan analisis sinaran-x penyebaran tenaga mengesahkan berlakunya penjerapan 
nanopartikel pada teras batu pasir. Ujian anjakan minyak berat di dalam teras batu pasir 
berkebolehtelapan sederhana menunjukkan pertambahan perolehan minyak bila menggunakan 
PNF AhOs dan SiO2 pada kepekatan optimum masing-masing, iaitu 10.6% dan 6.1% melebihi 
HPAM. Fenomena penurasan fizikal menurunkan kecekapan PNF pada kepekatan yang lebih 
tinggi. Gabungan sinergi NP dengan polimer berjaya memperbaiki sifat HPAM, lalu 
meningkatkan kecekapan sapuan tertingkat dan keberkesanan anjakan skala liang Kajian ini 
boleh memantapkan lagi pengetahuan dalam pengaplikasian nanoteknologi untuk EOR.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Despite contribution from renewable and other sources of energy, oil and gas 

has remained the major source of energy (Kumar et al., 2019). With increasing demand 

for energy and declining conventional sources of hydrocarbon, vast amount of 

previously abandoned heavy oil resource is being courted to support energy demand. 

Unlike conventional oil, production of heavy oil is more problematic due to its inherent 

properties. These include extremely low mobility (or immobility) because of its high 

viscosity, high heteroatom contents (e.g., asphaltenes, resins and heavy metals), and 

high carbon to hydrogen (C/H) ratio (i.e., aromaticity) (Guo et al., 2015). Hence, water 

flooding produces less than 30% of the original-oil-in-place (OOIP). To this end, 

thermal and non-thermal enhanced oil recovery (EOR) methods have been proffered 

and tested for heavy oil recovery applications. Thermal EOR are unsuitable for 

reservoirs with great depth and/or thin pay zones. Hence, non-thermal EOR methods, 

especially chemical EOR have received prodigious attention due to their ability to 

improve sweep and pore scale displacement efficiency (Yekeen et al., 2018).

Amongst all the non-thermal EOR techniques, polymer flooding, a chemical 

EOR method has been adjudged to be the most promising because of its high 

efficiency, technical and economic feasibilities, and lower capital cost (Pope, 2011). 

Apart from ensuring additional oil recovery from conventional crude oil reservoirs, 

polymer flooding is now been employed and preferred to improve production of 

medium to heavy oil reservoirs (Kamal et al., 2015). This is based on its ability to 

overcome the shortcomings of gas, thermal and in-situ combustion methods whose 

limitations are of technical, economical, and environmental concerns (Khalilinezhad 

et al., 2016). For example, the application of gas methods for low viscous oils is limited 

due to gravity override while the application of thermal techniques in thin and deep



formations yields a low recovery factor because of severe heat losses to the overburden 

layers. Besides, large amount of steam required for thermal methods results in an 

increase in the operating costs and emission of greenhouse gas to the atmosphere 

(Saboorian-Jooybari et al., 2016).

The process of polymer flooding EOR technique involves adding high 

molecular weight water-soluble polymers to inj ection water. This results in an increase 

of the viscosity of the injected aqueous phase and leads to an improved recovery of 

bypassed and residual oil. The bypassed oil is recovered through an improvement in 

the mobility ratio of the displaced fluid while the residual oil is recovered through the 

viscoelastic nature of the polymers injected into the reservoir (Wegner, 2015). Polymer 

flooding has been successfully implemented in many oilfields either on a pilot scale or 

commercial scale for several decades. This includes the Daqing oil field in China, East 

Bodo Reservoir and Pelican Lake field in Canada, Marmul field in Oman, and 

Tambaredjo field, Suriname to mention just a few (Delamaide et al., 2014b; Sheng, 

2013). In addition, polymer flooding has maintained its increasing importance to the 

current energy market (Li et al., 2017). The most notable contribution is the reported 

incremental oil production of up to 300,000 bbl/day from Daqing oil field in China 

(Cheraghian and Hendraningrat, 2016).

Hydrolysed polyacrylamide (HPAM), one of the synthetic polyacrylamide 

group, is the most often used polymer in EOR field applications because of its 

relatively low price, good viscosifying properties, and well-known physiochemical 

characteristics (Abidin et al., 2012; Pogaku et al., 2017; Wei, 2016). The 

implementation of HPAM during field operations is relatively easy and can 

significantly improve the oil recovery rate under standard reservoir conditions. 

