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Abstract A mathematical model is considered to determine the effectiveness of disin-

fectant solution for surface decontamination. The decontamination process involved the

diffusion of bacteria into disinfectant solution and the reaction of the disinfectant killing

effect. The mathematical model is a reaction-diffusion type. Finite difference method and

method of lines with fourth-order Runge-Kutta method are utilized to solve the model

numerically. To obtain stable solutions, von Neumann stability analysis is employed to

evaluate the stability of finite difference method. For stiff problem, Dormand-Prince

method is applied as the estimated error of fourth-order Runge-Kutta method. MATLAB

programming is selected for the computation of numerical solutions. From the results

obtained, fourth-order Runge-Kutta method has a larger stability region and better ac-

curacy of solutions compared to finite difference method when solving the disinfectant

solution model. Moreover, a numerical simulation is carried out to investigate the effect

of different thickness of disinfectant solution on bacteria reduction. Results show that

thick disinfectant solution is able to reduce the dimensionless bacteria concentration more

effectively.

Keywords Reaction-diffusion; finite difference method; method of lines; fourth-order
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1 Introduction

Natural products like disinfectants show healing and antibacterial properties which make them
very helpful in the field of biology. In the past, disinfectants were used by people to treat various
illnesses and heal wound. Apart from that, French green disinfectants had been employed to
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cure Buruli ulcer, a chronic and necrotizing skin disease caused by Mycobacterium ulcerans [1].
Hence, disinfectant have the ability to kill many kinds of pathogenic bacteria by buffering the
aqueous pH and oxidation state during the antibacterial process [2,3,4].

A lot of researches had been done regarding the process of decontamination to provide a
clean and healthy environment. For examples, the surface decontamination by clay solution,
the problem of aquifer decontamination by pumping [6], the cleaning of sea pollution using
pumping process carried on by a ship [7] and the electrokinetic remediation of nuclear waste-
contaminated soils [8]. They used parabolic partial differential equations (PDEs) to formulate
their mathematical models. The models were then solved using mathematical methods such
as Laplace transform method, finite difference method, finite volume method or finite element
method in order to acquire the approximate solutions.

In [5], an analytical solution has been found for the clay solution modelat one fixed point,
x̂ = 0 by using Laplace transform method. However, the complexity of the mathematical model
leads to difficulties in obtaining an analytical solution for the range of finite domain, 0 ≤ x̂ ≤ h.
Consequently, numerical methods are more preferable to be implemented in the disinfectant
solution model to provide an approximation to the exact solution for the case 0 ≤ x̂ ≤ h. This
is because numerical methods are applicable to solve various types of mathematical models.
We note that the model in [5] is also applicable to not just clay solution, but also to other
disinfectant solution.

In this paper, finite difference method (FDM) and method of lines (MOL) with fourth-
order Runge-Kutta method (RK4) are applied to solve the disinfectant solution model in [5]
numerically. To ensure that the numerical solutions obtained are stable and high in accuracy,
von Neumann stability analysis is employed to evaluate the stability of FDM. For stiff problem,
Dormand-Prince (DOPRI) method is adopted as the estimated error of RK4 for solving the
model. Furthermore, comparisons are made between FDM and RK4 about the stability and
accuracy of solutions generated. Apart from that, different thickness of disinfectant solution
is applied in the numerical simulation of disinfectant solution model so that the effect of the
thickness of disinfectant solution on bacteria reduction can be identified. In this research,
MATLAB programming has been developed to execute numerical solutions for the model.

2 Methodology

In this section, the mathematical formulation of the disinfectant solution model as well as the
application of FDM and MOL with RK4 in the model will be presented. Other than that, the
stability analysis of FDM and RK4 will be conducted by using von Neumann stability analysis
and DOPRI method, respectively.

2.1 Mathematical Modelling of Surface Decontamination by Disinfectant Solution

Based on [5], there are several assumptions that need to be considered for the mathematical
modelling on the effectiveness of disinfectant solution for surface decontamination. Firstly,
the bacteria are assumed to diffuse into the disinfectant solution and then eliminated by the
disinfectant killing effect. Secondly, the bottom of contaminated surface is assumed to be
hard and impermeable. The interaction process of disinfectant solution and contaminant is
demonstrated in Figure 1.
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Figure 1: Physical Condition of Interaction Process between Disinfectant Solution and Con-
taminant

Bacteria concentration is closely related to the time taken, t̂ and the thickness of region,
x̂. As time passes, the bacteria move upward from a lower region to a higher region. When
the bacteria enter disinfectant solution region, they are killed by the disinfectant killing effect.
Hence, this paper considers the bacteria movement invertical direction only as one dimensional
problem.The movement of bacteria against time is presented in Figure 2.

