
i 
 

ZINC VANADIUM OXIDE COUPLED CARBON NITRIDE NANOCOMPOSITE 

FOR PHOTOCATALYTIC CARBON DIOXIDE REDUCTION TO METHANOL 

 

 

 

 

 

ABDULLAH SALEM MOHAMMED BAFAQEER 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy in Chemical Engineering 

 

 

 

 

 

School of Chemical and Energy Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

SEPTEMBER 2019 

 



iii 

DEDICATION 

 

 

 

 

 

 

 

 

 

To my father, mother and family members for their support and sacrifices 

 

  



iv 

ACKNOWLEDGEMENT 

I would like to take this opportunity to express my gratitude to Allah S.W.T 

for His endless mercies, blessings and guidance from birth now and forever. 

Firstly, I would love to express my sincere gratitude to my supervisor Dr. 

Muhammad Tahir for his continuous support throughout my research, for his patience, 

motivation, enthusiasm, wealth of knowledge and experience. His guidance helped me 

a lot during my research and the writing of this dissertation. It is a great honor working 

as your student during my research. I would also like to appreciate my co-supervisor 

Prof. Dr. Nor Aishah Saidina Amin for her guidance and advices throughout my 

research. Aside that, I express my sincere appreciation to the Chemical Reaction 

Engineering Group (CREG) members and other UTM friends for their support and 

valuable inputs regarding this research. 

Last but not least, I owe great thanks to my parents, brothers, sisters, wife and 

friends that supported me all the way despite the distance. No matter what decision I 

made, my family was always there for supporting me and pushing me forward and for 

that no thanks can express my gratitude. 

  



v 

ABSTRACT 

Photocatalytic reduction of carbon dioxide (CO2) with water (H2O) into solar 

fuels is considered as a promising strategy to simultaneously address the global energy 

and environmental issues. The main objective of this study was to design and fabricate 

photoreactor system and to synthesize Z-scheme assembly of reduced graphene oxide 

(RGO) and protonated carbon nitride (pCN) based zinc vanadium oxide (ZnV2O6) 

nanocomposite for selective photoreduction of CO2 to solar fuels.  The pure ZnV2O6, 

ZnV2O6/RGO, ZnV2O6/pCN and ZnV2O6/RGO/pCN nanocomposites were 

synthesized by a single step solvothermal method. The performance of nanocomposite 

catalysts was investigated in a liquid and gas phase photocatalytic systems under UV 

and visible light irradiations. The most effective catalyst in liquid phase system was 

ZnV2O6/RGO/pCN which gave a maximum methanol yield of 3726.7 μmol g-cat-1 

using photoreactor without reflector and 5207.2 μmol g-cat-1 using photoreactor with 

reflector. Performance comparison revealed 1.4 times higher yield rate in photoreactor 

with reflector compared to photoreactor without reflector. Besides, weight percent 

ratio, effect of time and stability contributed significantly to enhance reactor 

performances. Using gas phase system, ZnV2O6/RGO/pCN nanocomposite 

demonstrated excellent photoactivity in the reduction of CO2 into carbon monoxide 

(CO), hydrogen (H2), methane (CH4) and methanol (CH3OH) under visible light 

irradiation. The CO evolution rate as a main product over ZnV2O6/RGO/pCN 

nanocomposite of 3756 μmol g-cat-1 was obtained. The quantum efficiency of 14.2 % 

was achieved for CH3OH production in a photoreactor with reflector, followed by 10.4 

% and 0.25 % in photoreactor without reflector and fixed-bed photoreactor, 

respectively under visible light irradiation. Finally, Langmuir-Hinshelwood kinetic 

model was developed to investigate adsorption behaviors and photocatalytic oxidation 

and reduction process. In conclusion, solar photoreactor with reflector and modified 

ZnV2O6 nanocatalysts could make markedly higher CO2 reduction to fuels. 
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ABSTRAK 

Penurunan ber fotomangkin karbon dioksida (CO2) bersama air (H2O) kepada 

bahan api solar dianggap sebagai strategi yang baik untuk menangani isu-isu tenaga 

dan alam sekitar global secara serentak. Objektif utama kajian ini adalah untuk mereka 

bentuk dan membina sistem fotoreaktor dan untuk mensintesis pemasangan skema Z 

grafin oksida terturun (RGO) dan nanokomposit zink vanadium oksida (ZnV2O6) 

berasaskan karbon nitrida berproton (pCN) untuk pemilihan fotopenurunan selektif 

CO2 kepada bahan api solar.  Nanokomposit tulen ZnV2O6, ZnV2O6/RGO, 

ZnV2O6/pCN dan ZnV2O6/RGO/pCN telah disintesis dengan kaedah solvoterma 

langkah tunggal. Prestasi mangkin nanokomposit telah dikaji di dalam sistem 

fotomangkin fasa cecair dan fasa gas di bawah penyinaran UV dan cahaya nampak. 

