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ABSTRACT 

Dry reforming of methane (DRM) through dielectric barrier discharge (DBD) 

plasma is one of the promising techniques to convert greenhouse gases (GHGs) such 

as methane (CH4) and carbon dioxide (CO2) to syngas (H2, CO) and higher 

hydrocarbons. In this study, Ni-loaded La2O3-MgAl2O4 mix-matrix support lamella-

structure catalyst is prepared using modified co-precipitation followed by 

hydrothermal and wetness incipient impregnation methods. The catalysts are 

characterised by X-ray diffraction, field emission scanning electron microscopy, 

high-resolution transmission electron microscopy, Brunauer-Emmett-Teller with N2, 

H2-temperature-programmed reduction and CO2-temperature-programmed 

desorption. The spent catalyst is characterised by scanning transmission electron 

microscopy, energy dispersive X-ray spectroscopy mapping, thermogravimetric 

analysis and dielectric properties. DRM activity test is carried-out to determine the 

influence of reactor configuration and dielectric materials on reactant processing and 

energy efficiency (EE). The reactor configurations include discharge gap, discharge 

length, volume discharge and catalyst volume are systematically studied to 

investigate the plasma-catalytic behaviour. The performance and regeneration of the 

prepared catalysts are tested in a catalytic-DBD reactor which depicts the CH4 and 

CO2 conversion 84 % and 85.5 %, respectively, while H2 and CO selectivity are 51 

% and 49.5 %, respectively (H2/CO=1.01) with EE = 0.13 mmol-kJ-1 for Ni/La2O3-

MgAl2O4 catalyst. The optimum process parameters were examined using multiple 

response surface methodology through a four-factors, five-level central composite 

design. The optimum values are feed flow rate = 18.8 mL min-1, feed ratio = 1.05, 

input power = 125.6 W and catalyst loading = 0.6 g. Finally, from the macroscopic 

kinetics, the apparent activation energies are calculated as 32.6 kJ mol-1and 35.2 kJ 

mol-1 for CH4 and CO2, respectively. The calculated results fitted-well with the 

experimental results with ±5 error. The catalytic-DBD reactor exhibits encouraging 

performance for DRM at larger a scale.  
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ABSTRAK 

Pembaharuan kering metana (DRM) melalui plasma penyahcasan rintangan 

dielektrik (DBD) adalah salah satu teknik yang tampak menjanjikan untuk menukar 

gas rumah hijau (GHGs) seperti metana (CH4) dan karbon dioksida (CO2) kepada gas 

sintesis (H2, CO) serta hidrokarbon yang lebih tinggi. Dalam kajian ini, sokongan 

mangkin berstruktur lamela dibantu campuran-matrik La2O3-MgAl2O4 bermuatan Ni 

telah disediakan dengan menggunakan kaedah ko-pemendakan terubahsuai diikuti 

dengan kaedah hidroterma dan kaedah pengisitepuan basah. Mangkin telah dicirikan 

oleh pembelauan sinar-X, mikroskopi elektron imbasan pancaran medan, mikroskopi 

elektron transmisi resolusi-tinggi, Brunauer-Emmett-Teller dengan nitrogen (BET), 

penurunan suhu berprogram dengan hidrogen dan penjerapan suhu teraturcara 

dengan CO2. Pasca-reaksi mangkin juga dicirikan oleh mikroskopi elektron transmisi 

imbasan, penyerakan tenaga sinar-X, analisis termogravimetri dan sifat 

dielektrik. Ujian aktiviti DRM telah dijalankan untuk menentukan pengaruh 

konfigurasi reaktor dan bahan dielektrik keatas pemprosesan dan kecekapan tenaga 

(EE) reaktan. Konfigurasi reaktor termasuk sela penyahcasan, panjang penyahcasan, 

isipadu penyahcasan dan isipadu mangkin telah dikaji secara sistematik untuk 

menyiasat kelakuan plasma bermangkin. Prestasi dan penjanaan semula mangkin 

yang disediakan telah diuji di dalam reaktor mangkin-DBD dimana menunjukkan 

penukaran CH4 dan CO2 masing-masing sebanyak 84% dan 85.5%, serta 

kememilihan H2 dan CO masing-masing sebanyak 51% dan 49.5% (H2/CO=1.01) 

