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ABSTRACT 

Extracellular excretion of recombinant protein is beneficial as it can greatly 

reduce the cost of downstream processing and improve the product quality. However, 

the efforts in achieving high excretion level often leads to occurrence of cell lysis 

and low protein yield due to limited capacity of the transport machinery. The 

objectives of this study were to investigate the effect of amino acids and their 

locations in h-region signal peptide on cyclodextrin glucanotransferase (CGTase) 

excretion, and analyze the function of signal peptide peptidase (SPPase) in 

improving the membrane integrity of Escherichia coli (E. coli). Modification of the 

hydrophobic region of the N1R3 signal peptide (wild type) using site-saturation 

mutagenesis has improved the excretion of CGTase. The results indicated that the 

excretion of CGTase is highly dependent on properties of signal peptide which are 

hydrophobicity, secondary conformation and, the type and position of amino acids at 

the boundary and core segment of the h-region. Mutant signal peptides designated as 

M9F, V10L and A15Y enhanced the excretion of CGTase to three-fold and has 

demonstrated two-fold higher secretion rate than the wild type. However, high 

secretion rate caused nine-fold increase in cell lysis as compared to the wild type. In 

dual-plasmid system for co-overexpression, gene expression of CGTase fused to 

A15Y signal peptide and SPPase, were regulated by T7lac and PBAD promoters, 

respectively, at induction temperature of 25ºC. It was shown that co-overexpression 

of SPPase and CGTase has reduced the occurrence of cell lysis that was reflected by 

β-galactosidase activity from 128.6 U/ml to 0.12 U/ml, which equivalent to 99% 

decrease when compared to the E. coli that expressed CGTase alone. Further 

improvement of CGTase excretion was obtained by co-overexpression of CGTase 

and SPPase with addition of glycine which has successfully maintained the low β-

galactosidase level at 0.63 U/ml and increased 4.5 fold of CGTase excretion from 

14.6 U/ml to 66.1 U/ml, as compared to the co-overexpression without glycine 

supplementation. The present results indicated that higher CGTase excretion with 

low cell lysis can be obtained by alteration of amino acids in the h-region signal 

peptide along with glycine supplementation and SPPase overexpression. This is the 

first report that highlights the combination of three approaches; site-saturation 

mutagenesis of signal peptide, SPPase overexpression and glycine supplementation 

in overcoming the problems of low secretion level of CGTase and high occurrences 

of cell lysis. 
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ABSTRAK 

Perembesan ekstrasel protein rekombinan adalah bermanfaat kerana ia dapat 

mengurangkan kos pemprosesan hiliran dan meningkatkan kualiti produk. 

Walaubagaimanapun, usaha untuk mencapai tahap perembesan yang tinggi sering 

menyebabkan berlakunya lisis sel dan hasil protein yang rendah disebabkan oleh 

kapasiti jentera pengangkutan yang terhad. Objektif kajian ini adalah untuk mengkaji 

kesan asid amino dan lokasi mereka dalam segmen-h peptida isyarat dalam 

perembesan ekstrasel siklodekstrin glucanotransferase (CGTase), dan menganalisa 

fungsi peptidase peptida isyarat (SPPase) dalam meningkatkan integriti membran 

Escherichia coli (E. coli). Pengubahsuaian segmen hidrofobik peptida isyarat N1R3 

(peptida isyarat asli) menggunakan kaedah mutasi tepu-lokasi telah meningkatkan 

rembesan ekstrasel CGTase. Keputusan menunjukkan tahap rembesan CGTase amat 

bergantung kepada sifat-sifat peptida isyarat iaitu tahap hidrofobik, konformasi 

sekunder dan jenis serta kedudukan asid amino di bahagian sempadan dan bahagian 

tengah segmen-h. Peptida isyarat mutan yang dikenali sebagai M9F, V10L dan 

A15Y meningkatkan rembesan CGTase kepada tiga kali ganda dan menunjukkan 

kadar rembesan dua kali ganda lebih tinggi daripada peptida isyarat asli. 

