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ABSTRACT

One of the most important problems in the modern finance is finding efficient ways of
summarizing the stock market data that would allow one to obtain useful information about the
behavior of the market. The trader’s expectations to predict stock markets are seriously affected by
some uncertain factors including political situation, oil price, overall world situation, local stock
markets etc. Therefore, predicting stock price movements is quite difficult. In this paper, the new
technique to predict stock market is presented for the refinement of generated Weighted Fuzzy
Production Rules (WFPR’s) by using fuzzy neural networks. The existing techniques to generate
WFPR’s are suffered from the problem of low accuracy of classifying or recognizing unseen
examples. The reasons for having these problems are 1) the WFPRs generated are not powerful
enough to represent the domain knowledge, 2) the techniques used to generate WFPRs are pre-
matured, ad-hoc or may not be suitable for the prediction problem, and 3) further refinement of the
extracted rules has not been done. In this paper, we look into the solutions of the above problems
by 1) enhancing the representation power of WFPRs by including local and global weights, 2)
developing a fuzzy neural network (FNN) with enhanced learning algorithm, and 3) using this
FNN to refine the local and global weights of WFPRs for stock market prediction. By experiment
our method with some stock markets examples has found a better accuracy in classifying unseen
samples without increasing the number of extracted WFPRs.

Keywords: Data Mining, Stock Market Prediction, Time Series, Classification, Clustering, Fuzzy
Decision Tree, Fuzzy Logics.

1. Introduction

The stock market is a rather complicated system, and good predictions for its developments are
the key to successful trading. Traders must predict stock price movements in order to sell at top
range and to buy at bottom range. As stock trading is a very risky business (Torben and Lund,
1997), it is necessary to evaluate the risks and benefits before entering into any trading. The key to
realize high profits in stock trading is to determine the suitable trading time when the risk of
trading should be minimum. Many attempts have been made for meaningful prediction of stock
market by using data mining and statistical techniques like Support Vector Machine (Alan Fan et
al., 2001, Haiqin, 2002), Neural Networks (Xiaohua et al., 2003; Raymond, 2004), Linear and
Non-linear models (Weiss, E. 2000; Chinn et al., 2001) and Classification (Agrawal R. et al., 2000;
Han, J and Pei, 2000). However, these techniques to predict stock market real time data are yet to
be achieved good classifiers (model).

In this paper, the methods for refinement of generated weighted fuzzy production rules are
presented. These WFPRs are extracted from our proposed predictive Fuzzy Decision Tree (FDT)
algorithm (Khokhar and Noor 2004). In particular, the proposed predictive FDT algorithm is based
on the concept of degree of importance of attributes contributing to the classification. This concept
was firstly proposed by Pawlak, (1991) while investigating the reduction of knowledge. It was
used to extract the minimum indispensable part of equivalent relations. Later on Wang et al.,
(2001) extended this concept to a fuzzy case and then used it to select the expanded attribute at a
considered node while generating fuzzy decision trees. The same idea was extended in (Khokhar
and Noor 2004) for the construction of fuzzy decision trees and applied to stock market analysis.
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In predictive FDT, every path from root node to leaf node presents Weighted Fuzzy Production
Rules (WFPR’s) and the strength of the rule can be measured by a parameter referred as Certainty
Factor (CF). In this research, weights are assigned to every arc from root to leaf node according to
the degree of importance of the attribute contributing to classification. WFPR’s can be extracted
from the predictive FDT. These rules are large in numbers. Therefore, in order to mine and
enhance the representation power of FPRs, the knowledge representation parameters (KRPs) such
as local and global weights are included in these FPRs. These local and global weights had been
proposed by Yeung et al. (1997 and 1998). A fuzzy neural network (FNN) is proposed to refine or
tune the local and global weights of FPRs. A set of weighted FPRs (WFPRs) obtained will be more
optimal and accurate in recognizing and classifying unseen samples. It is because those weights
with values more or less equal to zero could be deleted so that smaller number of propositions in
the antecedent of WFPRs (so-called simple WFPRs) is generated.

Furthermore, the extracted WFPRs with local and global weights capturing more domain experts’
knowledge will have higher accuracy in solving recognition and classification problems. A FNN
offers advantages of allowing us to map these KRPs (local and global weights) of FPRs into the
connection weights of a FNN and with a modified back-propagation (BP) learning algorithm, we
are able to tune, refine and even acquire these parameters. In (Hong and Chen, 1999) eleven
categories of FNNs have been identified. The FNN used in this paper is similar to the fuzzy-like
neuro model where a neural network is used to represent fuzzy rules. The difference is that our
FNN is used to represent WFPRs which could be refined or tuned so that approximately optimal
rules and higher testing accuracy could be obtained. In (Hiraga, 1998; Jang, 1993) two FNN
models are proposed to solve parameters tuning of fuzzy membership functions. The problem
settings of ANFIS in (Jang, 1993) is"that it is used to represent three types of fuzzy inference
systems used in fuzzy controlled systems whose rules are parallel in nature, whereas our proposed
method could handle multi-level WFPRs and extends the traditional method to a more general one.

The following sections explore most of the steps in the process. Section 2 discusses the existing
standard fuzzy decision tree techniques. Predictive Fuzzy Decision Tree is the subject of section 3
and weighted fuzzy production rules of section 4. Section 5 presents the back-propagation and the
convergence of the fuzzy learning rules. Discussion will be on section 6 and finally, the conclusion
1s presented in section 7.

