
NUMERICAL SIMULATION ON FOAM STABILITY AND ELECTROKINETIC 

POTENTIAL DURING FOAM INJECTION

AMNI HASLINDA BINTI ALPANDI

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Philosophy

School of Chemical and Energy Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia

SEPTEMBER 2019



DEDICATION

This thesis is dedicated to my parents, family, teammates and 

all the beloved ummah.

iii



ACKNOWLEDGEMENT

In the name of Allah, The Beneficent, The Merciful.

First and foremost, all praises to The Almighty as for His mercy and grace, I 

was able to complete my master studies.

I would like to seize this opportunity to thank all parties and extend my 

heartfelt gratitude to the following individuals who have made my research studies as 

milestones for me to nurture my knowledge.

In particular, I wish to express my sincere appreciation to my main supervisor, 

Associate Professor Ir. Dr. Mohd Zaidi Jaafar for his encouragement, guidance and 

advice. I am also very thankful to my co-supervisor, Dr Mohd Akhmal Muhamad 

Sidek and Encik Azmi Mohd Arshad for their guidance, advices and motivation. 

Without their continued support and interest, this thesis would not have been the same 

as presented here.

My sincere appreciation also extends to my parents, siblings and family for 

their endless support, guidance and prayers throughout my studies. A special thank is 

dedicated to all my beloved teammates who always provide me with moral support 

and remind me about the purpose of life. Last but not least, a huge gratitude also 

dedicated to all my fellow postgraduate student and others who have provided 

assistance at various occasions.

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. Unfortunately, it is not possible to list all of them in this limited space. Again, 

thanks to everyone who helped me either directly or indirectly in completing this 

research studies. May Allah reward all your goodness in this world and hereafter.

iv



ABSTRACT

Numerical models in petroleum reservoir simulation are valuable tools to 

visualize the pattern of reservoir fluid flow and to estimate production oil. Modelling 

enhanced oil recovery (EOR) processes requires a complex mathematical model to 

integrate multiphase flow and electrokinetic phenomena. There have been limited 

studies done in combining foam stability and electrokinetics by using simulation tools. 

This study aims to build and integrate a numerical model of foam progression and 

electrokinetic behaviour in foam injection process. This model was built using 

COMSOL Multiphysics 5.3 software to investigate fluid flow profiles in free liquid 

films stabilised by anionic surfactant, simulate foam progression and electrokinetic 

measurement with reasonable accuracy. Validation of the numerical model was done 

using finite element method. Several recent lab and simulation works were compared 

with this numerical simulation result to fill the gap in this research area. Hence, the 

relationship between stability of foam and the associated streaming potential signals 

was obtained. The finding shows that the algorithms suitable for this foam injection 

case are continuity equation, conservation of species transport, Navier Stokes 

equations and electric current conservation. Based on the comparison, this simulation 

study has high level of similarity with previous experimental and simulation works. 

Therefore, the effectiveness of the EOR in terms of foam stability can be monitored in 

real time.
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ABSTRAK

Model berangka dalam penyelakuan reservoir petroleum ialah satu alat yang 

berharga bagi mencerap corak aliran bendalir reservoir dan menganggar pengeluaran 

minyak. Pemodelan proses perolehan minyak tertingkat (EOR) memerlukan model 

matematik yang kompleks bagi menyepadukan aliran berbilang fasa dan fenomena 

elektrokinetik. Tidak banyak kajian yang dilakukan dalam menggabungkan kestabilan 

busa dan elektrokinetik menggunakan alat penyelakuan. Kajian ini bertujuan untuk 

membina dan menyepadukan model berangka pergerakan busa dan tingkah laku 

elektrokinetik dalam proses suntikan busa. Model ini dibina menggunakan perisian 

COMSOL Multiphysics 5.3 yang boleh mengkaji profil aliran bendalir dalam filem 

cecair bebas yang disokong oleh surfaktan anionik, menyelaku pergerakan busa dan 

pengukuran elektrokinetik dengan ketepatan yang munasabah. Pengesahan model 

berangka dilaksana menggunakan kaedah elemen finite. Beberapa kerja makmal dan 

penyelakuan terkini dibandingkan dengan hasil penyelakuan berangka ini bagi 

memenuhi jurang dalam bidang penyelidikan terbabit. Oleh itu, hubungan antara 

kestabilan busa dengan isyarat potensi aliran yang berkaitan berjaya diperoleh. 