However, HPAM is susceptible to harsh reservoir conditions such as high temperature 

and high salinity, which significantly affects their performance in EOR. At high 

salinity conditions and in the presence of monovalent and divalent ions (such as Na+, 

Mg2+ and Ca2+) in reservoir and formation brines, the opposite charges between the 

carboxylate group (- COO ) and the ions attract each other, thus leading to 

compression, distortion and precipitation of the polymer from solution. At high 

temperatures, degradation of the polymer occurs which results in viscosity reduction

2



of the polymer (Sheng, 2011a; Wu et al., 2009). All these impose negative effects on 

the polymer’s functionality in displacing oil, thus, lowering the economic viability of 

the flooding operation and ultimately reduce the polymer EOR process efficiency. 

From the above, it can be deduced that HPAM has deficiencies and need some 

modifications for EOR application in reservoirs to ensure maximal efficiency.

Hitherto, research for improvement of polymer flooding process has focussed 

on the development of new polymers for EOR process. Several attempts have been 

made to improve performance of polyacrylamide by developing salt and temperature 

tolerant polymers for EOR applications. To this end, many approaches have been used 

for the modification of polyacrylamide (PAM) (Khune et al., 1985; Sabhapondit et al., 

2003). The most common method that has been applied to extend the application of 

acrylamide (AM) based polymers is copolymerisation of AM with suitable monomers 

that can increase the stiffness and rigidity of the polymer chain (Kamal et al., 2015). 

Though some of the new polymers formed from the modification process are found to 

be efficient in improving polymer rheological properties and adjudged to have good 

potential for EOR application, however, the formulated polymers have been deemed 

unsuitable due to economic reasons as they are expensive and will lead to an increase 

in the overall cost of the polymer flooding process (Kamal et al., 2015).

Advancement in research and new trends in polymer EOR involves the 

addition of nanoparticles (NP) to polymers used during flooding operations to improve 

polymer EOR process efficiency. Nanoparticles, also referred to as “engineered nano­

material” are the collections of atom bonded together with sizes ranging from 1 nm to 

100 nm (Cheraghian and Hendraningrat, 2016; Ragab, 2014). Generally, the 

application of nanoparticles for EOR have been found to possess the ability to improve 

the overall oil recovery factor due to their unique properties (Negin et al., 2016). They 

possess unique properties due to their small sizes and greater surface area per unit 

volume (Cheraghian and Hendraningrat, 2016). These properties include thermal 

properties like heat transfer, and property of mechanical strength like ultra-high 

strength of material (Bera and Belhaj, 2016).

3



The application of nanoparticles for improving polymer EOR has been hinged 

on its ability to enhance the polymeric fluid property, to make it more effective and 

efficient especially under harsh conditions of elevated temperatures and salinity 

(Yousefvand and Jafari, 2018). The most common nanoparticle utilised for use as 

polymeric nanofluid is the silicon dioxide nanoparticle, otherwise known silica (SiO2). 

Investigating the influence of other nanoparticles especially metal oxide nanoparticle 

on polymeric fluid behaviour will be a good option for heavy oil recovery. In addition 

to their potential of enhancing polymeric fluids property, metal oxide nanoparticles 

have shown sterling abilities to reduce oil viscosity at typical reservoir conditions 

through aquathermolysis reactions.

Aluminium oxide nanoparticle, also known as alumina (AhO3) is a metal oxide 

NP and is known to exhibit excellent properties during their use as nanofluid 

(Mallakpour and Khadem, 2015). They possess high thermal conductivity and can 

dissipate heat efficiently from fluids through Brownian motion (Rafati et al., 2016). 

Hence, fluids containing AhO3 NP is less affected by temperature increase. 