2. Existing Fuzzy Decision Trees

There have been many methods for constructing decision trees from collection of crisp
examples (Quinlan, 1993; Agarwal, 2000; Han, J et al., (2000). The decision trees generated by
these methods are useful in building knowledge-based expert systems. Due to the rapid growth of
uncertainty in the knowledge-based systems, it is found that using crisp decision trees alone to
acquire imprecise knowledge is not enough. Uncertainty such as fuzziness and ambiguity should
be incorporated into the process of learning from examples such as decision tree induction. These
decision tree induction techniques introduce fuzzy decision tree generation suggested by many
authors (Umanol, 1994; Dong and Kothari, (2001); Quinlan, 1993). The fuzzy decision tree with
minimal number of leaf-nodes is usually thought to be optimal. However, the optimal (fuzzy)
decision tree generation has been proved to be NP-hard. Therefore, the research on heuristic
algorithms is necessary to mine knowledge from hidden pattern from huge databases. The heuristic
information used in constructing fuzzy decision trees can be various and each heuristic may be
better than the other in some aspects. Mainly three heuristics are popular for generating fuzzy
decision trees among the existing one. These heuristics are based on

1) classification information-entropy to select expanded attributes (Umanol, 1994;
Dong and Kothari, 2001)

2) classification ambiguity to select expanded attributes (Yuan and Shaw, 1995)

3) degree of importance of the attribute contributing to the classification to select the
expanded attributes (Wang at al., 2001; Yeung, 1999; 2002)
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One powerful technique for generating crisp decision trees called ID3. Quinlan proposed the
earlier -version of ID3, which is based on minimum classification information-entropy to select
expanded attributes, in (Quinlan, 1986). As the increasing uncertainty incorporated into the
knowledge-based system, the fuzzy version of ID3 has been suggestion by several authors e.g.
(Umanol, 1994; Dong and Kothari, 2001) Classification information-entropy is based on
probabilistic models i.e., Shannon Entropy. It is a well known concept to describing probabilistic
distribution’s uncertainty. Subsequently, this concept was extending to describe the possibilistic
distribution uncertainty, called fuzzy entropy. The typical extension was given in (Yuan and Shaw,
1995). Yuan and Shaw, (1995) refers a possibilistic distribution to a vector whose components are
in [0, 1] while a probabilistic distribution is possibility distribution with the property that the sum
of all components is equal to 1.

For a probabilistic distribution, each component considered as a probability with which the
corresponding event occurs. A possibilistic distribution usually considered as a fuzzy set vector,
and each component of the vector, i.e., the membership degree regarded as the possibility with
which the corresponding event occurs. For the difference and consistency between probability and
possibility, one can refer to Zadeh’s, (1999). The difference between the uncertainties described by
the entropy of a probabilistic distribution and described by the fuzzy entropy of a possibilistic
distribution is that the former attains its maximum at all components being 0.5 but the latter does
not. Fuzzy ID3 uses the fuzzy the entropy of a possibilistic distribution.

Another existing powerful heuristic algorithm to generate fuzzy decision tree was introduced by
Yuan and Shaw’s (1995). Instead of using minimum fuzzy entropy, this heuristic (Yuan and
Shaw’s, 1995) used the minimum classification ambiguity to select expanded attributes. The
classification ambiguity is called non-specificity (also called U-uncertainty). Recently, Wang et al.,
(2001) proposed another heuristic, which uses the maximum classification importance of attribute
contributing to its consequents to select the expanded attributes. This concept firstly proposed by
Pawlak, (1991), while investigating the reduction of knowledge. It was used to extract the
minimum indispensable part of equivalent relations. In Wang et al., (2001) extended this concept
to a fuzzy case and then used it to select the expanded attribute at a considered node while
generating fuzzy decision trees. In Wang et al., (2001) method, aims to search for an attribute that
its average degree of importance contributing to the classification attains maximum, i.e., selecting
such an integer k, (the k, thattribute) that P, =max ., F;.

Proposition 1. For fixed k and i, consider two functions

Err <~ 57 p, oz 9, (1)

Ambig M =" (2,0 —x, ) In ] (2)

J=1

within the area {0 < p,-j(k) <1|j=12,..m}, the first function attains its minimum at a vector of
which each component is either 0 or 1, and the second attains its minimum at a vector in which one
component is 1 but the other components are 0. Here make the appointment
Olog, 0=1lim, ,(xlog, x)=0

: k k k . .
In which (7, ,7,%,..... 7,") with descending order 7z

k k k L o K k Ky k
(7,7, .7, ) which is a normalization of ( 2. P ), e, z'”( =

") _
im+l

0 is a permutation of

k

p,.j(“/ max p,.j(“ . Where Entr*’ and Ambig X show the classification information-entropy and

classification ambiguity for each (k) respectively. p,.j(“ shows the probability of classification

attributes.
(for proof see Wang et al., 2001).

This proposition indicates that fuzzy ID3 aims averagely to search the expanded attribute with
relative frequencies as close to 0 or 1 as possible while Yuan and Shaw’s method aims averagely
to search one with relative frequencies as close to 0 (except for the maximum frequency) as
possible.

—————————————————————
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It is easy to see from Proposition 1 that the minimum of the function Ambig i“‘)

(k)

implies the

minimum of the function Entr, and the inverse 1is invalid. Particularly, if

{0< p,.j(k) <1]j=12,..m} is a probabilistic distribution then the two minima are equivalent.

Proposition 2: From proposition 1, function Entr,*’ and Ambig |*) attains their maxima at

®W= . =p, Y =elandp,"” =...=p, " =1 respectively (for proof see Wang et al., 2001) .

Pi
Proposition 1 implies that when all frequencies are 1 the fuzzy entropy is 0 but the non-specificity
attains maximum. That indicates such a situation in which using fuzzy ID3 techniques, Yuan, and
Shaw’s select different expanded attributes. However, proposition 1 indicates that if Yuan and
Shaw’s technique selects an expanded attributes with very small value of Ambig ", then fuzzy

ID3 select the same expanded attribute at the same non-leaf node. Moreover, for the frequency
distribution the smaller the non-specificity, the closer it is to a probabilistic distribution. Thus
proposition 1 intuitively indicates that the two techniques are likely to select the same expanded
attribute while the non-specificity is small. Particularly, if the two techniques select the same
expanded attribute at the root with small fuzzy entropy and non-specificity, then the two
techniques for selecting expanded attributes are gradually consistent. That is the expanded attribute
selection of fuzzy ID3 techniques, to some extent is identical to the one of Yuan and Shaw’s
technique. These two techniques show the expanded attributes of the two heuristics are the same at
most non-leaf nodes.

In Wang et al,, (2001) fuzzy decision tree, which is based on the maximum degree of importance
of attribute contributing to the fuzzy classification. It aims, on the considered node with several
attributes to be chosen to select an attribute whose contribution to classification is maximal.

