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The study of streamwise vortex induced vibration has reached a level of maturity that 

allows it to be harnessed to generate power. However, studies have primarily 

concentrated on the variables that measured through point-based instruments. This 

severely limits our understanding of the fluid forcing mechanism that results in the 

vibration of the elastically supported bluff body. We proposed the usage of 

computational fluid dynamics: the open source C++ libraries of OpenFOAM. To 

implement this successfully to the streamwise vortex-induced vibration problem, 

which involves near-wall fluid-structure interaction, we explored the method of 

dynamic mesh handling in OpenFOAM for six degrees of freedom motion of a rigid 

body fully submerged in fluid. Finally, we argued for the usage of arbitrarily coupled 

mesh interface to overcome the problem of severely distorted mesh in tight gaps 

between two walls. We run a short simulation to test this setup and found that the 

case runs uninterrupted, unlike its former counterpart that relies solely on cell 

displacement diffusion, suggesting the potential success of a further converged 

solution of the setup when running on a more powerful machine.  

Keywords:  
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1. Introduction 

1.1 Off-Grid Operation of Sensor Networks 

 

The growing demand for real-time monitoring and management of agriculture [29], civil 

structures [44], machinery [9], and hydrological systems [5] led towards widespread adoption of 

sensors networks in these disciplines. Under the desired operating conditions, most of the 

application of the sensors are at sites where power from the national grid is either difficult to source, 

or non-existent. Sometimes, the issue is not so much on the fact that power lines from the national 

grid are out of reach, as it is related to the involvedness of the means to distribute the power, e.g., 
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installing/extending power lines, or connecting the power line to the sensor, e.g., for cases where 

sensors are embedded inside bridges. 

Off-grid alternatives for power generation for sensor networks typically rely on one form or 

another of renewable energy technology. River monitoring in Malaysia, for example, uses solar 

photovoltaic (PV) panels to power their water depth and discharge sensors. The usage of a renewable 

energy source relieves the designer of a sensor network not only from the cost, but also the 

bureaucracy involved in sourcing power from the national grid - especially when the sensor network 

is to collect data in remote areas. 

For a wide range of operating locations, solar PV panels provide a reliable and economic 

renewable energy solution to the power source problem for sensor networks. However, PV panels 

need batteries as part of the power system to be able to provide continuous power to the sensors. 

This is going to be a problem in the future because the number of sensor networks can only be 

expected to grow.  The growth is foreseeable because: (1) more parties are acknowledging sensor 

networks as being an integral part of the internet of things (IoT) [42], and (2) there is a renewed effort 

to automate and remotely control aspects of our industrial practices - including agriculture e.g., 

intelligent palm pollination and shrimp farm management [29]. 

If solar PV panels become the only go-to technology for renewable energy generation, we must 

be prepared to face several challenges, one being the disposal of the used batteries [9], and second 

is theft of the solar PV panels themselves [3,4]. We can avoid these problems by opting for an 

alternative renewable energy technology, such as hydropower generation. Considering the power 

requirement for sensors are generally low (<1 W), the method to be employed only needs to: (1) 

generate that much power, (2) continuously, (3) using inexpensive materials that do not incentivize 

its theft. Power generation via streamwise vortex-induced vibration (SVIV) is a method that fulfils all 

the criteria listed above. 

 

1.2 Hydropower Generation by Exploiting SVIV 

 

Streamwise vortex-induced vibration (SVIV) is the name given to the vibration of a cylindrical bluff 

body that is caused by the alternate shedding of streamwise vortex pairs from the top and bottom 

surfaces of the cylinder [32,45]. While the type of vortex shedding from an immersed cylindrical bluff 

body is typically the Karman vortex, whose vortex axis is parallel to the cylindrical axis (lateral vortex), 

the streamwise vortex pairs have their axis perpendicular to the axis of the cylinder. The appearance 

of the streamwise vortex from the cylinder is toggled by placing another cylindrical bluff body 

downstream perpendicularly, at a certain range of gaps [6,15,36] between the upstream and 

downstream cylinders. 

There are two forms of streamwise vortices that have been observed: the trailing and necklace 

vortices. Both exhibit the ability to lock-in to the natural frequency of the system [26], thus generating 

energetic vibration that is key to energy harvesting. A schematic of these two vortices is given in Fig. 

1. 

Sensor networks are required to: (1) operate continuously with (2) minimal maintenance [14]. 