Additionally, they have been reported to increase viscosity of injectant when used as 

nanodispersions. Also, AhO3 NP is particularly known for its ability to cause viscosity 

reduction of heavy oil. Finally, they are low cost nanoparticles and environmentally 

friendly (Kedir et al., 2014; Kiruba et al., 2018). Hence, AhO3 NP was investigated for 

its effect of HPAM polymeric fluid behaviour and compared with SiO2 polymeric 

nanofluid and bare HPAM molecules at varying salinity and temperature 

representative of reservoir conditions. Besides, a mechanistic understanding of the 

polymeric nanofluids behaviour at pore scale which remains elusive in literature was 

ascertained.
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1.2 Problem Statements

HPAM is the most widely used and preferred polymer during polymer EOR 

field applications because of its high viscosifying properties, resistance to bacteria 

attack, good water solubility, mobility control, low cost and availability in large 

quantities. However, the viscosity enhancement property of HPAM is susceptible and 

sensitive to harsh reservoir conditions such as elevated temperature, brine salinity, 

shear forces encountered in reservoirs (Goshtap Cheraghian, 2015; Hendraningrat et 

al., 2013). Recently, researchers have shown that appropriate addition of nanoparticles 

to polymer form novel materials which are beneficial for EOR applications. 

Nonetheless, the application of nanotechnology in polymer flooding have majorly 

investigated the use of inorganic SiO2 NP and non-metallic oxide NP such as graphene 

oxide. Besides, research has also been focussed on investigating the effect of NP on 

rheological behaviour of the polymeric suspension to improve mobility ratio and 

sweep efficiency. Meanwhile, there exists only a few pieces of researches on PNF’s 

behaviour at the pore scale, especially interfacial tension (IFT) and wettability 

alteration. Phenomenologically, an effective understanding of the microscopic 

behaviour of PNF’s will help evaluate its ability to lower capillary pressure of trapped 

oil and boost oil recovery.

Additionally, most of the previous researches of oil displacement by PNF’s 

were carried out in micromodel (Yousefvand and Jafari, 2015), glassbead pack 

(Abdullahi et al., 2018) and sandpack (Saha et al., 2018; Sharma et al., 2016). These 

porous media types are only symbolic and not synonymous with real reservoir cores 

as they do not account for the reservoir heterogeneity of oilfield applications. 

Moreover, while the process of such porous media (micromodel, glassbead and 

sandpack) preparation is apt, researchers ignore the possibility of fluid movement via 

the sidewalls of these porous media types. Fines migration/fluid channelling via the 

walls do take place during their use for oil displacement test and are unaccounted for 

even though they have consequential effect on the flooding results. Finally, oil 

displacement results reported in literatures were mostly at ambient conditions and/or 

for light and intermediate oil. Typical reservoir condition exists at variance with 

ambient conditions discussed in earlier researches. Besides, decline in conventional oil
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reserves has necessitated the need to explore available avenues to produce heavy oils 

to support the ever-increasing energy demand.

This work therefore seeks to extend the frontier of knowledge in PNF’s 

application for heavy oil recovery by exploring, exploiting and evaluating the 

application of AhO3 NP additive in sandstone cores at typical reservoir condition. As 

compared to other metal oxide NP such as Fe2O3, CuO, ZnO, TiO2 and ZrO2 , AhO3 

NP is characterised with fixed oxidation states, hence, adjudged to have better stability. 

The influence of AhO3 NP on the rheological properties of HPAM at typical reservoir 

field conditions (NaCl = 1 -  5 wt.%, Temperature = 60 -  90 °C, and Pressure = 2,500 

psi) were evaluated and compared to those of well-researched SiO2 PNF and bare 

HPAM molecules. Moreover, a mechanistic understanding of the pore scale 

displacement behaviour of PNF’s in the presence of heavy oil which remains obscure 

in literature were elucidated.

1.3 Aim and Objectives of the Research

The aim of this research is to acquire a mechanistic understanding of the 

influence of nanoparticles on macroscopic and microscopic properties of oilfield 

polyacrylamide for heavy oil recovery applications. The objectives of this study are as 

follows:

i. To investigate the effect of the nanoparticles on rheological properties of 

oilfield polyacrylamide at typical reservoir salinity and temperature 

conditions.

ii. To quantify the IFT reduction and wettability alteration potential of the 

formulated polymeric nanofluids in the presence of heavy oil.

iii. To evaluate the incremental oil production after waterflooding due to the 

use of HPAM molecules and polymeric nanofluids for enhanced heavy oil 

recovery.
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1.4 Scope and Limitation of the Study