Mangkin paling berkesan di dalam sistem fasa cecair adalah ZnV2O6/RGO/pCN yang 

memberikan hasil metanol maksimum sebanyak 3726.7 μmol g-cat-1 menggunakan 

fotoreaktor tanpa pemantul (reflektor) dan 5207.2 μmol g-cat-1 menggunakan 

fotoreaktor dengan pemantul. Perbandingan prestasi mendedahkan kadar hasil 1.4 kali 

lebih tinggi di dalam fotoreaktor dengan pemantul berbanding fotoreaktor tanpa 

pemantul. Selain itu, nisbah peratus berat, kesan masa dan kestabilan menyumbang 

kepada peningkatan prestasi reaktor yang ketara. Menggunakan sistem fasa gas, 

nanokomposit ZnV2O6/RGO/pCN menunjukkan aktiviti foto yang cemerlang dalam 

penurunan CO2 kepada karbon monoksida (CO), hidrogen (H2), metana (CH4) dan 

metanol CH3OH di bawah penyinaran cahaya nampak. Kadar pembebasan CO sebagai 

produk utama bagi nanokomposit ZnV2O6/RGO/pCN sebanyak 3756 μmol g-cat-1 

telah diperoleh. Kecekapan kuantum sebanyak 14.2% telah dicapai untuk penghasilan 

CH3OH di dalam fotoreaktor dengan pemantul, diikuti dengan 10.4% dan 0.25% di 

dalam fotoreaktor tanpa pemantul dan fotoreaktor lapisan tetap, masing-masing di 

bawah penyinaran cahaya nampak. Akhir sekali, model kinetik Langmuir-

Hinshelwood telah dibangunkan untuk menyiasat kelakuan penjerapan dan proses 

pengoksidaan dan penurunan fotomangkin. Kesimpulannya, fotoreaktor solar dengan 

pemantul dan nanomangkin ZnV2O6 terubahsuai boleh melakukan penurunan CO2 

kepada bahan api yang ketara lebih tinggi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Climate change because of global warming arising from the emission of 

greenhouse gas carbon dioxide (CO2) poses a severe threat to our future [1, 2]. 

Combustion of fossil fuel is the main source of greenhouse gas emission especially 

CO2, which ultimately leads to global warming [3]. Furthermore, greenhouse gases 

contribute many negative influences such as loss in biodiversity, occurrence of acid 

rain and increase in sea level [4]. Exploring new energy resources are inevitable to 

address shortage in fossil fuels supply, continuous increase in energy demand and 

pressing environmental issues [5]. Recently, many efforts were endorsed to decrease 

CO2 emission through pre or post combustions and also capturing and sequestration. 

However, these processes are energy intensive, thus uneconomical [6].  

Using easily available and renewable carbon resource like CO2 for 

improvement of carbon-based fuels is imperative for the sustainability, since CO2 is 

totally abundant, cheap and green as well as a renewable feedstock [7]. During the last 

decade, different types of technologies were investigated for CO2 reforming to carbon-

based fuels namely, plasma reforming, thermal reforming and photoreduction [8]. 

However, the biggest obstacle for establishing industrial processes based on CO2 is its 

low energy level. CO2 is a stable molecule that requires high energy to convert it into 

fuels.  Therefore, technologies pertinent to carbon management, which not only 

alleviate global temperature, but also meet increasing energy demands economically, 

are high in the priority list [9]. Recently, photocatalytic CO2 reduction has gained 

significant importance toward production of solar fuels like CH3OH, CO and CH4 [10-

12]. The phototechnology has high potential for reducing CO2 emission and partly 

overcoming energy crises [13, 14]. Therefore, the photoreduction of CO2 utilizing 
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visible light illuminations could be a potential pathway for the sustainability of the 

society. 

