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ABSTRACT 

 

 

 

 

Water alternating gas (WAG) or miscible CO2-WAG injection has been a prevalent 

method to control mobility and enhance volumetric sweep efficiency for CO2 flooding. 

Recent studies however show that most fields were unable to achieve the expected recovery 

factor from the WAG process, especially for high-permeability reservoirs.  The effect of using 

polymer in water alternating gas injection (PAG) method as an enhanced oil recovery method 

in a synthetic sandstone reservoir model is investigated. The model of under investigation is a 

high permeable reservoir, so injected flood front would be breakthrough early times of 

injection periods.  Hence, in the present work, a simulation study using reservoir simulator 

called STARS® commercialized by Computer Modelling Group Ltd. (CMG) was done to 

evaluate the potential benefit of adding polymer to the water during CO2 WAG.  The studies 

have shown that PAG flooding has recorded the lowest residual oil saturation (ROS) of 0.04 

and the highest recovery factor (RF) of 56% compared to the water, CO2 flooding, CO2-WAG 

flooding and polymer flooding, implying PAG flooding have improved the  sweep efficiency 

due to reduced the mobility ratio.  The simulation results also showed a remarkable GOR 

reduction (at production well), a noticeable delay in the gas breakthrough, and an 

improvement in the areal sweep efficiencies during the PAG processes. Therefore, the 

synergy of polymer and CO2-WAG flooding by taking advantage of polymer conformance 

control during water cycle and CO2 miscibility with oil is said to have improved the 

microscopic displacement efficiency which is the paramount importance in the measurement 

of field’s expected recovery, especially in a highly permeable reservoir. 

  



ABSTRAK 

 

 

 

 

  Gas berselang-seling air (WAG) atau suntikan karbon dioksida-gas berselang-seli air 

(CO2-WAG) yang terlarut merupakan kaedah lazim untuk mengawal mobiliti dan 

meningkatkan kecekapan isipadu sapu untuk banjir karbon dioksida CO2.  Kajian terbaru 

menunjukkan bahawa kebanyakan medan minyak tidak dapat mencapai faktor pemulihan 

minyak dijangka dari proses WAG, terutamanya reserbor yang mempunyai kebolehtelapan 

tinggi. Kesan menggunakan kaedah polimer dalam air suntikan gas (PAG) sebagai kaedah 

pemulihan minyak yang dipertingkatkan dalam model reserbor batu pasir sintetik telah 

disiasat. Model penyiasatan adalah reserbor resapan tinggi, jadi suntikan banjir akan 

mengalami terobosan semasa awal suntikan.  Oleh itu, dalam siasatan ini, satu kajian simulasi 

menggunakan simulator reserbor yang dikenali sebagai STARS® dikomersialkan oleh 

Computer Modeling Group Ltd. (CMG) telah dijalankan untuk menilai potensi manfaat 

penambahan polimer ke dalam air semasa CO2 WAG. Kajian telah menunjukkan bahawa 

banjir PAG telah mencatatkan ketepuan minyak sisa (ROS) paling rendah sebanyak 0.04 dan 

faktor pemulihan minyak tertinggi (RF) sebanyak 56% berbanding dengan banjir air, banjir 

CO2, banjir CO2-WAG dan banjir polimer, di mana banjir PAG dikatakan telah meningkatkan 

kecekapan isi padu sapu kerana nisbah mobiliti telah dikurangkan.  Hasil simulasi juga 

menunjukkan pengurangan nisbah gas-minyak (GOR) yang luar biasa (di telaga pengeluar), 

kelewatan ketara dalam terobosan gas, dan peningkatan kecekapan sapuan kawasan semasa 

proses PAG. Oleh itu, sinergi banjir polimer dan CO2-WAG dengan menggunakan kelebihan 

daripada kawalan pematuhan polimer semasa kitaran air dan keterlarutcampuran karbon 

diokida CO2 dengan minyak dikatakan telah meningkatkan kecekapan anjakan mikroskopik 

yang penting bagi pengukuran ramalan faktor pemulihan minyak dalam medan minyak, 

terutamanya dalam reserbor yang sangat telap. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Carbon dioxide has been used commercially to recover oil from reservoirs over 40 

years.  Presently, CO2 flooding is the second most applied enhanced oil recovery (EOR) 

process in the world after steam flooding. Water alternating gas (WAG) or miscible CO2-

WAG injection has been a prevalent method to control mobility and enhance volumetric 

sweep efficiency for CO2 flooding.  Typical EOR is about 9.7% with a range between 6 and 

20% for miscible WAG injection.  Despite the success of WAG injection, sweeping 

efficiency is a typical challenge to achieve higher oil recovery during CO2 flooding. 