dengan EE = 0.13 mmol-kJ-1 bagi mangkin Ni/La2O3-MgAl2O4.  Parameter proses 

optimum telah dikaji dengan menggunakan kaedah pelbagai respon permukaan 

melalui reka bentuk empat-faktor, lima-peringkat komposit pusat. Nilai optimum 

adalah jumlah kadar aliran masukan = 18.8 mL min-1, nisbah masukan = 1.05, kuasa 

input = 125.6 W dan muatan mangkin = 0.6 g. Akhir sekali, daripada kajian kinetik 

makroskopik, tenaga pengaktifan yang dikira bagi CH4 dan CO2 masing-masing 

sebanyak 32.6 kJ mol-1 dan 35.2 kJ mol-1. Keputusan yang dikira bersesuaian dengan 

keputusan eksperimen dengan ralat sebanyak ±5. Reaktor mangkin-DBD ini 

menunjukkan prestasi yang memberangsangkan untuk DRM pada skala besar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The escalation in energy demand and depletion of fossil fuels are two major 

challenges for sustainable development. The energy demand and global warming are 

alarming entities must be addressed on time; otherwise, the world will be facing huge 

energy crises and serious global warming issues. The global warming caused due to 

the emissions of Greenhouse Gases (GHGs) which effects climate change, disturbing 

human and aquatic life (Kennedy et al., 2009). Fossil fuels utilization is one of the 

major causes of emission of GHGs. The main contributors of GHGs are CH4 and 

CO2, with 16% and 76% share respectively (Lane, 2016; Parker et al., 2018). To 

address these two distinct threats, different approaches have been made to produce 

clean energy via utilization of GHGs (Covert et al., 2016; Liu et al., 2003). Over the 

last decade, researchers are taking key attention to reduce GHG emissions by 

utilizing them to produce energy for sustainable development. The serious concerns 

about energy crises have been predicted by researchers by 2035 (Duan et al., 2015b; 

OECD, 2015). Energy is considered one of the core concerns in developing regions 

like African countries and Asian countries. The utilization of GHGs to produce 

energy carriers is yet to commercialized due to serious limitations (Covert et al., 

2016; Lane, 2016).  

Currently the scientific community is utilizing the GHGs through different 

technologies to minimize the CO2 and CH4 concentration from atmosphere and 

produce energy, especially reforming technologies i.e., CO2 or dry reforming of 

methane (DRM), partial oxidation of methane (POM) (Song et al., 2017), oxidative 

coupling of methane (OCM) and photocatalytic conversion of methane and CO2 (Liu 
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et al., 2003; Tahir and Amin, 2013). One of the promising technique, which is 

getting much attention from the last decade is DRM (Equation 1.1) for the 

production of valuable fuels like syngas (H2, CO) and other HCs (Wang et al., 

2018b; Zhang and Verykios, 1994). DRM can be considered via three major 

approaches (i) thermal DRM and (ii) photo-catalytic DRM (iii) plasma DRM 

(Bromberg et al., 1998; Eliasson et al., 2000; Jean Marie and Iulian, 2001; Jiang et 

al., 2002). Plasma DRM is again sub-categorized into two major kinds (i) Thermal 

plasma (ii) Non-Thermal Plasma (NTP). The plasma is an ionized gas that can be 

generated by different methods including electric discharges depending upon their 

energy level, electron temperature and ionic density (Bromberg et al., 1998; Indarto 

et al., 2008; Neyts et al., 2015; Whitehead, 2016). 

In thermal plasmas, the temperature of gas molecules (Tg) and electron (Te) 

are in same range Te ≈ Tg, that is why thermal plasmas are also known as equilibrium 

plasmas (Boulos et al., 2016). Thermal plasma is being considered low-economical 

due to higher input energy, installation cost and difficult to handle due to high reactor 

temperature and controlled pressure (Toth et al., 2016). Thermal plasma is suitable 

for the production of liquids fuels, in gas phase processes, the high temperature can 

erode the high voltage (HV) electrode (Du et al., 2015). The thermal plasma 

possessing high energy electron having 10 eV with the density of almost 105e-m-3. 

The temperature is considerably high i.e. 5×103 to 5×104 K (Locke et al., 2006). 

Thermal plasma producing a higher yield of CO and H2 (Bromberg et al., 1998; Lee 

et al., 2010). Nevertheless, the consumption of high energy 10 to 20 MJ-kg-1 H2 and 

the power density 4 kW-L-1 are the main concerns for thermal plasma DRM process 

(Bromberg et al., 1998; Liu et al., 2010). 

