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ABSTRACT 

Surface discharge is a phenomenon of insulating surface failure due to 

intensive leakage current (LC) flow.  The existence of LC on the wet contaminated 

material surfaces causes a permanent conducting path to the insulating material due 

to surface erosion, which is due to high-voltage stress.  Conventionally, the standard 

experimental test requires the inclined plane tracking (IPT) test hardware 

arrangement and sample material preparation.  This experiment is also time 

consuming and costly.  Hence, this thesis proposes field simulation using finite 

element analysis software to investigate the LC and electric field during surface 

discharge activity.  Different compounds of linear low-density polyethylene 

(LLDPE) and natural rubber (NR) blended with different percentage of silicone 

oxide (SiO2) and alumina hydroxide (Al(OH)3) nanofillers were tested using the IPT 

test and field simulation at 4.5 kV with a contaminant flow rate of 0.60 ml/min.  The 

controlled parameters of applied voltage, conductivity and permittivity of material as 

well as contaminant solution were also tested in the IPT test and field simulation.  

Due to the limitation in the field simulation, the LC obtained displays similar 

impression though not explicit.  Thus, correction factors (f) were determined to 

achieve absolute value of LC.  LLDPE-NR/SiO2 at 1wt% (A1) was found to be the 

lowest LC for both experimental and simulation results.  In the experiment, the 

consequence of LC with the carbon track rate, hydrophobicity loss, and 

morphological analysis was investigated to obtain the tracking and erosion 

performance of the insulator materials.  The high distribution of LC causes severe 

carbon track rate and larger hydrophobicity loss on the composition as demonstrated 

on LLDPE-NR samples.  Morphological analysis on the surface also showed greater 

deterioration of the surface structure.  The field simulation approach can be used as 

another option in investigating surface tracking resistance as the results due to LC 

could be forecasted. 
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 ABSTRAK 

Discas permukaan adalah satu fenomena kegagalan permukaan penebatan 

yang disebabkan oleh aliran intensif arus kebocoran (LC).  Kewujudan LC pada 

permukaan bahan tercemar yang basah menyebabkan laluan tetap konduktor untuk 

bahan penebat akibat hakisan permukaan tekanan voltan tinggi.  Sebelum ini, ujian 

eksperimen standard memerlukan susunan perkakasan ujian IPT dan persediaan 

bahan sampel.  Eksperimen ini memerlukan masa dan kos.  Oleh itu, tesis ini 

mencadangkan simulasi medan dengan menggunakan perisian analisis unsur 

terhingga (FEA) untuk menyiasat LC dan medan elektrik semasa aktiviti discas 

permukaan. Sebatian linear polietilena berketumpatan rendah (LLDPE) dan getah 

asli (NR) dicampur dengan pengisi nano yang berbeza iaitu silikon dioksida (SiO2) 

dan alumina hidroksida (Al (OH)3) telah diuji menggunakan ujian IPT dan simulasi 

medan pada 4.5 kV dengan kadar aliran bahan cemar 0.60 ml/min.  Parameter 

terkawal voltan gunaan, kekonduksian dan ketelusan bahan serta penyelesaian bahan 

cemar juga telah diuji di ujian IPT dan simulasi medan.  Oleh kerana batasan dalam 

simulasi medan, LC yang diperolehi memaparkan gambaran yang sama tetapi tidak 

jelas.  Oleh itu, faktor-faktor pembetulan (f) telah ditentukan untuk mencapai nilai 

mutlak LC. LLDPE-NR / SiO2 pada 1wt% (A1) menunjukkan LC yang paling 

rendah untuk kedua-dua keputusan eksperimen dan simulasi.  Dalam eksperimen, 

akibat LC dengan kadar trek karbon, kehilangan hidrofobik, dan analisis morfologi 

telah diselidiki dalam mendapatkan pengesanan dan hakisan prestasi bahan penebat.  