Walaubagaimanapun, kadar rembesan yang tinggi menyebabkan kenaikan sembilan 

kali ganda dalam lisis sel berbanding dengan peptida isyarat asli. Dalam sistem dwi-

plasmid untuk ekspresi bersama, ekspresi gen CGTase bersatu dengan peptida isyarat 

A15Y dan SPPase yang masing-masing dikawal oleh penggalak T7lac dan PBAD, 

pada suhu induksi 25ºC. Kajian menunjukkan bahawa ekspresi SPPase dan CGTase 

telah mengurangkan berlakunya lisis sel melalui penurunan aktiviti enzim β-

galactosidase dari 128.6 U/ml kepada 0.12 U/ml, iaitu bersamaan dengan 99% 

penurunan berbanding dengan E. coli yang mengekspresi CGTase sahaja. 

Penambahbaikan perembesan CGTase diperolehi secara ekspresi bersama CGTase 

dan SPPase dengan tambahan glisin yang berjaya mengekalkan tahap rendah aktiviti 

β-galactosidase pada 0.63 U/ml dan meningkatkan 4.5 kali ganda rembesan CGTase 

dari 14.6 U/ml kepada 66.1 U/ml berbanding dengan ekspresi bersama tanpa 

penambahan glisin. Keputusan ini menunjukkan bahawa rembesan CGTase yang 

lebih tinggi dengan kadar lisis yang rendah boleh diperoleh dengan mengubah asid 

amino di segmen-h peptida isyarat bersama-sama dengan penambahan glisin serta 

ekspresi SPPase. Ini merupakan laporan pertama yang menggabungkan tiga strategi; 

mutasi tepu-lokasi terhadap peptida isyarat, ekspresi SPPase dan penambahan glisin 

dalam menyelesaikan masalah tahap rembesan CGTase yang rendah dan lisis sel 

yang tinggi.   
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CHAPTER 1  

INTRODUCTION 

1.1 Background of Study 

All recent progress in genetic engineering and protein engineering has led to 

the more economical production of recombinant protein or enzyme mainly due to the 

simpler and faster cultivation process and the discovery of suitable organism which 

could be engineered to produce high volume of desired protein with higher standard 

and quality. Over the years, development in industrial biotechnology has focused 

more in finding the effective and efficient protein production system to meet the 

huge demands of the industry. The gram negative bacterium Escherichia coli (E. 

coli) is one of the most frequently used host for industrial recombinant protein 

production compared with other established expression hosts available due to the 

ability to grow rapidly at high cell density on cheaper substrates, very well-

characterized genetically and the availability of many tools that have been developed 

including cloning vectors and mutant host for gene cloning and expression (Baneyx 

and Mujacic, 2004).  

However, E. coli is incapable in producing some proteins that require post-

translational modification for activity. Overexpression of intracellular recombinant 

proteins in E. coli has commonly failed to reach a correct conformation and often 

resulted in the formation of insoluble aggregates known as inclusion bodies. The 

protein can only be recovered by expensive and complicated denaturation and 

refolding processes which usually give low yield of soluble refolded protein. Besides 

the expensive downstream processing, proteins expressed intracellularly are also 

prone to protease degradation. 

One approach to tackle these issues is to have the recombinant proteins 

secreted into the periplasm or released into the growth medium (Choi and Lee, 
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2004). Targeting the proteins into more oxidizing environment of periplasm and 

culture medium effectively improve the protein quality such as biological activity, 

stability and solubility (Jong et al., 2010) due to correct protein folding and less 

proteolysis activity. In addition, the recovery of secreted proteins from the culture 

medium rather than from cytoplasm greatly reduces the downstream processing costs 

and simplified the separation process because there is no cell disruption needed and 

thus, less contamination with the endogenous protein (Yoon et al., 2010). 