Figure 2: Cartesian Coordinate of the Movement of Bacteria against Time

The variables and parameters involved for the formulation of the disinfectant solution model
are shown as follows:
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b̂(x̂, t̂) Bacteria concentration

x̂ Thickness of region

t̂ Time taken

b0 Bacteria concentration at t̂ = 0

D Diffusion coefficient of bacteria migration into disinfectant

θ̂ Disinfectant killing effect on bacteria

β(t̂) Surface concentration of bacteria per area

γ̂ Growth rate of bacteria on surface

K Partition coefficient (how much bacteria attracted to the surface)

δ Thickness of bacteria region

h Total thickness of bacteria and disinfectant solution regions

The mathematical model of surface decontamination by disinfectant solution is formulated
as follows [5]:

Model A
∂b̂

∂t̂
= D

∂2b̂

∂x̂2
− θ̂b̂ , 0 < x̂ < h, t̂ > 0 (1)

Boundary conditions:

x̂ = 0 : Kδ
∂b̂

∂t̂

∣

∣

∣

∣

∣

x̂=0

= D
∂b̂

∂x̂

∣

∣

∣

∣

∣

x̂=0

+ γ̂Kδb̂(0, t̂), t̂ > 0 (2)

x̂ = h : b̂(h, t̂) = 0 or
∂b̂

∂x̂

∣

∣

∣

∣

∣

x̂=h

= 0, t̂ > 0 (3)

Initial condition:

b̂(x̂, 0) =

{

b0, 0 ≤ x̂ ≤ δ

0, δ < x̂ ≤ h
(4)

To facilitate mathematical analysis, Model A needs to be transformed into a dimensionless
form. Let the dimensionless variables and parameters be

b̃ =
b̂

b0
, x̃ =

x̂

h
, t̃ =

Dt̂

h2
, θ =

h2θ̂

D
, γ =

(hδ) γ̂

D
.

Then, substitute all these dimensionless terms into Model A to form Model B [5].

Model B (Non dimensionalization of Model A)

∂b̃

∂t̃
=

∂2b̃

∂x̃2
− θb̃, 0 < x̃ < 1, t̃ > 0 (5)
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Boundary conditions:

x̃ = 0 :
Kδ

h

∂b̃

∂t̃

∣

∣

∣

∣

∣

x̃=0

=
∂b̃

∂x̃

∣

∣

∣

∣

∣

x̃=0

+ γKb̃
(

0, t̃
)

, t̃ > 0 (6)

x̃ = 1 : b̃
(

1, t̃
)

= 0, or
∂b̃

∂x̃

∣

∣

∣

∣

∣

x̃=1

= 0, t̃ > 0 (7)

Initial condition:

b̃ (x̃, 0) =











1 , 0 ≤ x̃ ≤ δ

h

0 ,
δ

h
< x̃ ≤ 1

(8)

To remove θ in equation (5), assume the variables used in Model B to be

b̃
(

x̃, t̃
)

= b (x, t) , x̃ =
x√
θ
, t̃ =

t

θ
.

After that, substitute all these terms into Model B to yield Model C [5].

Model C (Modified Model B)

∂b

∂t
=

∂2b

∂x2
− b, 0 < x <

√
θ, t > 0 (9)

Boundary conditions:

x = 0 : τ
∂b

∂t

∣

∣

∣

∣

x=0

=
∂b

∂x

∣

∣

∣

∣

x=0

+ λb (0, t) , t > 0 (10)

x =
√

θ : b
(√

θ, t
)

= 0 or
∂b

∂x

∣

∣

∣

∣

x=
√

θ

= 0, t > 0 (11)

Initial condition:

b (x, 0) =















1 , 0 ≤ x ≤ δ
√

θ

h

0 ,
δ
√

θ

h
< x ≤

√
θ

(12)

where τ = Kδ
√

θ/h and λ = γK/
√

θ are positive constants.
In [5], Model C is further simplified by extending the interval 0 < x <

√
θ to infinity and then

solved by using Laplace transform. In this paper, Model C is utilized as the disinfectant solution
model to determine the effectiveness of disinfectant solution for surface decontamination.