The viscosity enhancement, rheological and other properties of HPAM 

polymer has been found to be influenced by factors such salinity, temperatures, degree 

of hydrolysis, pH, pressure and molecular weight. The scope of this research will be 

limited to addressing the main concerns imposed on HPAM flooding by salinity and 

temperature conditions. The polymer solution concentration was varied from 0.1-0.5 

wt.% to determine the critical association concentration (CAC). At the polymer CAC, 

the effect of varying nanoparticle types (SiO2 and AhO3) and concentrations (0.01 -

1.0 wt.%) on the polymer solution viscosity was determined. To determine the effect 

of salinity on the HPAM and polymer nanofluids behaviour, the brine considered in 

this study is the monovalent sodium chloride (NaCl), which is the most commonly 

found salt in reservoirs. The salinity condition considered ranges from 1.0-5.0 wt.% 

while the temperature condition ranges from 27-90 C. At the critical nanoparticle 

concentration (CNC), the rheology of the HPAM and polymeric nanofluids at fixed 

shear rate representative of reservoir condition and varying shear rate representative 

of fluid injection into the reservoir were determined using Brookfield RST Rheometer.

Subsequently, the IFT behaviour of HPAM and polymeric nanofluids in the 

presence of heavy oil (240 mPas). Additionally, the wettability behaviour of the 

HPAM and the formulated polymeric nanofluids in sandstone core was investigated 

using the contact angle method. The maximum temperature capacity of the Kruss 

tensiometer used for IFT measurement is 80 °C, hence, the IFT measurement of this 

study is limited to that temperature range. Finally, oil displacement experiments were 

carried out in mid-permeability sandstone cores with permeability ~200 mD. The 

confining pressure was fixed at 2500 psi representing high pressure witnessed in 

reservoirs at great depth. Fluid injectants into the core were at a flowrate of 0.2 

mL/min. The temperature of the coreflooding process was fixed at 90 C, 

representative of typical reservoir conditions. Meanwhile the salinity condition for the 

flooding process was fixed at critical salinity concentration (CSC). Overall, the process 

was monitored to evaluate the heavy oil recovery by varying injectant at the typical 

reservoir condition investigated, and more importantly to determine the mechanism of 

PNF efficiency.
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1.5 Significance of the Study

To ensure a secure energy future, new methods are being developed through 

research and developments to overcome the limitations of the well-known 

conventional oil recovery methods. One of such methods is the application of 

nanotechnology to improve polymer flooding. New developments in polymer 

application for EOR involves the addition of nanoparticles to improve the rheological 

properties and polymer flooding characteristics of the process for oil recovery. This 

study makes a comparative analysis of polymeric nanofluids and bare polymer, and 

seek to understand their performance at the pore scale at typical reservoir conditions. 

The significance of this study is to extend the frontier of knowledge in chemical EOR 

through the mechanistic understanding of nanoparticle efficiency for application in 

polymer EOR. This study is beneficial for improving heavy oil recovery and will prove 

important in contributing to the ever-increasing energy demand.

1.6 Organisation of the Thesis

Chapter 1 gives a brief overview and background of enhanced oil recovery, 

explains the aim and objectives of the research, and the problem statement and gaps in 

existing knowledge of the area of research.

Chapter 2 outlines a detailed review of previous literature related to the theme 

of the research. It explains the concept of polymer flooding, the polymer types, the 

mechanism of polymer flooding, the deficiency of polymer flooding methods, and the 

synergic use of nanotechnology to overcome the shortcomings of polymer EOR.

Chapter 3 provides the procedure for polymer and polymeric nanofluids 

preparation and characterization. Besides, the materials, equipment and step-by-step 

guide for achieving the procedures of experiment as related to each objective was 

explained in detail.
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Chapter 4 discusses the results and outcome of the nanoparticles, polymer and 

polymeric nanofluids characterization. Moreover, the performance evaluation and 

comparative analysis of the macroscopic and microscopic fluid behavior of the 

polymer and polymeric nanofluids were outlined. Finally, the mechanism of the fluid 

properties was explained.

Chapter 5 concludes the thesis with a summary of the main outcomes of the 

research and recommendations for further studies.
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