Protein secretion is a complex, multi-step reaction involving many export 

components. For the protein to be recognized by transport components, all secreted 

proteins are synthesized with an amino-terminal signal peptide (Pugsley, 1993) that 

acts as a targeting and recognition signal (Mergulhão et al., 2005). The signal peptide 

contains the information needed to direct the newly synthesized export-competent 

protein to the translocation pathway. The signal peptide is removed by signal 

peptidase to release only the mature region of the protein to the periplasm for 

complete folding and localization (De Bona et al., 2012). Then, the remnants of 

cleaved signal peptide within inner membrane were further degraded by membrane 

bound protease known as signal peptide peptidase (SPPase) (Ichihara et al., 1984).  

Although there are significant improvements and a wide range of systems for 

heterologous protein excretion using E. coli have been developed, low secretion level 

and high occurrences of cell lysis due to ruptured of inner and outer membrane 

during the expression period remains a considerable bottleneck, which resulted in 

low protein yield (Fu et al., 2005). Occasionally, hypersecretion of recombinant 

proteins resulted in the formation of periplasmic inclusion bodies which further 

caused the burden to the host cell (Tesfai et al., 2012). This limitation often related to 

the inefficient and limited capacity of secretion machineries  (Mergulhão et al., 2005; 

Rosenberg, 1998) and the demand for protein translocation had exceeding the 

capacity, arising from the high rate of protein synthesis (Simmons and Yansura, 

1996; Mergulhão et al., 2004). 

Previously, a bacteria Bacillus sp. G1 was isolated and found capable of 

secreting enzyme cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) which 
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catalyses the conversion of starch to produces 89% β-CD and 11% γ-CD with no 

detection of α-CD (Sian et al., 2005). In this study, CGTase will be used as a 

reported protein to measure the performace of mutated signal peptide in protein 

secretion process. The CGTase is becoming significant interest due to the high 

commercial value of cyclodextrins (CDs) which extensively used in industries such 

as toiletries, cosmetic, pharmaceuticals, agriculture, chemical and food. Previous 

reports showed that the overproduction of CGTase using E. coli often problematic 

owing to the intracellular localization and the formation of inactive inclusion bodies 

(IBs) that lead to low yield (Yang et al., 2014). Secretion of CGTase is highly 

desirable compared to intracellular expression as it could leads to easier purification 

steps and improves product quality. Scientific advancements have been carried out to 

genetically engineer the signal peptide to facilitate high secretion of CGTase into the 

extracellular medium. Previous reports on employed signal peptide modification 

strategies to improve CGTase secretion in E. coli are to increase the net charge of n-

region (Ismail et al., 2011) or introduce helix-breaker in h-region (Jonet et al., 2012). 

Recently, used of homologous DacD signal peptide derived from E. coli strongly 

promoted the extracellular secretion of CGTase up to 3.3 fold compared to native 

signal peptide (Sonnendecker et al., 2017). 

Although the signal peptides can export the proteins out of the membrane, the 

efficiency of transport was very limited and most of proteins were still remain in the 

cytoplasm or periplasm. Furthermore, low secretion level and high occurrences of 

cell lysis still remains a considerable obstacle (Jonet et al., 2012; Tesfai et al., 2012). 

To achieve a high level of CGTase secretion, the choice of optimal signal peptide 

remains the first and most important hurdle to be overcome.  

It is interesting to note that, a recent review by  Low et al. (2013) concluded 

that the hydrophobic core is a key feature for signal peptides to functioned properly 

like a security pass for a secreted protein to be exported through SecYEG translocon. 

Both in vivo and in vitro experiments have revealed that a minimum level of total 

hydrophobicity is critical to complete the processing of signal peptide and protein 

translocation prior to cleavage event (Chou and Kendall, 1990; Mori et al., 1997; 

Rusch et al., 1994). Either deletion or substitution of hydrophobic residues, or 
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varying the hydrophobic values below the acceptable threshold could ruin the protein 

transport process (Doud et al., 1993; Izard et al., 1996; Kendall et al., 1986; Rusch et 

al., 2002). Although the importance of core hydrophobic region of signal peptide in 

protein translocation has been widely studied, a significant conclusion on the role of 

amino acid in this region is rather complicated since there is heterogeneity in amino 

acid composition. Therefore, in this study, in order to overcome the first problem of 

low secretion, site-saturation mutagenesis approach is employed to rule out the ideal 

amino acid at specific position in the h-region signal peptide and subsequently 

identify the optimal mutant for improved production of excreted recombinant 

CGTase. 