2.2 Implementation of Numerical Methods along with Stability Analysis

In this section, the implementation of FDM and MOL with RK4 in the disinfectant solution
model along with their stability analysis will be explained in details.
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2.2.1 FDM in Disinfectant Solution Model

First of all, discretise the independent variables x and t into grid points as follows:

(xj, tn) = [(j − 1) · ∆x , (n − 1) · ∆t] , 1 ≤ j ≤ N , 1 ≤ n ≤ M,

where the x step size, ∆x =
√

θ/N − 1 and ∆t denotes the t step size, while N and M are
the total number of nodes for variables x and t, respectively. After discretisation, the function
b (x, t) can be written as

bn
j = b (xj, tn) .

Then, substitute the first order forward difference formula for time derivative and also first
and second order central difference formulas for spatial derivatives involved in the disinfectant
solution model to yield the following equations:

bn+1
j = bn

j +
∆t

(∆x)2

(

bn
j−1 − 2bn

j + bn
j+1

)

−∆tbn
j + O

[

∆t, (∆x)2] , 1 < j < N, 1 ≤ n ≤ M − 1

(13)
Boundary conditions:

bn+1
1 = − ∆t

2τ∆x
bn
0 +

(

1 +
∆t

τ
λ

)

bn
1 +

∆t

2τ∆x
bn
2 + O

[

∆t, (∆x)
2]

, 1 ≤ n ≤ M − 1 (14)

bn
N = 0, 1 < n ≤ M − 1 (15)

Initial condition:

b1
j =











1 , 0 ≤ xj ≤
δ
√

θ

h

0 ,
δ
√

θ

h
< xj ≤

√
θ

, 1 ≤ j ≤ N (16)

where bn
0 =

[

−2τbn
2 + 4τbn

1 + ∆xbn
2 + 2τ · (∆x)2 bn

1 + 2λ · (∆x)2 bn
1

]

/ (∆x + 2τ ).
By applying FDM, the disinfectant solution model can be solved explicitly by considering the

initial and boundary conditions provided. Although FDM is easy to be adopted to approximate
various kinds of PDEs but it does not guarantee that stable numerical solutions can be obtained.
Hence, it is necessary to evaluate the stability of FDM by employing the von Neumann stability
analysis. The application of von Neumann stability analysis in the disinfectant solution model
can be shown as follows:

1. According to equation (13), the reaction-diffusion equation of disinfectant solution model
is presented as

bn+1
j = bn

j +
∆t

(∆x)2

(

bn
j−1 − 2bn

j + bn
j+1

)

− ∆tbn
j + O

[

∆t, (∆x)2] .

2. Assume the Fourier term expression for function b (xj, tn)as

b (xj, tn) =

∞
∑

k=−∞

Bk (tn)φk (xj) =

∞
∑

k=−∞

Bn
k ei2πkj∆x. (17)
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By lettingθ = 2πk∆x, equation (17) becomes

b (xj, tn) =
∞

∑

θ=−∞

Bn
θ φθj =

∞
∑

θ=−∞

Bn
θ eijθ. (18)

3. Drop the truncation errors, O
[

∆t, (∆x)2
]

in equation (13) and then substitute equation
(18) into the reaction-diffusion equation to produce

∞
∑

θ=−∞

Bn+1
θ eijθ

=
∞

∑

θ=−∞

Bn
θ eijθ +

∆t

(∆x)2

∞
∑

θ=−∞

[

Bn
θ ei(j−1)θ − 2Bn

θ eijθ + Bn
θ ei(j+1)θ

]

− ∆t
∞

∑

θ=−∞

Bn
θ eijθ. (19)

4. Divide equation (19) with
∑

Bn
θ eijθ to obtain

Bn+1
θ

Bn
θ

= 1 +
∆t

(∆x)2

[

e−iθ − 2 + eiθ
]

− ∆t or
Bn+1

θ

Bn
θ

= 1 − 4
∆t

(∆x)2 sin2

(

θ

2

)

− ∆t. (20)

5. For stability,
∣

∣

∣

∣

Bn+1
θ

Bn
θ

∣

∣

∣

∣

< 1 or

∣

∣

∣

∣

1 − 4
∆t

(∆x)2 sin2

(

θ

2

)

− ∆t

∣

∣

∣

∣

< 1.

