Universiti Teknologi Malaysia Institutional Repository

Enhanced magneto-optical and photocatalytic properties of ferromagnetic Mg1-yNiyFe2O4 (0.0 ≤ y ≤ 1.0) spinel nano-ferrites

Lynda, I. Janet Catherin and Durka, M. and Dinesh, A. and Manikandan, A. and Jaganathan, S. K. and Baykal, A. and Antony, S. Arul (2018) Enhanced magneto-optical and photocatalytic properties of ferromagnetic Mg1-yNiyFe2O4 (0.0 ≤ y ≤ 1.0) spinel nano-ferrites. Journal of Superconductivity and Novel Magnetism, 31 (11). pp. 3637-3647. ISSN 1557-1939

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s10948-018-4623-x

Abstract

Spinel Mg1−yNiyFe2O4 (0.0 ≤ y ≤ 1.0) ferrite magnetic nanoparticles (MNPs) were synthesized by a sol-gel combustion method using urea as the reducing agent/fuel. Powder X-ray diffraction (XRD) analysis revealed the formation of cubic spinel Mg1−yNiyFe2O4 powders and confirmed pure crystalline phase and the average crystalline size of 21.25 to 17.04 nm. Functional group bonds between metal and oxygen (M–O) were confirmed by Fourier transform infrared (FT-IR) spectra. The microstructure of the powders was recorded by high-resolution scanning electron microscope (HR-SEM) and confirmed the particle-like surface morphology with smaller agglomeration, due to the magnetic interaction of the particles. Energy-dispersive X-ray (EDX) results showed the composition of the expected elements and confirmed the phase purity of the products. Vibrating sample magnetometer (VSM) technique recorded at room temperature was used to analyse the magnetic properties of the samples and the hysteresis loops showed the ferromagnetic behaviour. Moreover, the samples Mg1−yNiyFe2O4 NPs were tested for the photocatalytic degradation (PCD) of methylene blue (MB) dye and the sample y = 0.6 showed maximum degradation efficiency (96.83 %), due to the smaller particle size with higher surface area than other compositions. Furthermore, spinel Mg1−yNiyFe2O4 nano-photocatalysts can be reused several times without change of its catalytic activity.

Item Type:Article
Uncontrolled Keywords:ferrites, methylene blue, nanoparticles, photocatalyst, sol-gel method, spinel
Subjects:Q Science > QD Chemistry
T Technology > TP Chemical technology
Divisions:Biosciences and Medical Engineering
ID Code:85493
Deposited By: Yanti Mohd Shah
Deposited On:30 Jun 2020 08:46
Last Modified:30 Jun 2020 08:46

Repository Staff Only: item control page