Proposition 3: Under an assumption of uniform distribution, either maximum or minimum degree
of importance implies maximum fuzzy entropy when the classification is crisp and implies
maximum non-specificity when the classification is fuzzy. The uniform distribution assumption is
formulated in the proof (for proof see Wang et al., 2001)

Proposition 3 indicated that the relation between (Wang et al., 2001) FDT and the other is very
complicated. It implicitly proposes that there exists such an attribute at which the maximum
(minimum respectively) degree of importance and maximum (minimum respectively) entropy can
be achieved simultaneously at a node.

These three heuristic has some strength and weakness, Table 1 presents the summary of
comparative results in terms of complexity, applicability, comprehensibility, learning accuracy,
handling of classification ambiguity and robustness. With regard to the complexity of the fuzzy
decision tree, the relation among the three heuristics is non-deterministic, dependent mainly on the
expanded attribute selection. First consider the computation effort while expanding a non-leaf node
and then consider the size of trees. The number of leaves is an important index to measure the size
of a tree. Obviously bigger numbers of leaves are creating more complexity in construction of
FDT. While expanding a non-leaf node and then consider the size of trees. The following assertion
is valid:
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Table 1: Summary of analytic comparison of fuzzy

Fuzzy ID3 Yuan & Shaw’s Wang et al., (2001)
(Umanol, 1994) (1995)
Heuristic Fuzzy entro Non-specificity of Importance of attributes
Information Y i possibility distribution | contributing to classification
Criterion of Minimum fuzzy Minimum non- Maximum importance
expanded attribute | entropy specificity degree
. Partially same as .
Expa.nded attribute Yuan and Shaw’s Partially same as fuzzy Not same as others
used in the tree . ID3 heuristic
heuristic
Reasoning Mnm-rpam Multlpllcatlon-addltlon Weighted average of
. operation of operation of L
mechanism - X similarity
memberships memberships
Comprehensibility . . .
of tree Lower Quite Higher Higher
Reasoning Medium Less Greater
accuracy
Complexity (time, Same as Yt}an and Same as Fuzzy ID3 Greater than both
space) Shaw’s
Robustness Medium Greater Less
Scalability Less Medium Greater
Prediction No No No

CE (fuzzy 1D3) = CE (Yuan and Shaw’s method) < CE (Yeung and Wang method)

Where CE represents the term Computation-Efforts that refers mainly to the number of times of
operations such as addition, multiplication, max, min, etc.

The number of leaves is an important index to measure the size of a tree. The generic standard of
leaf-node is a frequency-threshold, which is node (fuzzy set) regarded as a leaf if the relative
frequency of some class at the node exceeds a given threshold. Fuzzy rules extracted from Yuan
and Shaw’s tree includes only one parameter CF, one can see that the comprehensibility of Yuan
and Shaw’s tree is better than that of Wang et al., tree which is turn better than that of fuzzy ID3,
that is

Comprehensibility (fuzzy ID3) < Comprehensibility (Yeung and Wang,

tree) < Comprehensibility (Yuan and Shaw’s)

The last row in Table 1 is presenting the parameter predictions that have not been
considered by any researchers. Therefore, in this research parameter prediction is also considered
for the construction of FDT.

3. Predictive Fuzzy Decision Tree (FDT)

Decision trees are a well-k- wn and widely used method for classification problems. For
handling numerical attributes or even for numerical prediction. The traditional decision trees based
on crisp predicates are not suitable. Through the usage of fuzzy predicates for different types of
attributes not only the expressive power of decision trees can extend but it also allows creating
models for numerical attributes in a very natural manner. For this purpose, some attempts are being
made for the last decade and introduce fizzy decision tree for numerical prediction but the existing
fuzzy decision tree is still suffering scme problems like complexity, comprehensibility of tree,
over-fitting, robustness. scalability, and mining useful fuzzy rules from numerical attributes.

The predictive FDT is based on the maximum degree of attribute contributing to the fuzzy
classification (Wang et al., 2001). It aims, on the considered node with several attributes to be
chosen to select an attribute whose contribution to classification is maximal. Before starting the
construction of predictive FDT it is important to understand some attributes information that is
used through out this paper. In this research, the three basic attribute P, =price of open, F. =

R #
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price of close, ¥ = volume are considered from stock market data. In addition, some other factors
are also considered that can affect stock market after 5 minutes of period. These factors are as
follows:

P,, = Oil Price, P, =Natural Disaster, P,; =Political Situation, P,, =New Policiés, P,; =New

Budget, P,-=Other Companies, P,,, =Local Stock Markets, P, =Overall World Situation.

These factors are calculated for different associated stocks from KLSE, NYSE and LSE after
analyzing the daily stock prices in different periods of times. Table 2 presents an example of real
time data sample for every 5 minutes of periods during 9:30 to 11:05. The last column in table 2 is
showing the target classification attribute with name primary signals. The primary signals are
defined after evaluating the final trends of every stock price with in 5 minutes of periods.
Particularly, the five basic attributes i.e., price of open, price of low, price of high, and price of
close are used to calculate primary signals.

Predictive FDT consists of three steps including kernel K-means clustering, fuzzification of
numerical numbers, and finally fuzzy decision tree algorithm. The kemnel K-means clustering
algorithm (Noor and Awan, 2004) takes into account the neighborhood and thus also gives
smoothing effect. It is used to compresses the data set and to find the center concerning the data
set. For the fuzzification of numerical numbers usually a fuzzy attribute can take many values if
the representation of the fuzzy value is given directly by a membership degree.

Like numerical attributes, the range of such a fuzzy attribute can be described as the interval
[1,0]” where M is the dimension. For a given set of membership functions, the intention in this
research is to find several new fuzzy sets, which are regarded as clustering result to reasonably
describe this set of membership functions. Finally, proposed predictive FDT algorithm is

presented. In the following subsections several basic concepts involved in predictive FDT are
presented.