Taburan LC yang tinggi menyebabkan kadar trek karbon yang teruk dan kehilangan 

hidrofobik lebih besar pada komposisi seperti yang ditunjukkan dalam sampel 

LLDPE-NR.  Analisis morfologi di permukaan juga menunjukkan kemerosotan yang 

lebih besar pada struktur permukaan.  Kerja-kerja simulasi medan boleh digunakan 

sebagai satu lagi pilihan dalam menyelidiki rintangan pengesanan permukaan kerana 

keputusan LC boleh diramalkan. 
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  CHAPTER 1

INTRODUCTION 

1.1 Background 

Vast utilization of the polymer in the field of electrical insulation has 

developed a lot of investigation into their performance in terms of its electrical, 

mechanical and chemical properties. Previously, microfillers are added to the 

polymer-based in order to improve the characteristics of materials, but large amounts 

of up to 65 wt % are required [1].  The advances of nanotechnology in recent decades 

had attracted the researcher to apply nanofillers in the nanocomposite polymer to 

enhance the structure‟s properties. The major benefits of nanofiller implementation 

are the high availability of surface areas and the small quantity of nanofillers which 

are sufficient at typically less than 10 wt%.  In the interaction zone, the interaction 

between the polymer matrix and filler increases as the surface area of the nano-scale 

filler is enhanced.   

 

 

The application of polymer nanocomposite materials in the bushing and 

power cables of outdoor insulation systems has exposed the insulator to 

deterioration.  Insulating surfaces is exposed to environmental stresses such as 

contaminants, UV rays, pollution, and severe fog conditions, causing the aging of the 

insulation.  The aging of the polymer due to environmental stresses can cause the 

degradation of the insulator polymer through surface tracking phenomena.  During 

wet contaminant conditions, leakage current (LC) exists on the insulator surface 

when it achieves certain voltage gradients.  The temperature of the insulator surface 
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increases with continuous flows of LC and accumulated heat dissipation leads to dry 

conditions in the insulator surface, eventually forming an arcing spark. Dry band 

arcing spark occurs to the lowest surface resistance when a non-uniform water layer 

is formed due to hydrophobicity loss. The hydrophobicity feature in the materials can 

reduce the onset of LC by increasing the failure time.  Degradation occurs when the 

insulator‟s resistance diminished as the consequence of an increase in LC magnitude 

due to hydrophobicity loss in the materials. Meanwhile, surface discharges occur 

when the air gap reaches a critical flashover voltage across the dry band.  Carbonized 

track and erosion will be formed when an arc burns the insulator material due to 

surface discharges.  The carbonized track that develops a pathway between the two 

electrodes will eventually cause failure of insulation to the system.  All degradation 

processes that contribute to the growth of carbon tracks such as hydrophobicity loss, 

weight loss, LC and erosion are called surface tracking [2-4]. 

 

 

The monitoring and prevention of insulation failure at the early stages is 

crucial to avoid any interruptions of the functions of the high voltage apparatus.  

Measurement of LC in the areas of surface discharges was implemented by previous 

researchers using a standard inclined plane tracking (IPT) test [4].  In this test, the 

LC was recorded for six hours or until the sample failed to investigate the electrical 

performances of polymeric insulating materials.  The LC measurement is used as a 

tool to indicate the deterioration of materials, as the LC is reported to be proportional 

to the degree of material degradation [5].  

 

 

One of the objectives in this research is to establish field simulation analysis 

which can develop the IPT test characteristics in studying surface discharge in terms 

of LC.  The correlation of results in the simulation and experiment in terms of LC 

has demonstrated a new non-destructive test for surface discharge.  In the field 

simulation, portrayals of different nanofiller loadings in the materials were 

constituted with its electrical conductivity and relative permittivity properties.  The 

physical parameters in the IPT test such as applied voltage and contaminant flow rate 

are correspondingly changed in the field simulation to the voltage supply and 

electrical conductivity of contaminants.  The study of surface discharge in the 
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insulator materials is important to estimate the capability of the dielectric material, 

particularly in tracking and erosion resistance. 

1.2 Problem Statement  

The IPT test was used as the standard test to evaluate tracking and erosion 

resistance.  In this test, the level of material degradation can be analyzed using the 

result of LC  waveform in time domains, and harmonics in frequency domains with 

the consequence of surface conditions of the materials [6, 7].  The outcome shows 

that the LC is proportional to the degree of deterioration in insulator materials [8].  

The establishment of the IPT test required preparation of the experimental equipment 

and tested sample material.  However, the construction of hardware set-up and 

samples in the experimental works consuming time and cost.  Therefore, a new non-

destructive simulation works in prediction the LC due to the electrical tracking of the 

polymer materials was proposed.  