Protein that has been successfully transported into the periplasmic 

compartment will need to pass through the outer membrane barrier in order to be 

excreted outside the cell. In this study, further improvement in CGTase excretion 

from periplasmic to the extracellular medium in the aspect of minimizing the 

occurrences of cell lysis is achieved by synergistic promoting effect of signal peptide 

peptidase overexpression and supplementation of permeabilizing agents. Firstly, 

SPPase overexpression facilitated fast clearance of remnant signal peptide within the 

membrane, thus avoiding the signal peptide from hindering the translocation channel. 

Secondly, the supplementation of permeabilizing agents enhance the permeability of 

outer membrane without compromising the membrane integrity, enabling the 

maximum released of CGTase in periplasmic space into the extracellular medium 

without cell lysis. 

 

1.2 Problem Statement and Novelties of Study 

Targeting the synthesized protein into extracellular culture medium offers 

several advantages such as correct protein folding due to more oxidative 

environment, minimizes formation of inclusion bodies, providing protection from 

cellular protease, yield minimum contamination with host‟s protein and simplified 

downstream processing. Although significant improvements and a wide range of 
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systems for heterologous protein excretion using E. coli have been developed, low 

secretion level and high the occurrences of cell lysis due to ruptured of inner and 

outer membrane during the expression period still remains a considerable obstacle. 

This limitation often related to the inefficient and limited capacity of secretion 

machineries and the demand for protein translocation had exceeding the capacity, 

arising from the high rate of protein synthesis. 

This report is the first to describe the combination of approaches to overcome 

the problems of low secretion level of CGTase and high occurrences of cell lysis. 

Firstly, the present study demonstrate the site-saturation mutagenesis approach is 

employed to rule out the ideal amino acid at specific position in the h-region signal 

peptide and subsequently identify the optimal mutant for improved CGTase secretion 

from cytoplasm to the periplasm and subsequently to the extracellular medium. 

Secondly, further improvement in the aspect of minimizing the occurrences of cell 

lysis is achieved by co-promoting effect of SPPase overexpression and 

supplementation of permeabilizing agents. SPPase overexpression facilitated fast 

clearance of remnant signal peptide within the membrane, thus avoiding the signal 

peptide from hindering the translocation channel. While the supplementation of 

permeabilizing agents enhance the permeability of outer membrane without 

compromising the membrane integrity, enabling the maximum released of CGTase in 

periplasmic space into the extracellular medium without cell lysis. 

 

1.3 Objective 

In order to achieve high extracellular excretion of recombinant protein 

CGTase with low occurrence of cell lysis during the expression, the objectives of this 

study focuses on: 

1. To study the effect of h region amino acids modification of signal peptide on 

secretion efficiency in E. coli.  
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2. To study and analyse the effect of SPPase overexpression and permeabilizing 

agents‟ supplementation on cell membrane integrity. 

 

 

1.4 Scopes of Study 

This study focuses on the optimization of secretion capacity by appropriate 

strategies to alleviate several bottlenecks that limit the production of recombinant 

proteins in the E. coli host. 

i. Cloning, construction, and evaluation of secretory expression system using 

CGTase as a reporter protein in E. coli. 

ii. Improvement of CGTase excretion via modification of h-region signal 

peptide by site-saturation mutagenesis. 

iii. Investigation on the effect of mutation at h-region signal peptide towards 

recombinant CGTase excretion and cell lysis. 

iv. Study on the effect of SPPase overexpression towards recombinant CGTase 

excretion and cell lysis. 

v. Analysing of the effect of several permeabilizing agents‟ supplementation 

(e.g.: glycine, Tween 20, Triton X-100 and chitosan) to the recombinant 

CGTase excretion and cell lysis. 

vi. Optimization of culturing conditions including inducers concentrations 

(Arabinose: 0 – 2 %; IPTG: 0 – 1 mM) and post-induction temperature (20 – 

37 ºC) on recombinant CGTase excretion and cell lysis.  
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