1.2 Photocatalytic Reduction of Carbon Dioxide 

Photocatalytic reduction of CO2 is one of the most promising solutions to both 

global warming and energy crises, since CO2 can be reduced to solar fuels at relatively 

low temperature and atmospheric pressure [15, 16].  In recent innovations, the 

ubiquitous photocatalysis has gained increasing attention as it can operate at normal 

operating conditions.  During photocatalytic reduction of CO2 to solar fuels, energy 

requirement could be provided using sunlight which is a green source of energy.  In 

this technology, stability of catalyst and its performance is affirmed because of mild 

operating conditions.  The photoreduction of CO2 by using water (H2O) as reductant 

are stated in Equations (1.1) - (1.2). 

hv,catalyst
2 2 3 2

3
CO + 2H O CH OH+ O

2
⎯⎯⎯⎯→

 

(1.1) 

hv,catalyst

4 22 2

5

2
2 + 2H O CO CH + OCO +⎯⎯⎯⎯→

 

(1.2) 

 

When CO2 reacts with H2O in a three phase heterogeneous slurry system (gas, 

liquid and solid), CH3OH prevailed during photocatalytic CO2 reduction with H2O in 

a slurry system as explained in Equation (1.1). Using two phase heterogeneous system 

(gas and solid), CO and CH4 are produced as explained in Equation (1.2). Equation 

(1.1) - (1.2) revealed renewable fuels such as CH3OH, CO and CH4 can be produced 

in a single step.  Hence, these reactions affirmed phototechnology as the most 

attractive and a future hope for mitigation of greenhouse gas with production of green 

fuels for sustainable development [14]. 



 

3 

Among various semiconductors, the focus has been on graphitic carbon nitride 

(g-C3N4) as a photocatalyst. g-C3N4 has been researched excessively over the past 

decades due to its encouraging advantages including elemental abundance, high 

chemical and thermal stability, appropriate band gap energy and eco-friendly nature 

[17]. However, the performance of g-C3N4 is still restricted because of its high 

recombination rate of photo-produced electron and hole pairs [18-21]. The efficiency 

of g-C3N4 can be improved by exfoliation and functionalization. Several efforts were 

made to promote the efficiency of g-C3N4 like doping with metal and non-metal 

elements [22], engineering approach [23] and coupling with other semiconductors [24-

27]. RGO with two-dimensional structure is one of the most promising 

mediator/modifier due to its excellent electron mobility and higher light absorption 

[28, 29]. Modification of g-C3N4 with RGO has exhibited considerable progress due 

to it promotes separation of charges. Thus, numerous research efforts were made to 

improve g-C3N4 efficiency such as RGO/protonated g-C3N4 [30], RGO/g-C3N4 [31], 

RGO/g-C3N4 [32] and g-C3N4/GO [33]. Therefore, it is appropriate to develop g-

C3N4/RGO based semiconductors for enhanced photocatalytic CO2 reduction 

applications under solar energy. 

In the current development, ternary nanostructures like nanoplates, nanosheets, 

microspheres and nanorods have gained much attention and exhibited magnificent 

performances in photo-induced CO2 reduction and other energy applications [34-36]. 

Moreover, the construction of Z-scheme photo-induced system has received much 

attention because of its ideal effectiveness in improving the photo-induced efficiency 

[37]. Therefore, developing ternary zinc-vanadium oxide nanostructures could 

enhance both photoactivity and selectivity. Recently, zinc-vanadium oxide (ZnV2O4) 

has gained attention because of its interesting structural changes at low temperatures 

[38]. Different nanostructures of ZnV2O4 have been reported like hollow spheres, 

clewlike hollow structures, nanosheets, and glomerulus nano/microspheres for various 

applications [39-41]. However, structured ZnVxOy based photo-catalyst has never 

been reported for photo-induced CO2 reduction application.  

Therefore, it is appropriate to explore ternary ZnV2O6 semiconductor for 

photocatalytic CO2 reduction applications under solar energy. Combining 2D ZnV2O6 
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nanosheets with rGO/g-C3N4 composite would develop indirect Z-scheme 

heterojunction which may not only increase charges separation performance but also 

provides good redox potential for selective CO2 reduction under visible light. Thus, it 

is extremely desirable to construct g-C3N4 modified RGO/ZnV2O6 composite to 

improve photo-induced conversion of CO2 into fuels under visible light illuminations. 