Dapatan menunjukkan bahawa algoritma yang sesuai untuk kes suntikan busa ialah 

persamaan selanjar, pemuliharaan pengangkutan spesies, persamaan Navier Stokes 

dan pemuliharaan arus elektrik. Berdasarkan perbandingan, kajian penyelakuan ini 

mempunyai tahap kesamaan yang tinggi terhadap hasil uji kaji dan penyelakuan 

sebelumnya. Oleh itu, keberkesanan EOR dalam bentuk kestabilan busa boleh 

dipantau dalam masa nyata.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

In 1958, foam injection was first introduced as an enhanced oil recovery (EOR) 

method and foam was able to act as an agent for gas blocking. In EOR process, foam 

has shown favourable characteristics of flow including mobility, flow diversion to 

region of low permeability and selective blocking of thief zones (Farajzadeh et al.,

2012).

A dispersion of gas in a continuous liquid phase is known as foam. However, 

the gas phase is discontinuously organized in gas bubbles. Besides that, with the 

presence of surfactant, flowing gas in porous medium causes the generation of foam 

(Simjoo et al., 2012). The surfactant solution in a liquid phase acts as a stabilizer when 

the gas breaks into bubbles.

After a period of hydrocarbon production, pressure in the reservoir will be 

depleted and this situation might lead to the use of EOR as a solution (Tunio and 

Chandio, 2012). Foam Assisted Water Alternating Gas (FAWAG) has been applied 

as one of the EOR techniques because of the capability to maximize the rate of 

hydrocarbon production in the production tubing, reduce gas oil ratio and improve 

sweep efficiency especially during gas injection. Moreover, FAWAG also becomes a 

new method for the improvement of well flow. By delaying early gas breakthrough, 

FAWAG provides better control of mobility for gas flow (Shabib-asl et al., 2014).

Several researchers have proposed to use electrical current for EOR. In 

producing reservoir, passing of electrical current between electrodes is a process in 

electrical enhanced oil recovery. Alternating current (AC) electricity has been 

proposed in order to heat oil recovery which causes decreasing viscosity of oil and



enhanced recovery (Wittle, Hill and Chilingar, 2011). Unfortunately, AC current face 

some problems such as corrosion of electrodes, losses of inductive energy and shallow 

penetration missing from the electrodes. In the application of direct current (DC) EOR, 

these problems do not occur. Wittle et al. (2011) suggested to use DC current with 

high density to drive oil into wells from reservoirs.

When tangential electric field interrelates with a charged surface immersed in 

electrolyte solution, a phenomena called electrokinetic has been discovered. When a 

liquid is forced through the system, the movement of part of the Electric Double Layer 

(EDL) from the charged pore surfaces is defined as the effects in a porous system by 

the electrokinetic. The movement of liquid through capillaries brings a net charge 

which is a mobile part known as EDL and this causes the increase of the streaming 

current. The potential at the shear surface between the charged surface and the 

electrolyte solution is one of the factors affecting the electrokinetic behaviour. This 

potential is known as zeta potential or electrokinetic (Omar et al., 2013).

A thin charged double layer exists in reservoir rocks at the interface between 

the water in the pores and the rock matrix. Usually, the matrix surface is negatively 

charged. Electric current is produced when the water moves under a pressure gradient. 