Therefore, the power supply to the sensor network must be robust, with a minimal component count 

and simple geometric design. To further simplify the geometric design of the SVIV oscillator, 

Kawabata et al., [17] and Koide et al., [19] replaced the downstream cylinder with a strip-plate, i.e. a 

thin rectangular cylinder, and studied its amplitude and frequency responses. These studies 

demonstrated the ability to initiate the formation of the streamwise vortices are not strictly 

dependent on the geometric design of the cylinders - both upstream and downstream. Using the 
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strip-plate also expands the range of velocity that sustains SVIV, in addition to higher amplitude 

response, compared to a circular downstream cylinder [18]. 

A laboratory scale energy harvester that utilizes SVIV was developed and tested by Koide et al., 

[21] and Koide et al., [22]. The energy harvester exhibits constant power magnitude over a sizeable 

range of velocities (1 < � �m/s	 < 4) for a circular cross-section oscillator of diameter 10 mm, 

length 980 mm, mass ratio �∗ = 17.43, and Scruton number 7.74. The mass ratio gives the ratio of 

the mass of the vibrating system to the mass of fluid displaced by the oscillating cylinder, i.e. �∗ =

�������/���������� = ������ /�!"#$/4	, with D and L being the diameter and length of a circular 

cylinder. The Scruton number Sc is a way to quantify the mass and damping of a vibrating system and 

it is given by %& = 2�∗(, where δ is the logarithmic decrement of the system. 

 
Fig. 1 Schematic of the two forms of the streamwise 

vortex: (a) trailing vortex and (b) necklace vortex [27] 

 

The sizeable operating velocity range partially fulfils the constant operations requirement, and 

constant power output within this velocity range implies an inherent power regulating mechanism in 

the system. However, the onset velocity for SVIV in water of about 1 m/s, and the magnitude of 

power generated currently in the order of mW, usage of the SVIV-based energy harvester remains 

constrained to singular sensors only. Powering whole sensor networks including the transmission and 

reception of collected data is still elusive due to insufficient power. To overcome these shortcomings, 

parametric studies on SVIV control are imperative, and the avenues already explored are reviewed 

in the next section.  

The objectives of this work are threefold: (1) to review the literature and examine the parameters 

that affect SVIV, (2) to establish the worthwhileness of computational fluid dynamics (CFD) in the 

study of SVIV, particularly one that uses the open source software OpenFOAM, and (3) to check 

whether our case set up for an SVIV simulation using arbitrarily coupled mesh interface (ACMI) can 

run without encountering errors. 

 

2. Literature review  

2.1 Aspects of SVIV Control 

 

The cruciform arrangement of cylindrical bluff bodies was initially investigated to control the 

behaviour of Karman vortices from pipe-like structures, the shedding of which causes disruptive 

vibrations. This method of vibration control does not require any modifications to the pipe-like 

structures, and the flow upstream the cylinder is virtually left unperturbed - making it relatively 

simple to retrofit to already existing systems. 

However, at certain gaps between the upstream and downstream cylinder in a cruciform 

arrangement, another type of vortex shedding occurs, whose Strouhal number is 3 to 7 times smaller 

compared to the Karman vortex. This is true in the two circular cylinders in the cruciform 

arrangement by Shirakashi et al., [32]. When the flow is visualized using smoke streaks in a wind 
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tunnel, the axis of rotation of the vortices being shed was found to be parallel to the free stream 

(perpendicular to the upstream cylinder axis), hence the name streamwise vortex. The following are 

several parameters that were found to affect aspects of SVIV. 

The normalized gap )∗ (= )/", s being the gap between the upstream and downstream cylinder) 

plays a critical role in the control of streamwise vortices. The two documented forms of streamwise 

vortex, trailing and necklace, is contingent on )∗. The trailing vortex for example, appears when 0 <

)∗ < 0.25, and the necklace vortex when 0.25 <  )∗ < 0.5, as observed in the wind tunnel 

experimented by Bae et al., [7], studying the cruciform arrangement of two circular cylinders. The 

nondimensional vibration amplitude ,∗ (= ,/", where z is the transverse displacement of the 

upstream cylinder) is also influenced by )∗. There is a region of high ,∗ when )∗ < 0.3 both at VIV 

and galloping regions [21]. 

On the other hand, Reynolds number, Re was observed to affect the nondimensional frequency 

of vortex shedding, i.e. Strouhal number (St=fD\/U, where f and U are the characteristic frequency 

and velocities respectively). St increases with increasing Re when Re < 10000. However, St ceases 

to change when Re > 10000 [6]. Similar experiments were repeated in wind tunnels of different 

dimensions, and in a water tunnel. The results showed good reproducibility in both mediums [20].  