6. Hence, the range for the value of ∆t is

0 < ∆t <
2

4

(∆x)
2 sin2

(

θ

2

)

+ 1

.

7. To ensure that the numerical solutions are bounded, we specify

0 < ∆t <
2

4

(∆x)
2 + 1

. (21)

2.2.2 MOL with RK4 in Disinfectant Solution Model

MOL is a special FDM which transforms a given PDE into a system of ordinary differential
equations (ODEs). It works by replacing the spatial derivatives in PDE with algebraic approxi-
mations [9]. To implement MOL in the disinfectant solution model, the first step is to discretise
the independent variable x into grid points,

xj = (j − 1) · ∆x, 1 ≤ j ≤ N

After discretisation, the function b (x, t) can be written as

bj (t) = b (xj, t) .
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Next, substitute second and first order central difference formulas for the spatial derivatives in
equations (9) and (10) to get

d

dt
bj (t) =

1

(∆x)2 [bj−1(t) − 2bj(t) + bj+1(t)] − bj(t) + O
[

(∆x)2] , 1 < j < N (22)

and
d

dt
b1 (t) =

1

2τ∆x
[b2 (t)− b0 (t)] +

λ

τ
b1 (t) + O

[

(∆x)2] , (23)

where

b0 (t) =

[

2λ (∆x)2 + 2τ (∆x)2 + 4τ
]

b1 (t) + (∆x− 2τ ) b2 (t)

2τ + ∆x
.

Equation (23) can be rewritten as

d

dt
b1 (t) =

[

2λ∆x − (∆x)2 − 2

∆x (2τ + ∆x)

]

b1 (t) +
2

∆x (2τ + ∆x)
b2 (t) + O

[

(∆x)2] (24)

by substituting the value of b0 (t) into equation (23). Finally, the disinfectant solution model
can be presented as a system of ODEs as follows:

d

dt















b1 (t)
b2 (t)

...
bN−2 (t)
bN−1 (t)















=

































[

2λ∆x − (∆x)2 − 2

∆x (2τ + ∆x)

]

b1 (t) +
2

∆x (2τ + ∆x)
b2 (t)

1

(∆x)2 [b1 (t)− 2b2 (t) + b3 (t)] − b2 (t)

...
1

(∆x)
2 [bN−3 (t)− 2bN−2 (t) + bN−1 (t)] − bN−2 (t)

1

(∆x)2 [bN−2 (t) − 2bN−1 (t) + bN (t)] − bN−1 (t)

































+ O
[

(∆x)
2]

. (25)

According to equation (11), when x =
√

θ, bN (t) = 0. This means that there are no more
bacteria after a cut-off distance. So, the system of ODEs becomes

d

dt















b1 (t)
b2 (t)

...
bN−2 (t)
bN−1 (t)















=





























[

2λ∆x − (∆x)
2 − 2

∆x (2τ + ∆x)

]

b1 (t) +
2

∆x (2τ + ∆x)
b2 (t)

1

(∆x)2 [b1 (t)− 2b2 (t) + b3 (t)] − b2 (t)

...
1

(∆x)2 [bN−3 (t)− 2bN−2 (t) + bN−1 (t)] − bN−2 (t)

1

(∆x)
2 [bN−2 (t) − 2bN−1 (t)] − bN−1 (t)





























+ O
[

(∆x)
2]

. (26)

The initial equation in equation (12) can be expressed as

bj (t) =

{

1, 0 ≤ xj ≤ δ
√

θ/h

0, δ
√

θ/h ≤ xj ≤
√

θ
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or in matrix form as


















b1 (0)
...

br (0)
br+1 (0)

...
bN (0)



















=



















1
...
1
0
...
0



















, 1 < r < N. (27)

Having completed the implementation of MOL in the disinfectant solution model, the next
step is finding the solutions of Initial Value Problems (IVPs) in system of ODEs by employing
RK4. RK4 is the most popular single-step numerical method for solving IVPs because it can
generate high accuracy results when compared with the exact solutions and its accuracy can
be further improved by reducing the step size used [10]. The application of RK4 in the ODEs
system can be shown as follows:

1. Firstly, discretise the independent variable, t in system of ODEs into grid points as

tn = (n − 1)∆t, 1 ≤ n ≤ M.