NTP is considered as the most suitable technology for the DRM due to its 

non-thermal equilibrium properties, simple design and lower energy consumption 

(Eliasson et al., 2000; Lu et al., 2017). Among the NTPs, dielectric barrier discharge 

(DBD) is more promising for DRM due to its lower energy consumption, simple 

design and low installation cost (Paulmier and Fulcheri, 2005; Snoeckx and 

Bogaerts, 2017). Since, DBD plasma operates at room temperature and atmospheric 

pressure, easy to operate and feedstock versatility makes a more attractive approach 
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for DRM (Snoeckx et al., 2016b). DBD could generate high energetic species 

consists of electrons, neutrons, radicals and ions; that excite, ionize and dissociate 

CH4 and CO2 to final products (Eliasson et al., 2000; Kogelschatz, 2003; Li et al., 

2007). DBD can be constructed planer and cylindrical orientation using a dielectric 

material to separate by two electrodes, HV electrode and ground electrode creating a 

potential difference and accelerate electrons from anode to cathode which creates an 

electric field. The electrons dissociate the reactant gases and convert into products.   

Numerous studies have been undertaken to investigate DRM using DBD 

plasma at various experimental conditions (Aghamir et al., 2004; Chung et al., 2014; 

Krawczyk et al., 2014; Wang et al., 2009b) to convert CH4 and CO2 to valuable fuels 

like syngas and higher hydrocarbons (HCs). On the other hand, DBD plasma 

performance is dependent some of leading process parameters i.e., feed flow rate, 

feed molar ratio, input power, catalyst loading and reactor temperature (Neyts et al., 

2015; Usman et al., 2015; Xin et al., 2011; Yap et al., 2015). Although, DBD plasma 

has been successfully investigated for DRM application with an appreciable number 

of desired products, yet foremost concern is the power dissipation, low energy 

efficiency (EE) and carbon deposition due to methane cracking and Boudouard 

reactions (Equations 1.2 -1.3). The deposited carbon deactivates the active sites of 

the catalyst and sometimes leads to the reactor blockage. 

 

 

1

4 2 2 25CH +  CO 2 CO + 2 H     H  = 247 kJ mol  ( DRM ) −→ ℃  (1.1) 

-1

4  2 25 C
CH   C H       H 75 kJ mol  (Methane cracking)→ +  =  (1.2) 

1

2  252 CO  C   CO      H 172 kJ mol  (Boudouard reaction)−→ +  = −℃  (1.3) 

To improve the EE and inhibit the carbon formation problem, researchers 

introduced various catalyst systems to overcome the carbon formation and achieve 

higher stability in DRM (Brune et al., 2018). The majorly used catalyst are Ni-based 

due to cheaply available (Pakhare and Spivey, 2014). Another approach which is 

being practiced currently to synthesise a catalyst using transition and noble metals 

such as La, Ce, Pt, Rh, Ru, Pd on different supports such as Al2O3, SiO2, SBA, MgO, 
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MCM and TiO3 (Fan et al., 2011a; Guo et al., 2015b; Nair and Kaliaguine, 2016; Tu 

et al., 2011b; Zhu et al., 2008a). Transition and noble metals displayed high catalytic 

activity along with high resistant to coke deposition (Khani et al., 2016). However, 

transition and noble metals are expansive compared to conventional non-noble 

metals. Now by looking into elementary problem, it is required to synthesize a stable 

catalyst, which can exhibit high resistance to coke deposition and stability towards 

DRM activity in DBD plasma. The selection of the catalyst must be based on better 

physico-chemical properties and availability. Keeping in mind, Ni, Mg and Al are 

available abundantly in earth crust and Al having high surface area, while transition 

metal like La or Ce can be accommodated in a small amount as co-support to achieve 

the high stability (Li et al., 2017b). MgAl2O4 has been used for thermal-DRM 

previously and reported a good activity towards conversion and selectivity 

(Damyanova et al., 2012; Habibi et al., 2016b). MgAl2O4 easily can be modified 

using co-support to enhance its performance and more resistance to coke. MgAl2O4 

has been reported as strong basic support and it has not been used the DBD plasma 

DRM. It may be interesting to investigate MgAl2O4 incorporated with co-support to 

achieve the stability and coke resistance in DBD DRM.  