Mass-damping parameter - or its nondimensional equivalent - Scruton number, Sc, is commonly 

related to the maximum amplitude and frequency responses of any VIV system. For SVIV, there is a 

notable lack of data for systematic variation of the mass ratio �∗, and damping δ, most probably due 

to the exceptionally high initial investment in manpower and capital in developing a cyber-fluidic 

system that can vary �∗ and δ independently [23,35,34]. VIV studies that did pursue the effects of 

mass-damping without cyber-fluidic systems rely on nondimensionalizing these quantities to allow 

comparison between experimental runs [22,27]. Nevertheless, a subtle trend has been pointed out 

as reported by Nguyen et al., [27] with respect to damping: the maximum amplitude (frequency) 

decreases (increases) with increasing damping.  

 

2.1 Implementation of Computational Fluid Dynamics (CFD) In SVIV Studies 

 

Although the research highlighted above study important aspects of SVIV, they invariably leave 

out the examination of quantities whose measurement require 2 dimensional (2D) snapshots of the 

instantaneous velocity field. Example of such quantities is vorticity, circulation, meandering of the 

separation point (for circular cylinders), reattachment length, and momentum thickness. The best 

tool available to the researcher for the above purpose is 2D particle image velocimetry (PIV) [16,40]. 

A well-calibrated PIV system enables the collection of time-resolved 2D velocity fields to an 

uncertainty level of less than 5% [43]. 

Despite this, there is a paucity of the adoption of PIV in SVIV studies, perhaps due to the 

prohibitive cost of procuring such a system. An alternative is to solve for the flow field variables using 

computational fluid dynamics (CFD). 

CFD is the discipline of solving the governing equations of fluid dynamics using numerical 

methods and approximations. In principle, end users only need: (1) a computer and (2) a solver 

program to start their practice of CFD. With household access to computers in Malaysia now nearing 

70% of the population [11] and near-ubiquitous availability of computers in higher education 

institutions, requirement (1) for CFD practice can be fulfilled with a modest effort from the 

researcher. Fulfillment of requirement (2) is even more straightforward: end users can download and 

install the OpenFOAM [28], C++ libraries and begin developing their simulation case right away. 

OpenFOAM is highly customizable as it is open-source, and the general public license (GPL) under 

which it is distributed means that anybody can use it for free. All solver applications in OpenFOAM 
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can be run in parallel, which is indispensable when tackling computationally demanding projects. 

Parallelization allows the pooling of existing computing resources instead of procuring new ones, 

aiding initial adoption cost reduction. 

Simulation of SVIV using CFD allows detailed analysis of the instantaneous three-dimensional (3D) 

flow field around the cylinders. To ensure the validity of the simulation, the case must be set up to 

mimic the real-world conditions as faithfully as possible, while keeping the computational cost at a 

minimum. Here we note that the phenomenon of SVIV is a 3D, transient, turbulent, fluid-structure 

interaction (FSI), where the flow influences the motion of the structure and vice-versa. Since there is 

a marked lack of CFD work in the literature that deals with SVIV, especially ones that employ 

OpenFOAM, we first need to determine how to implement the features of SVIV into our simulation - 

most importantly FSI handling and turbulence modelling. Relevant literature on these subjects is 

reviewed in the following subsections. 

 

2.2 General FSI Handling in OpenFOAM 

 

Numerical solution of partial differential equations involves the discretization of the independent 

variables, both spatial and temporal.  Among these two, discretizing the spatial extent of the 

simulation is usually more demanding, and calls for a substantial degree of physical insight. 

Discretization of the spatial extent of the simulation is commonly referred to as meshing, and this 

discipline continues to be in active development to this day [30,31]. 

We want to point out that there only exists a limited amount of documentation for dynamic mesh 

handling in OpenFOAM [24]. This lack of documentation, compared to proprietary software, is the 

earmark open source technology. The common wisdom is that because we can look at the source 

code, multi-volume documentation of the software is not necessary. Short of going through the 

source code, users generally figure their way to set up their simulation case by (1) inspecting existing 

tutorial cases included in their OpenFOAM installation, (2) reading the error messages (3) posting 

their queries on forums, e.g. CFD Online, and (4) referring to case setups shared by other OpenFOAM 

users. We follow the same steps in this review as well. 