When an attribute is categorical, the fuzzification is quite straightforward. Each of the possible
values of the attribute is just treated as fuzzy subset. In this case, the membership value in a fuzzy
subset is either 0 or 1. For numerical attributes, the kernel k-means clustering algorithm (Noor and
Awan, 2004) to cluster the attribute values into 2 or 3 clusters representing two 7,7, or three

T,,T,,T, linguistic terms respectively. The choice of the number of clusters is arbitrary though;

the notation guided us that a value can typically be thought of as being low, average and high.
Memberships have been generated based on a triangular membership function and the 2 or 3
cluster centers ( a,,a, with @, <a,)or(a,,a,,a, with a, <a, < a, ) respectively obtained through
kernel-kmeans clustering. The following sections present the explanation of these clusters with
example and how these clusters have been used in triangular membership functions.
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Table 2: 20 real time (5-Minute Bars) examples of stock market data

No Dz}lffl:end P [e) P(' 14 Pop | P wo | Prs | Pup | P ve | Foc | Prsw | B ows PSr:;::irly
1| 080204 4 550 13084 79000 0 | 7. |003|008| 0 | 075 -006 | 036 | 0.0090
9:30 0.03
2 | Rt | s0sa 3976 | 19000 | 0 | Sl | 0 | o foss| 026 | 002 | 00150
30| 0800 13074 | 308 30800 | 0 | o024 009 | 001 | © | o3 | 025 | 026 | -0.0006
a | Bt 1398 3985 | 64200 | 0 | | oi 009 | 0 [oss | -065 | 032 | 00292
s Ot 3985399731900 0 | 0l oos lona | O | osa | 009 | 032 | -0.0222
6 | O%9200% 139073988 | 39300 | 0 034 | 025 | 049 | © | o4 | 062 | 025 | -0.0238
7 Oﬁ/(())%/g“ 39.87 | 399 143,800 | 0 048|018 | oo 0 | 0| -085 | -0.69 | -0.0806
8 | OV | 309 | 3086 27000 o | o |o2s| o | o 007 | 022 | 032 | -0.0237
9 | 0300 3086|3978 | 8800 | 0 | o [019| o | o |o026|-002 | 001 | 00245
1o | OU0Y {3077 3968 | 13500 0 | 0 | ol 0 | o | 5, | 055|033 | o0osse
11 081/8:22/84 39.67 3971 | 14800 | 0 | (| ol 0 | 0 002 002 | 008 | 0.0706
12 081/8:22/?4 39.72/| 3977 | 17400 | 0 | O, | 018 | 0 0 0.'25 038 | -0.26 | 0.0598
13 0?823/84 3978 | 39.81 26,100 | 0 | 7008|005 | 0 |002]-065| 038 | -0.0451
14| O30 13083 | 5085 | 26200 | 0 004 | 008 | 025 | © |05 | 058 | 028 | -0.0949
5| 00020t | 5985 (398934000 [ 0 | Tl oo | os | © | 007 | -023 | 0ss | 00750
t6 | “loas |32 399 |20 | 0 | ool s 0 0.0 | 028 | 038 | 0.0425
17 081/8125/34 39911 39.93 30,800 | 0 | (00| 019035 0 | o |-026 | 085 | -0.0028
18 oi/gé/g4 39.93 139.94 114300 | 0 | 0.04 | 078 | (o | 0 | 026 -036 | 0.11 | -0.0083
19 | %02 13096 | 3992 | 14400 | 0 | 015 | 5 |034] o | 098 -047 | 023 | -0.0068
20 | OV 13992 3991 7900 | 0 | Tl oas | ote | O | 027 | 05 | <052 | -0.0168

3.1 Fuzzification of Numerical Number

Fuzzification is a process of fuzzifying numerical numbers into linguistic terms, which is
often used to reduce information overload in human decision-making process. Linguistic terms are
simple forms of fuzzy values but generally their membership functions are unknown and need to
be determined.

Given a fuzzy set of records,D, each of which consists of a fuzzy set of
attributes / ={a,,a,,......a, } , where a,,r=1,...n, can be quantitative or categorical. Consider a

set of examples {e,,e,,.....ey} , which is defined as the universe of discourse X (in short X is

denoted by {1,2.......,N}). Let TV ....,T" and T"™ be a set of fuzzy attributes where 7"
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denotes a classification attribute. Each fuzzy attribute 7' consists of a set of linguistic
terms L(TY) ={L,",.....,L,,""}(j =1,2,....,n +1) . All linguistic terms are defined on the same

universe of discourse X . The value of the ith example e, with respect to the jth attribute,

is a fuzzy set defined on LTV =1,......N, j =1,2,....n+1). In other words, fuzzy set
)

denoted by u

ij
4, has a form of y,.,.“) /LY +pif‘2) JL,Y 4+ +yl.j('"” /Lmj(’) where /zij“‘ denote the
corresponding membership degree k =1,2,......m,. The fuzzy sets and its linguistic terms are as

follows:

Cp = change in price of open = {Low, Average, High}
Cp. = change in price of close = {Low, Average, High}
C, = change in volume = {Small, Medium, L arge}
P, = Oil Price = {Decrease, Stable, Increase}

P,, = Natural Disaster = {No, Yes}

P, = Political Situation = {Clear NotCledy

P, = New Policies = {LowAffect, NoAffect, HighAffect}
P,, =New Budget = {Fair, NotFair}

o

« = Other Companies = {Low, Medium, High}
s = Local Stock Markets = {LowAffect, NoAffect, HighAffect}
ws — Overall World Situation = {Bad, Good}

v v

Fuzzy sets can have a variety of shapes. However, a triangle or a trapezoid can often provide an
adequate representation of the expert knowledge and at the same time significantly simplifies the
process of computation. Figure 1(a), Figure 1(b), Figure 1(c), and Figure 1(d) are representing an
example of set of 4 linguistic terms (oil price, change in close, local stock market and primary
signals) for fuzzy attribute. Horizontal direction presents universe of discourse and vertical
direction presents degree of membership[0,1].