2. Then, assume the first order derivatives of function bj (tn) for 1 ≤ j ≤ N − 1 to be

db1

dtn

= f1 [tn, b1 (tn) , b2 (tn) , . . . , bN−1 (tn)] ,

db2

dtn

= f2 [tn, b1 (tn) , b2 (tn) , . . . , bN−1 (tn)] ,

...

dbN−1

dtn

= fN−1 [tn, b1 (tn) , b2 (tn) , . . . , bN−1 (tn)] .

3. Next, introduce the vectors

bn = [b1 (tn) , b2 (tn) , . . . , bN−1 (tn)]
T ,

f (tn,bn) = [f1 (tn,bn) , f2 (tn,bn) , . . . , fN−1 (tn,bn)]T ,

Ki = [ki,1, ki,2, . . . , ki,N−1]
T , i = 1, · · · , 4,

where

K1 = ∆t · f (tn,bn) ,

K2 = ∆t · f
(

tn +
∆t

2
,bn +

K1

2

)

,

K3 = ∆t · f
(

tn +
∆t

2
,bn +

K2

2

)

,

K4 = ∆t · f (tn + ∆t,bn + K3) .

4. Finally, RK4 formula for the disinfectant solution model can be stated in vector form as

bn+1 = bn+
1

6
(K1 + 2K2 + 2K3 + K4)+O

[

(∆t)
5
, (∆x)

2]
, n = 1, 2, 3, . . . , M−1. (28)



Chai Jin Sian et al. / MATEMATIKA 34:2 (2018) 271–291 280

Estimated error of RK4 is important to ensure that the results produced are stable and high
in accuracy. Normally, the system of ODEs becomes numerically unstable when there exist stiff
differential equations. Stiffness can be defined in terms of the eigenvalues of the Jacobian as
follows [11] where the differentiation of f(t,b) is equal to matrix A.

Definition: A linear system y′ = Ay + ϕ (t) is said to be stiff if

1. Eigenvalues of matrix A, Re λw < 0, w = 1, 2, . . . , W .

2. Stiffness ratio, S ≡ max
w=1,...,W

|Reλw| / min
w=1,...,W

|Re λw| >> 1.

The system of ODEs of the disinfectant solution model stated in equation (26) can be
presented in matrix form as follows:

d

dt























b1 (t)
b2 (t)
b3 (t)

...
bN−3 (t)
bN−2 (t)
bN−1 (t)























=















































2λ∆x− (∆x)
2 − 2

∆x (2τ + ∆x)

2

∆x (2τ + ∆x)
0 · · · 0 0 0

1
(∆x)2

−2

(∆x)
2 − 1

1

(∆x)
2 · · · 0 0 0

0
1

(∆x)
2

−2

(∆x)
2 − 1 · · · 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0 · · · −2

(∆x)
2 − 1

1

(∆x)
2 0

0 0 0 · · · 1

(∆x)
2

−2

(∆x)
2 − 1

1

(∆x)
2

0 0 0 · · · 0
1

(∆x)
2

−2

(∆x)
2 − 1





































































b1 (t)
b2 (t)
b3 (t)

...
bN−3 (t)
bN−2 (t)
bN−1 (t)























.

where matrix A is

A =















































2λ∆x − (∆x)
2 − 2

∆x (2τ + ∆x)

2

∆x (2τ + ∆x)
0 · · · 0 0 0

1

(∆x)2
−2

(∆x)2
− 1

1

(∆x)2
· · · 0 0 0

0
1

(∆x)
2

−2

(∆x)
2 − 1 · · · 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0 · · · −2

(∆x)2
− 1

1

(∆x)2
0

0 0 0 · · · 1

(∆x)
2

−2

(∆x)
2 − 1

1

(∆x)
2

0 0 0 · · · 0
1

(∆x)
2

−2

(∆x)
2 − 1















































. (29)

Then, the eigenvalues of matrix A, λw can be acquired by solving the determinant

det (A − λwI) = 0, w = 1, 2, . . . , N − 1, (30)
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where I is an (N − 1) × (N − 1) identity matrix.
If the ODEs system is stiff, then an Adaptive Runge-Kutta method, DOPRI method will

be applied as the estimated error of RK4 to produce stable and high accuracy solutions. The
formula for DOPRI method can be represented by a Butcher Table as illustrated in Figure 3.
For this research, an initial value for ∆t will be assigned for the DOPRI method to start the
numerical computations. If the error is high, then the step size will be halved. Contrarily, if
the error is very low, then the step size will be doubled. This procedure is repeated until the
error produced meets the tolerance value that fixed on it. Eventually, stable and high accuracy
results can be obtained with minimum computational effort.