1.2 Problem Statement 

Although, recycling of greenhouse gases (CO2 and CH4) into valuable 

chemicals is an attractive approach to mitigate global warming, breaking stable 

molecules of CO2 and CH4 is a major challenge (Indarto et al., 2008; OECD, 2015; 

Song, 2002). Among the known technologies, NTP via DBD reactor is the most 

attractive approach for DRM due to the easy handling,  low installation cost and low 

temperature and pressure operations (Indarto et al., 2008; Jo et al., 2015; Nozaki et 

al., 2017; Zhou et al., 1998). However, low conversion, selectivity and EE have been 

reported in DBD plasma DRM and addition of rapid coke formation via Equation 1.2 

and 1.3. Due to the carbon deposition, the active site of catalyst are blocked which 

deactivate catalyst and conversion efficiency reduced to a very unacceptable 

situation (Pakhare and Spivey, 2014). Coke formation in DBD plasma DRM is the 
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critical problem identified by many researchers which can be overcome by 

introducing stable catalysts (Aw et al., 2015). The carbon formation and other 

reactions like reverse water gas shift (RWGS) (Equation 1.4) reaction, stream 

generation via DRM (Equation 1.5) made the syngas (H2/CO) ratio lower than unity. 

It is inappropriate for further utilisation for downstream processing for liquid fuels 

via Fischer-Tropsch (FT) synthesis (Maitlis and de Klerk, 2013).   

 

 

1

2 2 2 25 C
H  + CO   H O + CO        = -131 kJ mol-Û D o  (RWGS) (1.4) 

1

2 2 2 25 C
2H  + CO  2H O + C         -90 kJ mol-Û D =o  (steam generation) (1.5) 

Among the known catalysts, Ni-base catalysts are the most widely researched 

material due to low cost, availability and prolong stability. However, it has been 

observed lower conversion with lesser products selectivity in Ni-based catalyst 

(Hafez et al., 2015) due to the rapid carbon formation on the tip of Ni particles. The 

noble metals like Pt, Rh, Pd, Ru, are displaying high resistance towards coking but 

the cost is very high and nearly unacceptable for industrial utilisation (Doghachi et 

al., 2016). Rare earth metals such as La and Ce have high stability in thermal DRM. 

The Ni/Al2O3 and MgO has been used for DBD plasma DRM. Ni/Al2O3 exhibited 

excessive coke formation and Ni/MgO has low catalytic activity, although it resists 

to coking to some extent due to its basicity (Ganesh, 2013). Then MgAl2O4 has been 

synthesised to achieve high surface area and high basicity but the stability was still 

uncertain. The efficiency of Ni-based MgAl2O4 supported catalyst could be enhanced 

by modifying its structure with different rare earth metal oxides like La2O3 as co-

support. MgAl2O4 has been solely used in thermal-DRM and reported a better choice 

for high CO2 conversion (Zhao et al., 2013). However, up to date no modification of 

MgAl2O4 using La2O3 as co-support is not stated. Moreover, the preparation methods 

are also responsible for the major properties like surface area, metal dispersion, 

basicity, and stability of the catalyst (Muraleedharan and Kaliaguine, 2016).  

On the other hand, catalytic DBD plasma reactor is considered as low energy 

efficient system due to the loopholes in reactor design (Chung and Chang, 2016b). 
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The most commonly used catalytic DBD reactors are cylindrical fixed bed reactor. 

The specific design parameters such as discharge gap (Dgap), discharge length (DL, 

discharge volume (VD) have not been systematically studied for DBD plasma reactor. 

The reactor configuration study should have been studied exclusively, suggested by 

(Awadallah et al., 2014) which can enhance the EE of the DBD plasma reactor. 

Furthermore, the catalyst incorporation in the DBD reactor is also a challenging task 

during the calculation of gas hourly space velocity GHSV (h-1) along the VD 

(Montoro-Damas et al., 2015). The packing material may also influence the 

discharge chemistry of DBD plasma which is reported by Jo et al. (2013).  

Apart from catalyst incorporation in DBD plasma reactor, the effects of 

dielectric material (reactor tube) on DRM activity has not been systematically 

studied. Previous studies advocated that dielectric material has a substantial effect on 

the plasma chemistry (Ozkan et al., 2016a) and affected activity in plasma-based 

DRM process (Li et al., 2004b). Till date now there is no report published to 

examine dielectric material performance in DBD plasma DRM activity. Finally, the 

stability and the H2/CO ratio is one of the leading problems in DBD DRM to 

discourse. It is important to figure out the temperature effect in gas heating in DBD 

plasma to understand its effect on activation energy (Ea).  