Let X be a given data set, which is clustered into & linguistic terms T,,j=12,...,k. For

simplicity, it is assumed that the type of membership to be triangular as follows:

1 x<a,
T (x)= e B a <x<a, (3)
a, —q
0 xza,
1 xza,
T,(x)= Lma) a, ,<x<a, 4)
(ay —a,)
0 x<a,,
0 xza;,
(a,,,—x)/(a,,,—a;) a . <x<a,,
T.(x)={ " e g M 1<j<k (5)
J
(x-a, )a;-a,,) a,,sx<a;
0 x<a;,

The only parameters to be determined are the k centers{a,,a,,.....a,}. A simple method to

determine these centers is fuzzy clustering based on KMeans. For example consider the numerical
attribute “Change in open” of the group of examples as shown in Table 1 by choosing k =3 and
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suppose the learning rate o =0.02, three values of center a,-0.02, a, =-0.13, a,=0.01 after

135 time of iteration. The membership functions for attribute “change in open” with linguistic
terms {Low, Average, High} are described as follows

1 x<-0.02
Low=T(x)={ —213=% _ _40)cxc0.13
~0.13-(=0.02)
0 x2-0.13
Average =
0 x>0.01
(0.01-x)/(0.01-(=0.13)) ~0.13<x<0.01 ,
T, (x) = l<j<k
(x—(~0.02))/((-0.13)-(=0.02))  ~0.02<x<—-0.13
0 x<-0.02
1 x20.01
High=T,(x)={-5=C03) 515 o0
(0.01-(-0.13))
0 x<-0.13

It is obvious that the three linguistic terms can be described as Low, Average and High. The
second column of Table 3 shows the membership degrees of the attribute Change in open
belonging to the three membership functions. When the values of an attribute are fuzzy, the values
can be written as one of the two forms: simple linguistic terms and membership functions. The
information provided in a membership function is more concrete than those provided in linguistic
terms but the meaning of membership function is not clear. Linguistic terms are simple forms of
fuzzy values but their degree of membership is unknown and need to be determined. Degree of
membership for selective 5 attributes by using the Table 2 is determined as in Table 3.
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Table 3: After training real time examples of stock market with fuzzy representation

¢y, Py Pyy Lows s Primary Signal

No -
Low Med High | No Yes | Fair NotFair | Bad Good AI;‘?:Z ¢ ::'Ifz(: ¢ :lf;%g ¢ Down Hold Up
1 [ 010 055 045 {045 0.55]0.30 0.70 094 0.06 | 0.00 0.14 0.86 0.00 053 047
2 003 010 0.87 | 085 0.15]0.67 0.33 0.88 022 | 0.58 0.25 0.17 000 067 033
3 /071 0.10 0.19 | 1.00 0.00| 0.00 1.00 0.70 030 | 0.81 0.19 0.00 049 033 0.18
4 1009 070 021 |1.00 0.00] 020 0.80 027 073 0.00 1.00 0.00 025 0.07 0.68
5 1042 030 048 | 092 008|046 0.54 0.09 091 0.73 0.27 0.00 030 020 0.50
6 | 070 0.00 0.30 | 042 0.58 | 0.70 0.30 094 0.06 | 012 0.00 0.88 030 0.70 0.00
7 {000 000 1.00 [0.54 046|085 0.15 0.82 0.18 | 0.00 0.00 1.00 041 059 0.00
8 | 1.00 0.10 0.00 | 0.60 0.40 | 0.28 0.72 0.00 1.00 | 046 0.33 0.23 0.16 040 046
9 | 043 0.11 046 | 067 0.33]0.05 0.95 1.00  0.00 | 0.10 0.00 0.90 095 0.00 0.05
10 | 045 0.55 0.00 | 091 0.09| 032 0.68 0.50 0.50 | 0.00 0.20 0.80 069 020 0.11
11 | 0.00 0.69 031 {020 0.80]0.17 0.83 044 0.56 | 0.00 0.67 0.33 0.80 020 0.00
12 1 0.00 1.00 0.00 | 0.80 0.20 | 0.48 0.52 1.00  0.00 | 0.00 1.00 0.00 0.00 1.00 0.00
13 1020 0.80 0.00 | 051 049|024 0.76 0.20 0.80 | 0.00 0.25 0.75 049 0.00 0.51
14 | 041 0.38 021 |0.78 022 1.00 0.00 082 0.18 | 0.74 0.20 0.06 0.00 082 0.18
151 0.50 030 020 |0.54 046 0.18 0.82 0.19 0.81 0.00 0.64 0.36 0.00 054 046
16 | 0.50 0.10 040 | 0.41 0.59 | 0.80 0.20 098 0.00 | 0.00 0.21 0.79 0.00 080 020
17 | 0.05 030 0.65 | 0.50 0.50 | 0.60 0.40 005 095 | 025 0.00 0.75 065 000 035
18 | 0.34 035 031 | 038 0.62]| 040 0.60 082 0.18 ; 0.74 0.18 0.08 020 052 020
19 1 0.50 044 0.01 | 094 0.06|0.15 0.85 023 0.77 | 0.00 0.64 0.36 034 0.10 0.56
20 | 0.10 0.01 0.89 |0.10 090} 0.30 0.70 098 0.02 | 0.21 0.10 0.79 0.10 030 0.60

3.2 Predictive Fuzzy Decision Tree Algorithm

Let X represent a discrete universe of discourse, F(.X') denote the set of all fuzzy subsets

defined on X . For X ={e,,e,,

T=T(e)! ¢
2001).

By using the same notations in section 3.1, consider a test node S having » attributes
, T to be selected. For each k(1 <k < n), the attribute 7%’ takes m, fuzzy subsets

. .. *) (k)
(linguistic terms), L,"',L, ",

(n+l1) (n+l)
L LY

+.....

nmk

eytand T € F(X), T can be represented as

+T(ey)/ ey, and M (T)= Ztl T(e,) denote the cardinality of T (Wang et al.,

vy L% T denotes the classification attribute, taking values

1 . .
,Lm("+ ), For each attribute value (fuzzy subset), L ¥ (1<k<nl<i<m,), its

relative frequencies concerning the j” fuzzy class L,"*" (1< j < m) at the considered nonleaf node
S is defined as

The weight of the ith value L,(k) is defined as
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Definition 1:

Let g, = 1, " sty voetty,™ be the value of the ith example with respect to the kth
attribute, wy = 22, ooty oty ™, v, be the value of the ith example with respect to the
classification (1<i< N,1<k<n),ie., v, isa fuzzy setdefineon L7, L,V L, (the

set of linguistic terms of the classification attribute 7"*"), SM be a selected similarity measure,
2, D 2 A (SM (fyg 1)) A SM (Wi, W) 5 (where A denotes minimum, i#p), and
= SM (v,,v,)(i # p) . Then, for the kth attribute T® (1< k <n), the degree of importance of

its ]th linguistic term L “’(1< j < m,) contributing to the classification is defined as

Bj N(N Z Zp¢1g ( ip lp (8)

x x>0

here g*(x) = .
wmere 50 ={3 17}

Definition 2:

The averaged degree of importance of the kth attribute 7% is defined as P, = Z"‘l w0,
in which w; is defined by equation .