0
1

5

1

5
3

10

3

40

9

40
4

5

44

45
−56

15

32

9
8

9

19372

6561
−25360

2187

6448

6561
−212

729

1
9017

3168
−355

33

46732

5247

49

176
− 5103

18656

1
35

384
0

500

1113

125

192
−2187

6784

11

84

35

384
0

500

1113

125

192
−2187

6784

11

84
0

5179

57600
0

7571

16695

393

640
− 92097

339200

187

2100

1

40

Figure 3: Butcher Table for DOPRI Method

3 Results and Discussion

In this section, FDM and MOL with RK4 will be utilized to solve the disinfectant solution
model numerically. Besides that, the effect of the thickness of disinfectant solution on bacteria
reduction will be investigated by applying different thickness of disinfectant solution in the
numerical simulation of the disinfectant solution model.

3.1 Parameter and Variable Setting

Consider δ = 0.000195 m and h = 0.0005 m. While the other dimensionless parameters and
variables values follow the following assumptions:

1. γ = 0.00001
2. K = 0.5
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3. θ = 36
4. 0 ≤ x ≤ 6
5. 0 ≤ t ≤ 1

3.2 Stability Analysis

The stability regions of FDM versus RK4 when solving the disinfectant solution model are
illustrated in Figure 4. Observe that RK4 has a larger stability region compared to FDM. This
means that RK4 can perform the numerical simulation using larger time step size and this
reduces the computational effort to execute stable numerical solutions.

Figure 4: Stability Regions of FDM versus RK4

Apart from that, the stiffness of the ODEs system of disinfectant solution model can be
determined by setting the spatial step size, ∆x = 0.3 into equation (29) in order to acquire all
the eigenvalues for matrix A as recorded in Table 1.

Note that all the eigenvalues of matrix A in Table 1 are less than zero and the stiffness
ratio,

S =
max

w=1,...,20
|Re λw|

min
w=1,...,20

|Re λw|
=

45.172559

0.566139
= 79.790580,

which is much greater than 1. Thus, there exist stiff differential equations in the ODEs system
for the case ∆x = 0.3 and DOPRI method will be applied as the estimated error of RK4.
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Table 1: Eigenvalues of Matrix A

λ1 = −0.566139 λ2 = −1.338655 λ3 = −2.228077 λ4 = −3.604531

λ5 = −5.444821 λ6 = −7.713231 λ7 = −10.359428 λ8 = −13.321281

λ9 = −16.527560 λ10 = −19.900307 λ11 = −23.357082 λ12 = −26.813151

λ13 = −30.183668 λ14 = −45.172559 λ15 = −44.363593 λ16 = −43.037456

λ17 = −41.226781 λ18 = −38.976122 λ19 = −36.340857 λ20 = −33.385813

3.3 Validation of Numerical Solutions

To validate the numerical solutions produced using FDM, RK4 and DOPRI method, an ODE
solver in MATLAB programming, ode15s is chosen for the validation. ode15s is a variable-step
solver for stiff problems and it is based on the numerical differentiation formulas. Assume
∆x = 0.3 and ∆t = 0.04 whereas the tolerance value for DOPRI method and ode15s is fixed
to be ε = 0.000001. The relative errors of FDM, RK4 and DOPRI method at b (x, 1) based on
ode15s are stated in Table 2.

Based on the results in Table 2, the relative errors for FDM, RK4 and DOPRI method based
on ode15s are small and bounded. This means that the numerical methods used are suitable
to solve the disinfectant solution model. Furthermore, the relative errors produced by DOPRI
method are very small and more consistent compared to RK4 when solving the model.This is
because DOPRI method will automatically adjust itself to the suitable step size, ∆t in order
to achieve the predetermined accuracy more efficiently.