 

 

Almost all commercial miscible gas injection projects use WAG to control mobility of 

gas and lessen fingering problems.  Recovery of WAG is better compared to gas injection 

alone, and 80% of commercial WAG projects in the US are cost-effective (Christensen, 

Stenby and Skauge, 1998).  Recent studies however, show that most fields were unable to 

achieve the expected recovery factor from the WAG process, especially for high-permeability 

reservoirs (Christensen, Stenby and Skauge, 2001). 

 

 

A new combination method was proposed to overcome the problems of gas 

breakthroughs and gravity segregation, just like during the WAG.  This new method, called 

polymer alternating gas (PAG), combines the elements of CO2 flooding with polymer 

flooding to make the WAG flood chemically improved.  Polymers coupled with CO2 are 

expected to enhance the efficiency of the current WAG.  The main feature of PAG is that 

water is injected into the polymer during the entire WAG process.  Polymer injection chased 

with gas alternative water (PGAW) experiment based on Saskatchewan crude was conducted 

by Zhang, Huang and Luo (2010).  They mentioned that the coupled CO2 and polymer 



injection improved recovery and efficiency compared to WAG and polymer flooding.  The 

first coupled CO2 and polymer injection simulation study for light oil based on a synthetic and 

homogeneous model was conducted by Majidaie, Khanifar and Onur (2012).  Their study 

showed that PAG and WAG have almost the same recovery. Successful PAG and WAG 

application requires a good understanding of conformance, mobility and areal and vertical 

sweep efficiencies. 

 

 

 

 

1.2 Problem Statement 

 

 

Traditional gas (CO2) flood methods suffer from insufficient sweep efficiency and 

incomplete recovery of oil.  Caudle and Dyes (1958) observed that the sweep efficiency of a 

gas injection process can be enhanced by reducing the mobility behind the flooding front.  

This is achieved through the injection of a water slug and a gas slug.  The water slug can 

reduce relative gas permeability and thus reduce the total mobility of the gas.  The miscible 

slug is driven by a simultaneous injection of water and gas into the correct ratio in their 

proposed method.  This method is changed to the Water Alternating Gas (WAG) process to 

prevent injectivity problems and other operational limitations associated with simultaneous 

injection. 

 

 

During the WAG process, short slugs of gas and water are alternately injected to 

reduce the residual oil saturation and to control the mobility of gas.  The recovery is better 

than water and gas injection alone (Rogers and Grigg, 2000) because the higher macroscopic 

efficiency of water merges with the higher microscopic efficiency of gas, giving a better oil 

recovery (Poollen, 1980; Christensen et al, 2001; Crogh et al, 2002; Awan et al, 2008).  

WAG has been widely used to improve the areal and vertical sweep efficiencies of gas/CO2 

flood (Kane, 1979; Champion and Shelden, 1989).  WAG improves the recovery and the use 

of gas/CO2 because the water injected has a higher viscosity than gas, which provides a better 

conformance control.   

 



Although the WAG process is theoretically sound, its field incremental recovery is 

unsatisfactory because it seldom exceeds 5 to 10 % OOIP.  Recent studies have shown that 

most of the fields were unable to reach the expected recovery factor from WAG processes 

(Sharma and Rao, 2008).  Christensen et al (2001) have reported that the average recovery 

factor in immiscible WAG is 6.4 percent and in miscible case it is around 9.7 percent.  Some 

studies also show that WAG occasionally has problems with high permeability zone 

channelling (Christensen et al, 2001; Chen et al, 2010).  This is because the mobility ratio 

between the displacement and the displaced phases is not sufficiently reduced.  In addition to 

operational problems, the WAG mechanism has inherent challenges such as gravity 

segregation water blocking, high viscosity oil mobility control, and reduced relative 

permeability of the oil and reduced injectivity of gas. 