Proposed approach aims to search for an attribute such that its average degree of importance
contributing to the classification attains a maximum, i.e., selecting an integer k, (the k.th

attribute) so that P,, = Max,_,, P, where P, is given by definition 2.

According to the above heuristic, a FDT can be generated by using training a set of data. Before
training the initial data, the « cut is usually used for the initial data (Wang et al., 2001). The
purpose of using « cut is to reduce the fuzziness. The « cut of a fuzzy set L is deﬁned as

L(x)= {L(x) L(x)za ©)

0 Lx)<a

When o is set in the interval (0,0.5], procedure for generating a predictive FDT is described as
follows:

Step 1.
Given the cut-standard a(a € (0,1)) and the leaf-standard B(8 € (0,1)).

Step 2.
Use a to cut the initial data set. More specifically, each membership degree less
than « is changed to 0 and all others remains unchanged.

Step 3.
Consider the root node (1,1,........ ,1) as the first candidate node.

Step 4.
Randomly select a non-leaf candidate node. For any attribute which has not been used in
forefather nodes of this node, compute F, .

Step 5.

Select an attribute with average maximum importance to the classification (given by
definition 2) as the expanded attribute. According to the expanded attribute, generate son-
nodes of the non-leaf candidate node. I'hese son-nodes are considered as new candidate
nodes.

#
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Step 6.
For each of these son-nodes, if the relative frequency Pl.f(k) (given by equation 6) of a
certain class exceeds [ or the membership sum of the considered son-node is less than a
small positive number, then this son-node is labeled leaf,

Step 7.
If all nodes are leaves then stop, else go to Step 4.

4. Weighted Fuzzy Production Rules (WFPRs)

The WFPRs generation from fuzzy decision tree is an extended form of fuzzy production
rules (FPR) proposed by (Yaung et al., 1994). WFPRs defined here is similar to the conventional
production rules with the exception that fuzzy values such as “fat” or “small” are allowed in the
propositions. A weight is assigned to each proposition in the antecedent part, and a certainty factor
is calculated for each rule.

A WFPR is defined as: R: IF @ THEN ¢ (CF = p), Th, w, where a={qa,,a,,.....a,) is
the antecedent portion which comprises of one or more propositions connected by either “AND” or
“OR”. Each proposition a,(1 <i < n) can have the format "xis f,.", where f, is an element

of a set of fuzzy sets F = {.fl’fZ’ ..... f" }. The consequent of the rule ¢ can be expressed,
as"xis f,", where f is also an element of F. The parameter /£ is the certainty factor of the rule

R and it represents the strength of belief of the rule. The symbol T/ =(A,, A, ,......A, ) represents
a set of threshold values specified for the proposition in the antecedent . The set of weights
assigned to the propositions (a,,a,,......a, ) is given by w=(w,,w,,.....w, ). The weight w,

of a proposition @; shows the degree of importance of «; contributing to the consequent ¢ when
comparing to other proposition a,, for J # i.Itis obvious that when there is only one proposition

in the antecedent of fuzzy production rules, the weight W, is meaningless. The set of weight w

assigned to each proposition in the antecedent is referred as local weights. Another important
concept called global weight, which could be assigned to each rule in an inference path, is fully
explored in (Yeung and Tsang, 1995).

In general WFPR’s are categorized into three types, which are defined as follows:

Type 1: A Simple Fuzzy Production Rule

R:IF a THEN ¢ (CF= u), A, w, For this type of rule, since there is only one proposition
‘@’ in the antecedent, the weight W is meaningless.

Type 2: A Composite Fuzzy Conjunction Rule

R:IF a; ANDa, THEN ¢ (CF = u), A,,4,,w,,w,,

Type 3: A Composite Fuzzy Disjunction Rule
R:IF @, ORa, THEN ¢ (CF = u), A,,A,,w,,w,,

For both types 2 and 3, A, is the threshold value for a; and w; is the weight assigned to a;.

Some authors do not assign a certainty factor to a FPR while others ignore the weight and the
threshold value assigned to each proposition in the antecedent. We considered that the capturing of
fuzzy knowledge using fuzzy production rule with weights and threshold values plays an important
role in real world applications. Hence the weight (degree of importance), the threshold value as
well as the certainty factor have been taken into account.
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4.1 Weighted Fuzzy Production Rules with Single Antecedent

R:IF A THEN C,(CF = p), Th, W eg. if a, then C,(CF = u), Th=1{4,},

W ={w,}. C is represented as a “concluded disorder” in Chen’s Diagnosis problem (Chen,
1988; Chen, 1994) or a consequent in other problems.

Given four cases of facts:
Casel: A = A
Case2: A = very A
Case 3: A =more or less A
Case4: A = not A

What conclusion C can be drawn? In order to draw the conclusion C ', similarity-based fuzzy
reasoning algorithm is analyzed all of these possible cases and select the most accurate case which
is best suited for classification of stock market prediction.

4.2 Weighted Fuzzy Production Rules with Multiple Antecedents

If the antecedent portion or consequence portion of fuzzy production rule contains
“AND” or “OR” connectors, then it is called a composite fuzzy production rule. According to
(Looney, 1987), the composite fuzzy production rule can be distinguished into the following rule-

types:
Type 1:1F @; AND, a;, AND...ANDa,, THEN a, (CF = u,)
Type 2: IF a; THEN a,, AND ,q,, AND....ANDq,, (CF'= 4,)
Type 3:1F a, OR, a,;, OR...OR a, THEN a; (CF = u;)
Type 4: IF @, THEN a,, OR ,q,, OR....OR q,, (CF = 1,)

In proposed algorithm, multiple propositions connected by “AND” are used,

R:IF A THEN C,(CF = u), Th, W eg.if a, AND a, THEN C,(CF = 1),
Th=A{2,,A,}, W=4{w,w,} A={a,,a,), a, AND a, are connected by “AND” consider
the following four cases:

Case1: A = (a,".a,"y= A={a,,a,)

Case2: A

very A= {very a,,very a,y A<a,',a,"){a,',a,"){a,",a,")
Case 3: A ={a,',a,")=more or less A = ( more or less @, , more or less @, )

Case4: A ={a,',a,"y=not A =(not a,,not a,)
What conclusion can be drawn?