A simulation that involves the movement of a rigid body inside a flow requires the surrounding 

mesh to be able to absorb and follow the motion while retaining the quality of the mesh within an 

acceptable level, quantified by mesh metrics such as skewness and orthogonality [2]. In OpenFOAM, 

handling of mesh motion, i.e. dynamic mesh, is done by invoking the dynamicMotionSolverFvMesh 

class and using the sixDoFRigidBodyMotion solver. The mesh points are then updated according to 

the motion of the rigid body, by solving the Laplacian of the mesh displacement. In doing so, the 

displacement of the cells adjacent to the rigid body is diffused to the surrounding mesh. The reader 

is referred to Urquhart, [10] for an example of its implementation. Using this method, Maruai et al., 

[25] successfully simulated the transverse vibration of a square cylinder with a downstream splitter 

plate in a 2D flow domain. 

However, diffusion of the cell displacement due to the motion of the rigid body is severely 

restricted when the rigid body is moving very close to a wall. An SVIV simulation falls under this 

category, as the vibration only sets in when )∗ < 0.25. Koide et al., [22] used two values of )∗: 0.08 

and 0.16 in their experiments and attempting to simulate these conditions will cause the cell 

displacement to be highly concentrated within this gap. An immediate consequence of this is that 

the mesh becomes highly skewed [12,13] giving negative volumes and introducing severe 

conservation errors. A snapshot of a severely deformed mesh next to the strip-plate is given in Fig. 2, 

causing the simulation to halt at 0.4 s of flow time. To circumvent this problem, Ding et al., [12] and 
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Ding et al., [13] used a generalized grid interface (GGI) [8] to allow a sliding mesh interface between 

two regions interfaced with non-conforming patches. 

In the latest version of OpenFOAM (either OpenFOAM v5.0, or OpenFOAM-dev), GGI is 

implemented under the name arbitrary mesh interface (AMI) and arbitrarily coupled mesh interface 

(ACMI). The principle and implementation of both AMI and ACMI are discussed in the next 

subsection. 

 
Fig. 2. Example of severe 

deformation of mesh within 

the small gap between the 

cylinder and strip-plate. The 

red rectangle is the strip-plate 

 

2.3 Sliding Mesh Interface in Openfoam Using AMI And ACMI 

 

OpenFOAM supported the usage of AMI and ACMI since version 2.1.0, and ACMI since version 

2.3.0. The idea behind the usage of A(C)MI is that patches no longer need to be conforming, and 

overlapping patches contribute their transport quantities to the neighbour patch according to the 

fraction of overlapping area [37]. 

Fig. 3 shows the schematic of the ACMI implementation. The principal patches in this schematic 

are patches A and B. The ancillary patch is patch E. Regions C and D are where the principal patch 

overlaps the ancillary, each overlapping 25% of the area of patch E. As such, patches A and B only 

contributes 25% each of their transport quantities to patch E. This principle is true both in AMI and 

ACMI handling. The difference between AMI and ACMI is in the treatment of non-overlapping sub-

patches. When using ACMI, the non-overlapping part of patch E, i.e. top half, can be set to another 

boundary type - thus integrating two types of boundary treatment within one patch. 

 

 
Fig. 3. Schematic of ACMI 

implementation. The non-

overlapping sub-patch E can 

be designated as a wall 

A B 

C D 

E 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 48, Issue 2 (2018) 165-175 

171 

 

Penerbit

Akademia Baru

By implementing ACMI, the mesh on the cylinder side slides on top of the strip-plate side, 

preventing the severe deformation of the surrounding mesh. This is shown in Greenshields, [37]. 

With the successful implementation of ACMI, we can now set up our simulation case. The details of 

the simulation are given in the next section. 

 
Fig. 4. Successful 

implementation of ACMI at the 

gap between the upstream 

cylinder and strip-plate 

 

3. Simulation Setup 

 

We are simulating the occurrence of SVIV as experimented by Koide et al., [22]. The value of " =

10 mm, )∗  0.16, and the downstream bluff body is a strip-plate of width 1  10 mm and thickness 

2  3 mm. Other mechanical and fluid properties follow as reported by Koide et al., [22].  

The simulation domain extends 10 diameters (10D) from the top, bottom and upstream surfaces 

of the circular cylinder. The domain extends 20D from the downstream surface of the circular 

cylinder. In the lateral direction (direction towards normal to the x-y plane in Fig. 5), the domain 

extends 10D from the sides of the circular cylinder in either direction. The total number of cells is in 

the order of 3 3 104 cells. The freestream velocity �  1.0 m/s is chosen as the representative case 

where SVIV becomes detectable. This is equivalent to �∗  22.7. 