3.4 Accuracy of FDM and RK4

To identify the accuracy of FDM and RK4 when solving the disinfectant solution model, a new
model that resembles the behaviour of thedisinfectant solution modelis formed as shown by the
following:

Model D
∂b

∂t
=

∂2b

∂x2
− b − e−x · e−t, 0 < x < 6, 0 < t ≤ 1

Initial condition:
b (x, 0) = e−x, 0 ≤ x ≤ 6

Boundary conditions:
∂b

∂t

∣

∣

∣

∣

x=0

=
∂b

∂x

∣

∣

∣

∣

x=0

, 0 < t ≤ 1

b (6, t) = e−6 · e−t, 0 < t ≤ 1

Model D is designed for validationvia error analysis because it has an exact solution which is
b (x, t) = e−x · e−t. By fixing ∆x = 0.3 and ∆t = 0.04, the results executed by MATLAB
programming for the relative errors of FDM and RK4 based on the exact solutions of Model D
at b (x, 1) are stated in Table 3.
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Table 2: Relative errors of FDM, RK4 and DOPRI method based on ode15s

x
Relative Error

FDM RK4 DOPRI

0 0.003670 0 0

0.3 0.006520 0 0

0.6 0.010014 0 0

0.9 0.014845 0 0

1.2 0.017940 0 0

1.5 0.021965 0 0.000001

1.8 0.021301 0 0.000001

2.1 0.021936 0 0

2.4 0.015407 0 0.000001

2.7 0.011888 0 0.000001

3.0 0.000684 0 0.000002

3.3 0.007104 0.000002 0.000001

3.6 0.024120 0.000007 0

3.9 0.030213 0.000016 0.000002

4.2 0.048353 0.000034 0.000003

4.5 0.049041 0.000069 0.000004

4.8 0.063903 0.000128 0.000002

5.1 0.054372 0.000190 0.000002

5.4 0.064428 0.000121 0.000006

5.7 0.047678 0.001435 0.000009

6.0 - - -
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Table 3: Relative Errors of FDM and RK4 for Model D

x
Relative Error

FDM RK4

0 0.032835 0.009194

0.3 0.033129 0.007435

0.6 0.032969 0.005441

0.9 0.032393 0.003283

1.2 0.031472 0.001046

1.5 0.030297 0.001181

1.8 0.028975 0.003310

2.1 0.027610 0.005269

2.4 0.026298 0.007003

2.7 0.025110 0.008484

3.0 0.024098 0.009710

3.3 0.023274 0.010702

3.6 0.022634 0.011503

3.9 0.022133 0.012180

4.2 0.021706 0.012819

4.5 0.021230 0.013532

4.8 0.020499 0.014423

5.1 0.019129 0.015739

5.4 0.016395 0.017008

5.7 0.010903 0.020477

6.0 0 0



Chai Jin Sian et al. / MATEMATIKA 34:2 (2018) 271–291 286

According to Table 3, the maximum relative errors for FDM and RK4 are 0.033129 and
0.020477, respectively. RK4 has a smaller relative error compared to FDM because the trun-
cation error produced by RK4 is O

[

(∆t)5 , (∆x)2] which is much smaller than that of FDM

with O
[

∆t, (∆x)
2]

. Hence, RK4 generates better accuracy of solutions for Model D compared
to FDM. Since Model D follows the behaviour of the disinfectant solution model, so conclu-
sion can be made that the numerical solutions obtained using RK4 has a higher accuracy to
approximate the exact solutions for the disinfectant solution model compared to FDM.

3.5 Numerical Simulation of Disinfectant Solution Model

To find out the effect of different thickness of disinfectant solution on bacteria reduction, the
values of h are divided intoh1 = 0.0005m, h2 = 0.0020m and h3 = 0.0050m to represent the
thin, moderate and thick regions that applied for surface decontamination. The other parameter
values as well as the range of x and t variables are based on the assumptions stated in Section
3.1. The spatial and time step sizes are set to be ∆x = 0.3 and ∆t = 0.04, respectively. By
utilizing FDM and RK4, the numerical solutions for the dimensionless bacteria concentration
at the surface area, b (0, t) are separately recorded in Table 4 and Table 5 whereas the graphs
are displayed in Figure 5 and Figure 6, respectively.