Omar et al. (2013) stated that the source of the streaming potential is this conductive 

current. By providing direct information on the charged solid and the liquid interface, 

electrokinetic technique becomes a valuable tool for monitoring processes in EOR 

applications.

In order to control mobility ratio and improve the volumetric sweep efficiency, 

foam is widely used in EOR displacement process. Stability of the foam film is a factor 

that affects the process efficiency of foam displacement. However, this direct 

observation of foam stability in laboratory using physical observation is not possible 

to be applied in reservoir. Therefore, Omar et al. (2013) proposed a better alternative 

which is using the electrokinetic potential to measure indirect assessment of foam 

stability. Previously, a detecting tool for the encroachment of water towards a 

production well has been recommended using the measurement of electrokinetic 

potential (Jackson, 2010). By installing the electrodes downhole, the dynamics of
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electrically charged fluid in porous media such as the formation and injected fluid can 

be measured (Mohd et al., 2017).

1.2 Statement of Problem

Mathematical models in petroleum reservoir simulation are valuable tools in 

order to visualize the pattern of reservoir fluid flow and to estimate the production of 

oil. Electrokinetic study in the EOR requires a complex mathematical modelling to 

integrate multiphase flow and process of the electrokinetic transport.

Recent laboratory experiment by Omar (2017) has been conducted to 

investigate the relationship between foam stability and electrokinetic phenomena. 

However, the experimental result has not been validated by any numerical modelling. 

In terms of modelling, many studies have looked at the progression of foam in 

reservoirs and a few numerical studies also have been conducted to predict 

electrokinetic potential variation in the water flooding process. Nevertheless, there are 

limited studies that combine foam stability and electrokinetic in the reservoir. 

Therefore, a recent laboratory and few simulation works were compared with this 

simulation work to fill the gap in this research area.

Moreover, most of the previous experiments and simulations conducted by 

other researchers related to electrokinetic phenomena during foam system involved an 

electro-osmosis process. However, there are limited studies that combine foam 

stability and streaming potential signal. Therefore, this simulation study focuses on 

streaming potential to fill the gap in this research area.
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1.3 Objectives of Study

Followings are the objectives proposed for this study:

(a) To develop a numerical models for foam progression and electrokinetic 

behaviour in foam injection process.

(b) To validate the numerical model by using Finite Element Method (FEM).

(c) To compare simulation result with previous experimental work in relation to 

foam stability and associated streaming signals in foam injection process.

1.4 Scopes of Study

The study area of this research is focusing on the fundamental of governing 

equation of electrokinetic EOR, mass transport model of electrokinetic, coupling of 

electrical and pressure gradients, the solution strategy used and the implementation of 

numerical model for the simulation process. In addition, governing equation of fluid 

dynamic such as foam, modelling of the multiphase flow in porous media, fundamental 

studies on foam films properties and characteristics, parameters affecting foam 

stability together with the rupture of films between bubbles under dynamic condition 

will also be investigated.

COMSOL Multiphysics 5.3 was used to develop a model and run the 

simulation in order to investigate the correlation between stability of foam and 

streaming potential signals in foam injection process. The COMSOL software used 

were available for academic purposed. The numerical model of electrokinetic and 

foam stability was validated by using FEM. Therefore, the result obtained from this 

numerical simulation was compared with the outcome from the experimental works.
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1.5 Significance of the Study

This research look into monitoring the changes in behaviour of foam during 

foam injection process which contributes to the changes of streaming potential signals. 

From this research, parameters affecting the stability of foam in foam injection process 

have also been identified.

Based on the findings from this simulation study, the application can be 

implemented in the real field which can give values to the oil and gas industry. A 

predictive numerical model of foam injection process is important for efficient process 

design and timely project evaluation. In addition, monitoring foam progression in EOR 

is necessary to ensure the process is effective or not. Extensive field application of 

foam in EOR requires appropriate project design, careful evaluation of reservoir 

candidates and process optimization to ensure the project success, both economically 

and technically.
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