 

 

A two-dimensional plane parallel model was built in accordance with the IPT 

test configuration of IEC 60587 standard tracking and erosion test are studied using 

the Finite Element software.  The simulation model to estimate the results in the 

numerical solution of the electric field and current density problems by considering 

the physical parameters that may contribute to the electrical tracking results was 

carried out.  By applying the voltage, electric conductivity, and permittivities of 

insulating sample and contaminant solutions as the controlled parameters, the 

investigation of the electric field, current density and LC distribution of insulator 

surface were achieved.  The practice of model simulation in the new material of 

insulating sample can estimate the performance of the materials in the electrical 

tracking and erosion resistance.  Thus, the conventional approach to the experimental 

test of the tracking and erosion can be replaced by working on the simulation test that 

much faster and economical.  
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1.3 Research Objectives 

The purpose of this research is to establish a simulation analysis that can produce 

similar practices as the experimental standard.   To fulfill this purpose, the study was 

separated into three objectives.  The objectives of this research are: 

 

 

1. To conduct simulation analysis using Finite Element Software to study the 

characteristics of IPT test results due to the variation in physical 

parameters characteristics  

 

 

2. To conduct experimental works of IPT on different types of polymer 

nanocomposite. 

 

3. To compare the result of simulation works and experimental work with 

references of IPT test. 

1.4 Scope of the Research 

This research was conducted in the Institute of High Voltage and High Current 

(IVAT), Universiti Teknologi Malaysia (UTM) and the research focuses on  using 

 

a) IEC 60587 standard was used as references to both Inclined-Plane 

Tracking test and field simulation using Finite Element Analysis (FEA). 

b) Linear Low Density Polyethylene(LLDPE) and Natural Rubber(NR) 

grade SMR 20 as base materials with the ratio composition of 80:20. 

c) Nanofiller chosen which are Silicone Oxide (SiO2) and Aluminium 

hydroxide (Al(OH)3) with 1wt %, 3wt %, 5wt % and 7wt % percentage 

content. 

d) The finite element software of Quickfield in field simulation analysis. 
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1.5  Significance of the Research 

The implementation of polymer nanocomposites in high voltage insulation 

stimulates the study on material properties.  Solid dielectric materials during a 

breakdown will cause permanent alteration of its structure.  There are various 

mechanisms that cause a breakdown to occur under high electrical stresses. Some of 

them are the intrinsic or ionic breakdown, electromechanical breakdown, treeing, 

tracking, thermal breakdown, electromechanical breakdown, and internal discharges 

[9].  The focus on this research is the breakdown as a result of electrical tracking due 

to surface discharge on insulator surfaces. The investigation into the tracking effect 

using experimental test was conducted the most by researchers in this field [10, 11].  

From the experimental test, the factors that contribute to the tracking formation have 

been examined closely to be implemented into field simulation study.  

 

 

In this study, the characteristics of IPT test results of a variation in physical 

parameters have been applied for simulation analysis using the Finite Element 

Software. The different nanofiller loadings in the LLPE-NR compounding in the 

field simulation are set according to their values of electrical conductivity and 

relative permittivity. Meanwhile, applied voltage and conductivity of the 

contaminant flow rate was used as the variable parameters in the field simulation due 

to the respect of changing applied voltage and contaminant flow rate in the IPT test. 

The results of the experimental work on the IPT and simulation analysis in terms of 

LC has been studied under various conditions in finding the correlation.   

 

 

The field simulation is a non-destructive test and successful demonstration of 

the analysis and could act as another option to investigate surface discharge in the 

materials under the tracking effect. Thus, the field simulation analysis can be practice 

as mean to study the material in an indication of tracking and erosion resistance by 

studying the LC as from the experimental study the relationship of LC effect with the 

physical visuals such as tracking marks, erosion depth and erosion mass can be used 

to evaluate the tracking phase.  

 

   



6 

 

1.6 Thesis Organisation   

The thesis is divided into five chapters.  In chapter two, elaboration of 

literature review on topics of surface discharge, dry band arcing (DBA), inclined 

plane tracking (IPT), other tests to evaluate surface discharges, and field simulation 

consisting of finite element method (FEM) in high voltage test method application 

are explained.  

 

 

Chapter three outlines the test methods used in the inclined plane tracking 

(IPT) test, hydrophobicity test and field simulation.  The experimental setup, 

procedure and method of the experimental work and simulation work are expanded 

in detail in this chapter.  

 

 

Chapter four presents the results from experiment and simulation works.  The 

discussion of the result has been done in this chapter. 

 

 

 Lastly, chapter five concludes the research and gives some recommendations 

of future exploration.  
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