4.3 Mapping a WEFPR and Its Reasoning Algorithm to FNN

A set of WFPRs and the proposed weighted fuzzy reasoning algorithm can exactly be
mapped into a three-layer FNN. These three layers are called Term layer, Rule layer, and
Classification layer. We describe the structure of the mapped FNN as follows.

Term layer: This is the input layer (layer i). Each node in this layer represents a linguistic term
of an attribute. Since each linguistic term corresponds to an attribute value, the input of each node
is regarded as the similarity degree between the observed attribute value and the corresponding
term (proposition) of the antecedent in a WFPR. The similarity degree can also be the membership
value that indicates to what degree the observed fact belongs to the linguistic term.

Rule layer: This is the only hidden layer (layer j ). Each node in this layer represents a given

antecedent part of a rule. According to linguistic terms (propositions) appeared in the antecedent
part of a rule, the connections between the term layer and the rule layer are determined.

#
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Classification layer: This is the output layer (layer k). Each node in this layer represents a
fuzzy cluster. Since the inferred result of a WFPR has generally the form of vector (discrete fuzzy
set defined on the space of cluster labels), the output of the network has more than one value. The
meaning of each output value after normalization is the membership value that indicates to what
degree the training object belongs to the cluster corresponding to the node.

Connection weights: The local weights (shown as Lw,/ ) of a set of WFPRs are regarded as the

connection weights between the term layer and the rule layer. The global weights (shown as Gw/k )

of the set of WFPRs are regarded as the connection weights between the rule layer and the
classification layer.

Fig. 1 presents a generic conjunctive WFPRs mapped to a FNN which could be used to refine and
tune local and global weights.

\ \“b
i > >k
G
wik
o / N / N
y/ yl yl
=12, 1, j =12 L, k=121,

Figure 1: Generic FNN for a conjunctive WFPRs

5. Back-propagation Algorithm and the Convergence of the Fuzz Learning Rule
A. The Convergence of the Fuzzy Learning Rule

Let us consider a two-layer feed forward FNN as shown in Fig. 2 in which the neuron unit is a
fuzzy neuron with fuzzy operators (" ,®) . The training method is presented as follows.

Step 1) Setting the initial connection weights

Setting W, =1, i=12,...n; j=12,.....m
Step 2) Calculating the actual output
J " k .
(b, )’:k’;(Wkl a’) j=12,... .m (10)
where 4, = (a,l ,a,.2 yeereanes ,a") i=12,..... , 1 is the vector of pattern’s inputs
B = (b,] ,1’)/2 oo ,b,") .is the vector of pattern’s outputs.
(bl1 )',(blz)', ......... ,(b,") is the actual response for the input pattern A,. W, stands for the

q

connection weight from node 7 in F| tonode j in F,.
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Step 3) Adjusting the connection weight
J J
Let 5, =(b ) —b,

old
Wy —nd; W al <b!
i ¢

oid . (11)
Wy otherwise

where 77 € (0,1] denotes the learning rate.

Step 4) Go to Step 3 until W, =W, hold for all k and j

Step 5) Repeat Step 2 for the new input and output pattern.
This algorithm is called the fuzzy learning rule. To the fuzzy learning rule, we have the following
theorems.

Figure 2: Operator network

Theorem I: The fuzzy learning rule is convergent.

Proof This theorem is an extension of & -rule found in (Minsky and Papert, 1988). From the steps
1 to 5, it is easy to see that this learning rule converges.

Theorem 2: 1f a solution to the following equation-group exists:
AW .a ) =b! =12 =12 m (12)
k=t *

then the fuzzy learning rule algorithm can converge to the W ° (W ° is an m x 1 matrix) such that

W satisfy the above equation-group.
Proof: From the theory of fuzzy relation equation (He, 1985) one may notice that each iteration

n
: . . . k
when this neural network learns, it searches for a matrix of weights so that " (W, .a," ) = b/
k=1

i=12,....,n j=12,.... .M, ie., it tries to find a solution for the fuzzy relation equation-

group. If W° (an m x n matrix) exists and is the solution of this fuzzy relation equation group,

then it is true that the fuzzy learning rule converges to this W ° . This completes the proof.
Theorem 2 shows that a two-layer FNN with (”,®) operators can produce the fuzzy

relation: 4, = (a,],a,.z, ......... ,a,"y > B, = (b,l,biz, ......... b ") i=12,....... .1 by
learning.
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B. Generic Example of a FNN

To formulate the back-propagation algorithm, let us consider a generic case of our proposed
FNN as shown in Fig. 1, where there are L, Term nodes, L, Rule nodes and L, Classification

nodes. For a given input vector, e.g. the nth input vector, the feed forward propagation process is
described as follows:

The initial layer (Term layer): {y LMY= 1,2, L, } (the given input vector);
The first layer (Rule layer):

y P = A8 x (L9, V0] j =120, L (13)

The second layer (Class layer):
2 1
yPln } Gy Inl, k=12,..,L2. (14)

Let there be N training sample data. Then, the total error function is usually defined as

Ly

N
= =22 (d[n]=y,[n])?

n=1 k=

va—-*

E=

Mz

(;Z(dk [n]-y,[n J ZE (15)

n=l1

Where d,[n]= y,(cz)[ ]/maxlgkst {y,((z)[n]} is a normalization value of the k — 1/ actual

output of the 72— th training sample (1 <k < L, ). It is easy to see from (1), (2), and (3) that the

error Eis a function with respect to the local weight Lwij and the global

weight G, (i =1,.....,Ly); j=1,..L;;k =1,....,L,. The main objective of learning is to
adjust these weights so that the error function reaches minimum or is less than a given small
value £ .

C. Enhanced Back-Propagation Algorithm for the FNN

A back-propagation, one of the most popular and powerful learning algorithms, has been
proposed for years to learn a multilayer neural network with three or more layers. In our proposed
FNN, we establish an enhanced back-propagation algorithm by modifying the smooth derivative
introduced in (Blanco, 1995) which is briefly described as follows.