During the last decade, optical fiber reactors have been under investigation for 

photoreduction of CO2. The optical fiber reactors fall in the category of efficient 

photocatalytic reactors. These reactors have been explored for photocatalytic reduction 

of CO2, since the exposed surface area to light ratio are larger, delivering light 

efficiently and uniformly throughout the reactor [42, 43]. However, several 

disadvantages such as lower adhesion strength and relatively low surface area limited 

their applications [44, 45].  

Among the photocatalytic reactors, the solar photoreactor with large 

illuminated surface area and efficient light utilization/distribution over the catalyst 

surface are considerably effective for photocatalytic CO2 reduction applications. 

Basically, the solar photo-reactors are the most frequently utilized and involve three 

phase system where the catalyst bed is in a fluidized form and agitated to increase mass 

transfer between catalyst and reactants, thus providing high surface area to be 

illuminated [46]. In addition, higher light distribution and harvesting over the catalyst 

surface would also be possible utilizing reflector. Therefore, solar photoreactor with 

reflector could make higher CO2 reduction to solar fuels with higher selectivity. 

1.3 Problem Statement and Research Hypothesis 

Conversion of CO2 to solar fuels provides alternative ways for monitoring 

global warming and energy crises. The main challenges ahead in this field are 

described as below: 

(a) Thermal conversion of CO2 to solar fuels is a two-step process which required 

higher input energy. Therefore, the single step CO2 reduction to hydrocarbon 
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fuels is possible through photo-technology process. Photoreduction of CO2 

with H2O would be possible at normal temperature and pressure using solar 

energy. 

(b) Although, photoreduction of CO2 to fuels through photocatalytic reductions 

have several advantages, yet photocatalysts under investigations are inefficient 

to produce solar fuels with sufficient yield rates and selectivity. Among 

semiconductor materials, g-C3N4 is widely investigated because of abundantly 

availability, comparatively cheap and numerous other advantageous. However, 

it has lower light absorption efficiency, trivial photoactivity and selectivity for 

photocatalytic CO2 reduction to solar fuels.  Thus, photocatalytic efficiency of 

g-C3N4 can further be improved by combining with other semiconductor 

materials.  

(c) Novel semiconductor ZnV2O6 would be the best candidate to be combined with 

g-C3N4 because of sufficient ECB and EVB potential for the conversion of CO2 

to fuels. ZnV2O6 has been investigated intensively owing to their unique 

physical and chemical properties including efficiently utilize the visible region 

of the solar spectrum owing to narrow band gap. However, it has never been 

reported for photoreduction of CO2 to solar fuels under visible light irradiation. 

Besides, introduction of RGO onto the both semiconductors will provide Z-

scheme photocatalytic system that can promote the photocatalytic conversion 

of CO2 to fuel production to the ultimate point. 

(d) Existing photoreactors have lower quantum efficiency because of inefficient 

harvesting and distribution of light irradiation over the catalyst surface. In 

addition, such types of reactors have lower exposed surface area, lower catalyst 

loading, and ineffective adsorption-desorption process and less mass transfer 

over the catalyst surface, resulting in lower yield rate and selectivity. 

Therefore, solar photoreactor will be productive to provide higher illuminated 

active surface area, higher adsorption-desorption and efficient mass transfer 

toward catalyst surface. Higher light distribution and harvesting over the 

catalyst surface would also be possible utilizing reflector, ultimately 

stimulating higher quantum efficiency toward efficient CO2 reduction to 

selective solar fuels. 
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1.4 Research Objectives 

The aim of this research is to design a solar photoreactor with reflector having 

cooling system and capable of enhancing CO2 reduction and yield rates.  Next novel 

nanocatalysts and process operating parameters are deliberated to maximize CO2 

reduction efficiency. The specific objectives of the research are: 

(a) To synthesize and characterize Z-scheme rGO and g-C3N4 based ZnV2O6 

nanocatalysts for solar energy applications; 

(b) To test the performance of nanocatalysts for selective CO2 photoreduction to 

solar fuels; 

(c) To investigate and compare the performance of photoreactors for selective 

photocatalytic CO2 conversion to solar fuels under UV and visible light 

irradiations; 

(d) To determine kinetic and reaction rate parameters for understanding the role of 

nanocatalysts toward optimization of CO2 reduction process. 