1.3 Research Hypothesis 

The development of a new catalyst required to inhibit coke formation, strong 

thermal stability and enhance the products selectivity. It is hypothesized that DBD 

plasma reactor EE could be enhanced using a modified MgAl2O4 catalyst which has 

been identified as high basic nature catalyst and tolerant to carbon deposition (Habibi 

et al., 2016b). Recently, MgAl2O4 spinel with the high surface area and high basicity 

has been synthesized for DRM (Guo et al., 2004; Wei et al., 2018). However, the 

catalyst exhibited low stability without the addition of any active metals or co-

support. Addition of active metal improves the catalytic activity but stability is still a 

major challenge in plasma DRM processes (Messaoudi et al., 2018). 
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La2O3 has shown high stability in thermo-catalytic DRM (Charisiou et al., 

2016). The rare earth metal-oxides used in DRM displayed a significant resistant 

towards carbon formation ascribed to the strong basic nature and carbon-gasification 

(Li et al., 2017b; Zheng et al., 2015b). La2O3 has been employed as a major support 

in the DRM process owing to its strong basic nature and high metal dispersion 

capability. La2O3, as a mix-matrix support, can prevents the carbon deposition and 

prolongs catalyst stability owing to its ability to react with CO2 to form intermediate 

carbonate La2O2CO3 (Liu et al., 2016b; Zeng et al., 2017). The catalytic performance 

of Ni-impregnated MgAl2O4 may be improved by adding La2O3 as co-support. The 

Ni interaction with MgAl2O4 could be enhance by the combined effect of Al and Mg 

as well as subsequent assistance from La2O3 (Li et al., 1992). It is envisaged that the 

incorporation of La2O3 and MgAl2O4 as mixed-support can enhance the basicity of 

catalyst, resist Ni particles agglomeration and curtails carbon formation (Al-Fatesh et 

al., 2014; Li et al., 2017a). Therefore, it is appropriate to synthesize and examine the 

role of La2O3 as co-support in Ni-impregnated MgAl2O4 in a catalytic-DBD plasma 

DRM. Recycling or regeneration of the proposed catalyst is highly possible using 

oxygen and nitrogen as a reducing and purging agent. It may reduce the formed 

carbon filaments and carbonates to their original states (Lee et al., 2018). The 

preparation method of the catalyst has a significant influence on the 

structure/morphology and activity of the material. The materials are prepared using 

modified co-precipitation followed by hydrothermal method (Li et al., 2017b) shows 

better structure and stability.  

The reactor configuration can contribute in EE of the DBD reactor. The 

parameters like Dgap, DL and VD can play a significant role in the performance of the 

reactor. As these parameters are associated with gas processing capacity including 

specific input energy (SIE) and EE of DBD reactor (Montoro-Damas et al., 2015). 

The dielectric material can also play a significant role in DBD plasma performance. 

It is evident the performance of a DBD reactor is related to the characteristics of the 

dielectric materials. The materials having high dielectric constant and more resistant 

to high temperature are considered more suitable for a DBD reactor to hinder power 

dissipation (Ozkan et al., 2016c). The properties of dielectric material i.e., dielectric 

constant, morphology and temperature tolerance are the key parameters to consider. 
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By incorporating the proposed catalyst in a systematic studied DBD reactor, the 

higher EE, higher H2/CO ratio and stability is highly expected. The synergistic effect 

of the plasma-catalysis is vastly targeted in the proposed study.  

1.4 Research Objectives 

Considering the identified major problems in catalytic-DBD DRM, the main 

objectives of the present study are follows: 

i. To synthesise and characterise of Ni loaded La2O3-MgAl2O4 nano-catalyst for 

DBD plasma DRM. 

ii. To investigate the reactor configuration and dielectric material effect in DBD 

plasma reactor for DRM. 

iii. To investigate the catalytic activity, selectivity and regeneration capability of 

Ni/La2O3-MgAl2O4 catalyst for DBD plasma DRM. 

iv. To optimise process parameter of catalytic-DBD plasma DRM using multiple 

response surface methodology. 

v. To examine the kinetic parameters of catalytic-DBD plasma DRM and fluid 

modelling for plasma discharge characteristics. 