 

 

 In this study, the above-mentioned WAG problems are addressed by adding polymer 

to the WAG cycle to further increase water viscosity and reduce the mobility ratio in order to 

reduce channelling and improve oil recovery.  Polymer alternating gas (PAG) is therefore 

proposed to improve the efficiency of sweeping and recovery of oil. There have been a 

number of PAG research studies (Zhang et al, 2010; Li and Schechter, 2014; Li et al, 2014).  

Li et al, (2014) carried out a PAG simulation study using ECLIPSE for a highly 

heterogeneous North Burbank Unit field in Osage County, Oklahoma.  Their study showed 

that the optimized PAG could increase oil recovery by approximately 14.3 percent compared 

with WAG by 7.3 percent.  These studies have shown the potential benefit of polymer and 

CO2 synergies. Hence, in the present work, a simulation study using reservoir simulator called 

STARS® commercialized by Computer Modelling Group Ltd. (CMG) is conducted to 

investigate the potential benefit of adding polymer to the water during CO2 WAG process by 

taking the advantage of polymer conformance control during water cycle and CO2 miscibility 

with oil.  Each EOR method’s performance on incremental oil recovery is also evaluated, 

including the water flood, CO2 (gas) flood, water alternating gas (WAG), polymer flood and 

polymer alternating gas (PAG).  The effect of each flooding method on residual oil saturation 

and sweep efficiency is also addressed. 

 

 

 



1.3         Objectives of the Study 

 

 

The objectives of this study are: 

 

 

1. To compare the incremental oil recovery factor between PAG flooding, polymer flooding, 

miscible CO2-WAG flooding, gas flooding and water flooding. 

2. To visualize and evaluate the areal sweep efficiency of polymer flooding. 

3. To evaluate and compare the effect of each EOR method on the residual oil saturation. 

4. To evaluate the potential of PAG as a secondary or tertiary enhanced oil recovery 

mechanisms in a synthetic sandstone reservoir. 

 

 

 

 

1.4         Scopes of Study 

 

 

In order to achieve the objectives, the following scopes are drawn: 

 

 

1. The study is done in a simulator developed by the Computer Modelling Group (CMG) 

known as STARS, Thermal & Advanced Processes Reservoir Simulator. 

2. STARS is a thermal, k-value compositional, chemical reaction and geomechanics 

reservoir simulator in which one can perform advanced modelling of EOR processes 

such as polymer. 

3. Options available for polymer flooding in STARS are studied. 

4. The synthetic sandstone reservoir is constructed using CMG Builder. 

5. The study is conducted in a homogeneous oil reservoir. 

6. The optimum water injection rate is 1,200 STB/day 

7. The optimum gas injection rate is 2052.94 MSCF/day. 

8. WAG cycle time is 4 months. (2 months of CO2 injection, followed by 2 months of 

water injection) 

9. WAG ratio is 1:2 (50% time of CO2 is injected and 50% of time water is injected) 

10. Both production and injector well are vertical wells. 



1.5 Significance of Study 

 

 

This study is vital to solve problems related to Water Alternating Gas (WAG) such as 

early gas breakthrough and poor sweep efficiency by using PAG flooding. Polymers act 

essentially to increase the viscosity of the water injected and to reduce the permeability of the 

swept zone, to increase the vertical and areal sweeping efficiency of the water injection and 

thus to increase the recovery of the oil.  Only few polymer and gas flooding studies using 

CMG-STARS have been published (Li and Schechter, 2014).  Therefore, it is the interest of 

this study to investigate the feasibility of PAG flooding compared to other EOR methods in 

order to be implemented in Malaysian oilfields. 

 

 

 

 

1.6 Thesis Outline 

 

 

This thesis basically comprises of five main chapters.  The first chapter explains the 

introduction of the project work.  The second chapter describes all the related literature 

reviews pertaining to the project.  The third one explains the methodology of the project and 

the fourth chapter carries the results for this study backed up by relevant references in the 

literature.  The last chapter concludes the project. 
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