Figure 5: Dimensionless Bacteria Concentration, b (0, t) against Time for Different Values of h
using FDM

Figure 5 and Figure 6 show that the dimensionless bacteria concentration is decreasing
as the value of h increases. From the graphs, h3 = 0.0050 m has the smallest amount of
dimensionless bacteria concentration compared to h1 = 0.0005 m and h2 = 0.0020 m. This is
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Table 4: Dimensionless Bacteria Concentration, b (0, t) for Different Values of h using FDM

t
Dimensionless Bacteria Concentration, b (0, t)

h1 = 0.0005 m h2 = 0.0020 m h3 = 0.0050 m

0 1.000000 1.000000 1.000000

0.04 0.995455 0.986441 0.478152

0.08 0.987349 0.831179 0.450575

0.12 0.977811 0.772129 0.337349

0.16 0.967030 0.689644 0.313817

0.20 0.955458 0.641591 0.262968

0.24 0.943211 0.587274 0.244139

0.28 0.930486 0.548856 0.214708

0.32 0.917018 0.509054 0.199601

0.36 0.903293 0.477743 0.180072

0.40 0.888929 0.446694 0.167801

0.44 0.874450 0.420671 0.153693

0.48 0.859513 0.395462 0.143591

0.52 0.844556 0.373476 0.132804

0.56 0.829321 0.352444 0.124386

0.60 0.814134 0.333621 0.115808

0.64 0.798817 0.315733 0.108714

0.68 0.783600 0.299443 0.101698

0.72 0.768366 0.284012 0.095664

0.76 0.753272 0.269789 0.089806

0.80 0.738243 0.256332 0.084630

0.84 0.723386 0.243824 0.079664

0.88 0.708652 0.231991 0.075191

0.92 0.694113 0.220924 0.070930

0.96 0.679737 0.210449 0.067041

1.00 0.665573 0.200606 0.063352
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Table 5: Dimensionless Bacteria Concentration, b (0, t) for Different Values of h using RK4

t
Dimensionless Bacteria Concentration, b (0, t)

h1 = 0.0005 m h2 = 0.0020 m h3 = 0.0050 m

0 1.000000 1.000000 1.000000

0.04 0.993948 0.940344 0.660103

0.08 0.985732 0.859717 0.493092

0.12 0.976053 0.783560 0.397843

0.16 0.965302 0.716867 0.336209

0.20 0.953715 0.659290 0.292380

0.24 0.941442 0.609391 0.259077

0.28 0.928593 0.565754 0.232578

0.32 0.915255 0.527219 0.210789

0.36 0.901502 0.492880 0.192434

0.40 0.887405 0.462032 0.176685

0.44 0.873028 0.434126 0.162977

0.48 0.858432 0.408729 0.150905

0.52 0.843672 0.385495 0.140175

0.56 0.828800 0.364141 0.130561

0.60 0.813862 0.344439 0.121890

0.64 0.798900 0.326197 0.114026

0.68 0.783952 0.309256 0.106860

0.72 0.769050 0.293478 0.100301

0.76 0.754223 0.278750 0.094277

0.80 0.739496 0.264972 0.088726

0.84 0.724891 0.252056 0.083596

0.88 0.710426 0.239929 0.078842

0.92 0.696118 0.228523 0.074429

0.96 0.681981 0.217781 0.070322

1.00 0.668025 0.207650 0.066493
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Figure 6: Dimensionless Bacteria Concentration, b (0, t) against Time for Different Values of h
using RK4

Figure 7: Dimensionless Bacteria Concentration, b (x, 1) against x for Different Values of h
using FDM
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Figure 8: Dimensionless Bacteria Concentration, b (x, 1) against x for Different Values of h
using RK4

reasonable because the increasing of h will provide larger space for the bacteria at the surface
area to diffuse into the disinfectant solution and then being eliminated by the disinfectant
killing effect. Therefore, thick disinfectant solution is able to reduce the dimensionless bacteria
concentration more effectively. Figure 7 and 8 indicate that the disinfectant solution obey the
boundary condition where solution tend to zero when x tend to domain length.

4 Conclusion

In a nutshell, RK4 has a larger stability region and higher accuracy of solutions compared to
FDM when solving the disinfectant solution model. This implies that RK4 is able to generate
stable numerical solutions that can approximate the exact solutions more accurately than FDM.
In addition, different thickness of disinfectant solution did affect the amount of dimensionless
bacteria concentration found at the decontaminated surface. The thicker the disinfectant so-
lution applied for surface decontamination, the greater the killing effect on bacteria reduction.
This means that thick disinfectant solution promotes the diffusion process of bacteria into dis-
infectant solution region. Consequently, more bacteria are killed by the antibacterial property
of disinfectant.
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