 
Fig. 5. The mesh used in this study. Note that the 

strip-plate extends from the bottom to the top of the 

simulation domain 

 

As the actual flow condition under which SVIV takes place is turbulent, a Reynolds averaged 

Navier-Stokes (RANS) approximation of the turbulence is implemented to offset the computational 

cost. The one-equation model of Spalart-Allmaras [1,33,39] is chosen as it has a reasonable record of 

Strip-plate 

Cylinder 
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capturing the flow dynamics, and amplitude and frequency response of a circular cylinder excited by 

Karman vortex, i.e. Karman vortex-induced vibration (KVIV). There is also an obvious advantage 

against 2 or more equation models: the Spalart-Allmaras (S-A) model only adds 1 additional equation 

to be solved, hence being less computationally expensive. Implementation of the S-A model in 

OpenFOAM is done by switching the turbulence model from laminar to RANS and determining the 

levels of 56 and 57 through algebraic equations as reported by Langley Research Centre, [39]. 

The dynamic mesh handling is done by the dynamicMotionSolverFvMesh class, and the solver 

used for the motion of the cylinder is the sixDoFRigidBodyMotion. A solution of the 3D transient flow 

field is done using the pimpleDyMFoam application, which handles the solution of pressure and cell 

displacement using generalized geometric-algebraic multi-grid (GAMG) solver, while the velocity and 

turbulence viscosity are solved using the stabilized preconditioned biconjugate gradient (PBiCGStab) 

method. 

 

4. Results and Discussion 

 

The reader is first and foremost reminded that the sole objective of this simulation is to test the 

case setup using OpenFOAM that implements ACMI and the one-equation turbulence model S-A and 

make sure that it will not generate errors midway. This is a crucial step before the case can be 

productively run on a computer cluster, as it minimizes the loss of computing time while accessing a 

high-performance computing (HPC) cluster due to preventable debugging efforts. 

We run the simulation for 1060-time steps, with 1-time step equivalent to 0.0001 s of flow time. 

We present the velocity magnitude field in the 8/"  0 plane in Fig. 6. The velocity immediately 

downstream the cylinder is seen to be near zero at the sides of the cylinder (cylinder ends), and this 

extends towards the middle of the cylinder with a length of approximately one-third the cylinder 

length ( 9/3).  However, even at this early stage of flow development (1.06 s of flow time), we can 

already identify a region of high velocity (: 1 m/s) located at approximately the middle one-third of 

the cylinder. This is quite possibly the initial stages of the streamwise vortex formation. Fig. 7 shows 

the same occurrence, but in the  8/"  0.5 plane in which is the plane at the top surface of the 

cylinder. 

 

 
Fig. 6. The velocity magnitude field around the circular 

cylinder and strip-plate in the 8/"  0 plane. The 

velocities range from 0 m/s (blue) to 1.3 m/s (red) 

 

9/3 

9/3 

9/3 

, 

; 
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Fig. 7. The velocity magnitude field at </=  >. ? (top 

of the cylinder). The dashed line gives the outline of 

the upstream cylinder 

 

The most important facet of this result is, however, the fact that the application of ACMI 

successfully mitigated the severe distortion of the mesh around the juncture between cylinder and 

strip-plate and allowed the simulation to progress unimpeded. 

Admittedly, the mesh in this test simulation is yet to be refined to convergence, and the flow time 

is yet to be lengthened to a stable solution. But as can be implied by Travin et al., [38], when testing 

the application of a new method/simulation setup, grid convergence can be of secondary importance 

vis-à-vis confirming the applicability of the method/simulation setup itself. The refinement of the 

spatial and temporal discretization and the extension of flow time towards a stable solution can 

always be done promptly after. 

 

4. Conclusions 

 

In this study, we argued the valuableness of SVIV as the mechanism to drive energy harvesting 

from flows to sensor networks. We reviewed the literature to establish the parameters that affect 

the amplitude and frequency response of the SVIV system. We also argued for a wider adoption of 

CFD as a tool to study SVIV by discussing the potential setups available to the user of the open source 

CFD toolbox OpenFOAM, to tackle FSI problems. 

As a result, we found that aspects of the flow that is critical to the behaviour of SVIV that is 2, or 

3 dimensional are generally left out, presumably due to the high initial investment of capital required. 

We showed the potential of OpenFOAM as a practical solution to this problem by reviewing the 

working principle of A(C)MI, which lies at the core of a successful simulation involving a sliding mesh. 

Finally, we demonstrated the applicability of ACMI in simulating the near-wall FSI problem of SVIV, 

and the simulation results are indicative of the valuable output that can be expected with the further 

convergence of the solution. 
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