1.5 Scope of the Study 

The Ni/La2O3-MgAl2O4 nano-composite is prepared by modified co-

precipitation method, followed by hydrothermal process. La2O3/MgAl2O4 is prepared 

by microemulsion method then impregnated Ni over the mixed-matrix support and 

calcined. For the sake of comparison, the γ-Al2O3, 10% Ni/γ-Al2O3, 10% Ni/MgO, 

10% Ni/γ-Al2O3-MgO, MgAl2O4 and 10% Ni/MgAl2O4 prepared and tested in DBD 

plasma DRM. Ni loading (5-20 %) was investigated to evaluate the plasma-catalytic 

activity. Detailed characterisation was carried-out to check the physico-chemical 
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properties of the synthesised catalyst. The prepared samples will be characterized by 

nitrogen adsorption-desorption (BET), X-ray diffraction (XRD), Raman spectra, 

Fourier transform infrared spectroscopy (FTIR), H2-temperature programmed 

reduction (H2-TPR) and CO2-temperature programmed desorption (CO2-TPD), field 

emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray 

spectroscopy (EDX), transmission electron microscopy (TEM), thermogravimetric 

analysis (TGA) and dielectric properties. The dielectric properties of the prepared 

samples were analysed to know the dielectric constant of the catalyst. The DBD 

plasma reactor is used for DRM to analyse the catalytic activity of the prepared 

catalyst.  

In reactor configuration, Dgap, DL, VD and catalyst packing were investigated 

for DBD reactor using prepared samples. The performance of the two different 

dielectric materials (quartz and alumina) were examined in DBD plasma for different 

parameters such as GHSV, SIE, feed ratio, and VD. The reactor configuration such as 

Dgap, and DL are directly used for the calculation of discharge volume. VD has a 

direct relation with GHSV and EE. The prepared samples such as γ-Al2O3, Ni/γ-

Al2O3, Ni/MgO, Ni/γ-Al2O3-MgO, MgAl2O4, Ni/MgAl2O4 and Ni/La2O3-MgAl2O4 

respectively. Various Ni loadings were tested to check the effect on the DBD-DRM. 

The process parameters optimization was carried out using RSM to investigate the 

effect of process variables such as flow rate, feed ratio, input power and catalyst 

loading the conversion of CH4 and CO2 as well as the selectivity of products and EE 

of DBD plasma DRM. The kinetic study was carried out using Power-law model to 

investigate the rate constants (k) and rate of conversion (X) using Ni/La2O3-

MgAl2O4. The COMSOL Multiphysics software was used to investigate the electric 

properties of Argon-based DBD reactor.  

1.6 Significance of the Research 

The synthesis of high basic Ni/La2O3-MgAl2O4 shows high catalytic activity and 

stability in the catalytic-DBD plasma DRM. The regeneration capability of the 

synthesized material is considered a key step towards the stability of the DBD 



10 

plasma DRM process. The H2/CO is unity in the presented study, a substantial 

prospective for further utilization in FT synthesis for liquid fuel production. The 

systematic reactor configuration (DBD reactor) study is investigated to oversee the 

contribution in the EE of DBD plasma. The reactor configuration study shows the EE 

can be improved via optimizing the geometric parameters. The kinetic study based 

on reactor configuration is proposed using Power-law model. The plasma 

characteristics of the Ar-DBD is presented using fluid modelling approach for 

various dielectric constant and Dgap. 

1.7 Organization of the Study 

The organization of the study is composed of 8 Chapters. The research 

background, research problem, research hypothesis, scope and significance of the 

study is presented in Chapter 1. The extensive literature review on DRM process, 

catalytic-DBD plasma reactor study, catalyst systems and literature on kinetic and 

fluid modelling study is drafted in Chapter 2. Chapter 3 provides the research 

methodology adopted in this study: material synthesis, characterization, reactor 

setup, catalytic activity calculations, process optimization and kinetic study basic 

descriptions. Chapter 4 deals with the detail characterization of the synthesized 

material using various techniques. The DBD reactor design and performance of the 

material is presented in Chapter 5. Process optimization using RSM is provided in 

Chapter 6. Chapter 7 is divided into two parts: (i) The macroscopic kinetic study of 

catalytic-DBD plasma DRM (ii) The fluid modelling study of Ar-based DBD. The 

conclusion and recommendations of the study is provided in Chapter 8. 
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