The usual derivatives

1 <
a(y/\p)/ay:{ yorseoo
0 i y<p
11 i y2
o(yv p)/oy ={ f i (17)
0 i y<p

are regarded as the crisp truth degree of the proposition “ } is less than or equal to p ” and the
crisp truth degree of the proposition “ y is greater than or equal to p ” respectively. To improve the
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performance of training, these crisp behaviors will be replaced by fuzzy behaviors which are able
to capture the real meaning of (¥ < p)and (¥ = p) in a vague context (Blanco, 1995). Since the
relative position of y with respect to p is softened, the relative position could be regarded as the
minority degree of p with respect to y, denoted by || p < y ||. Noting that when p < y then
| p < ¥l =1, whereas when it is reasonable to consider the minority degree of || p <yl tobe
equal to y. The Godel implication is the most suitable one. Consequently, two enhanced
derivatives are defined as follows:

o(xvc) {1 if xzc o(x A cC) {1 if x<c
—_— = and ——— = (18)

Ox x if x<c Ox c if x>c

Let us now derive the standard back-propagation equations.
According to the principle of gradient descent, the back-propagation equations for the FNN as
shown in Fig. 1 can be written as

oE oFE
Loand Gy =G — L 19)
oL, T p 0G, (

L ..:L a4

wij Wij

where @ and [3 are the learning rate. Therefore, the problem of derivation is how to evaluate the

two partial derivatives appeared in (Jang, 1993).
The detailed derivation can be found in (Eric et al., 2004) and the derived results are shown in the

form of equation where the attached [7] has been omitted from each

yf (a =1, j,k; f=0,12), and all notations have the same meaning as that in (13) and (14).

Theorem 3: The enhanced Back-Propagation Algorithm for FNN converges.
Proof: From Theorem 1 and the traditional gradient descent learning method of a neural network,
it is easy to see that our enhanced Back-Propagation algorithm for FNN converges.

6. Discussion

Fuzzy Neural Network method could be used to solve parameters refinement, a tuning
problem, or a parameters acquisition problem. What we need to do is map the FPRs to a FNN and
randomly assign the initial weights to real values in [0, 1]. The training data are then fed into the
network. After training, the tuned or adjusted weights are obtained, which are the required
parameters. Thus, it could be used to solve some of the knowledge acquisition problems. In our
experiment we put some constraints on the weight updating. It is meaningless for the knowledge
representation parameters: CFs and LWs to exceed a specified range. There is a criterion of
keeping the knowledge representation parameters in their allowable range [0, 1]. If the weights are
out of range, a weight adjustment method is used. This method has also been discussed in (Lacher,
etal., 1992).

In some experiment of FNN by Tsang, E.C.C et al., (2002) used to model a job-seeking expert
system, the error tolerance is set to 0.01 and the maximum cycle is set to 500 to avoid an endless
loop in the learning process. As we know, that NN has a problem of easily getting stuck to a local
minimum. In order to reduce the chance of getting stuck to a local minimum, we could use a
momentum term to guide the FNN.

There are many different FNNs proposed and found in literature. A survey paper which
summarizes the fusion and union methods of fuzzy with (NN)/(GAs) could be found in (Hiraga et
al., 1998). In order to evaluate the pros and cons of our proposed method, we tried to compare our
proposed method with other existing methods. To our surprise, there are some papers in the
literature that use FNN to tune parameters in multilevel FPRs. Many papers in FNN use NN to
tune parameters of membership functions in single-level FPR systems. So it is not appropriate
trying to compare our proposed model with those methods mentioned in (Hiraga et al., 1995) and

M
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Jang, J. R. (1993) as they only handle single-level FPRs while our method handles more complex
multilevel FPRs.

Tsang, E.C.C et al., (2002) use the numerical data representing the local weights and certainty
factors are used for experiments. One may notice that in FPRs Tsang, E.C.C et al., (2002) the
conclusion drawn is the same as the original consequent (i.e., B'=B) with certainty factor
(numerical value) indicating the degree of truth of this conclusion. The method proposed in this
paper is still the “computing with words (CW)” concept as proposed in (Yeung, D. S. and Tsang,
E. C. C. 1996). The differences between our method with the method proposed in (Yeung, D. S.
and Tsang, E. C. C. 1996) is that: 1) we use the degree of similarity method while in (Yeung, D. S.
and Tsang, E. C. C. 1996) the CRI method is used instead and 2) our conclusion is the same as the
consequent of FPRs and a degree of truth is computed, while in CRI the conclusion drawn may be
different from the consequent of FPRs and no degree of truth is provided.

Our proposed method could be used to solve multi-attribute decision making (MADM) problems if
decision makers (DMs) are able to represent decision processes in terms of FPRs. As mentioned in
(Hashiyama et al., 1993), MADM refers to the problem of selecting among alternatives associated
with multiple attributes. The multiple attributes could be represented as propositions in the
antecedent and the alternative represented as the proposition in the consequent in our conjunctive
FPRs. In (Hashiyama et al., 1993), a FNN is used to identify the changes in the subjects’ weights
of the attributes.

7. Conclusions

This paper proposes a method to generate and obtain a set of approximately optimal
WFPRs by refining and tuning the local and global weights with a FNN. The aim of including
local and global weights in FPRs and refinement of these weights is to improve the learning and
testing accuracy without increasing the number of rules in the learning problem. When a local
weight is found to have small or zero value after refinement, the corresponding proposition in the
antecedent of a rule could be deleted. Thus a set of approximately optimal WFPRs could be
extracted. We know that the simpler the form of the extracted rules, the stronger the generalization
capability of the extracted rules. As the computational complexity of finding an optimal set of
fuzzy rules is generally NP-hard, the approach to find approximately optimal set of fuzzy rules
becomes very important. Hence, the set of extracted fuzzy rules, with high leaming and testing
accuracy and with small number of the rules, should be considered to be optimal.

Our future research work on rule refinement will be on determining the trade-off and strike a
balance between the number of rules extracted and the testing accuracy of the extracted rules by
using large databases.We will look into the problems of how we could achieve an optimal number
of rules by deleting those rules with small or zero global weights. We will also develop an
algorithm that will allow us to tune, refine and find optimal rules from a set of rough, crude and
raw rules. The robustness and statistical property of this algorithm will also be studied.
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