 

1.5 Scope of Study 

The scopes of this study are focused on resolving some of the fundamental 

problems related to lower CO2 reduction efficiency and selectivity.  In this perspective, 

synthesis and characterization of various nanocatalysts, reaction mechanisms of CO2 

reduction, oxidative-reductive model development and quantum efficiency analysis 

have been deliberated. Furthermore, the design of photoreactor is limited to the 

fabricating of solar photoreactor with reflector to maximize yield rates and products 

selectivity.  The CO2 reduction efficiency is related to maximize yield rates of desired 

products.  Therefore, the specific research scope of this study is as follows: 

(a) Novel ZnV2O6 nanosheets, ZnV2O6/g-C3N4 nanosheets, RGO combined 

ZnV2O6 nanosheets and Z-scheme ZnV2O6/RGO/g-C3N4 nanosheets 

photocatalysts are synthesized using one-step solvothermal method to 



 

7 

investigate the route of CO2 photo-reduction to solar fuels. Nanocatalysts 

characterization are conducted using XRD, BET, FESEM, EDX, HRTEM, 

XPS, UV-Visible, RAMAN and PL spectroscopy in order to investigate the 

phase and crystal structure, surface morphology and mesoporosity, surface area 

and pore size distribution, metals transitions states and optical properties of 

catalysts. 

(b) The role of nanocatalysts for photocatalytic reduction of CO2 to solar fuels was 

firstly explored using solar photoreactor in which catalyst was distributed in 

the slurry aqueous system. The light source used was a 35W HID Xe lamp with 

a light intensity of 20 mWcm−2 operated using high voltage power supply. The 

reducing agent employed was H2O for CO2 photo-reduction. 

(c) In solar photoreactor design, a reflector was used to reflect the light to provide 

higher light irradiations to get higher reduction and yield rates. The 

photocatalytic reduction of CO2 to solar fuels was investigated using H2O as 

reducing agents. The performance comparison between fixed-bed (gas phase), 

solar photoreactor (liquid phase) and solar photoreactor with reflector (liquid 

phase) was conducted to investigate the efficiency of solar photoreactor with 

reflector.  

(d) The catalysts were then used to photo-reduce CO2 to obtain solar fuels using 

both UV and Visible light and their performances were compared based on the 

yield of fuels. The reaction mechanism and kinetic model were developed to 

find out the key parameters in CO2 reduction applications. 

 

1.6 Significance of Study 

In this study, CO2 was efficiency converted to CH3OH, CO, CH4 and H2 in the 

presence of reducing agents and photocatalytic systems, thus confirming sustainable 

fuel productions.  The solar photoreactor with reflector performance was very 

encouraging while the efficiency found was much higher than ever reported in the 

literature.  However, several outcomes of this research are described below: 
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(a) New solar photoreactor with reflector system to investigate efficient CO2 

reduction to solar fuels. 

(b) Novel ZnV2O6 nanosheets for stable and high-performance photo-induced CO2 

reduction to solar fuels. 

(c) Novel indirect Z-scheme assembly of ZnV2O6/RGO/g-C3N4 nanosheets toward 

visible-light enhanced CO2 reduction. 

(d) New development in reaction rate and kinetic models. 

(e) Alternative solutions to global warming and energy crises. 

 

1.7 Outline of Thesis 

This thesis is divided into five chapters excluding all introductory pages, table 

of content and abstract. Chapter 1 presents the introduction, problem statement and 

research hypothesis, objectives, research scope, significance of study and outline of 

thesis. The literature survey, basics of photocatalysis and CO2 photoreduction, 

previous works in photoreduction of CO2, the photoreactor setups, characterization 

techniques, description of photocatalytic reactors and development of kinetic models 

were discussed in Chapter 2. Chapter 3 gives a detailed representation of the research 

methodology and order of the research, details of the methods used to synthesize the 

catalysts and carry out the photoreduction process. The results obtained from the 

experiments and analysis of characterization are discussed in Chapter 4. Chapter 5 

concludes the thesis with inferences drawn and recommendations for further research. 
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