
International Journal of Innovative Computing 9(1) 47-54

47

A Survey on SQL Injection Prevention Methods

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din

Faculty of Engineering, School of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Email: shahbaazchaki123@gmail.com, mazura@utm.my

Submitted: 6/01/2019. Revised edition: 24/03/2019. Accepted: 28/03/2019. Published online: 30/05/2019

DOI: https://doi.org/10.11113/ijic.v9n1.224

Abstract—Database plays a very important role in everyone’s

life including the organizations since everything today is

connected via Internet and to manage so many data. There is a

need of database which helps organizations to organize, sort and

manage the data and to ensure that the data which a user is

receiving and sending through the mean of database is secure

since the database stores almost everything such as Banking

details which includes user id, Password and so. Thus, it means

that the data are really valuable and confidential to us and

therefore security really matters for database. SQL Injection

Attacks on the database are becoming common in this era where

the hackers are trying to steal the valuable data of an individual

through the mean of SQL Injection Attack by using malicious

query on the application. This application reveals the individual

data by an efficient and the best SQL Injection Prevention

technique is required in order to protect the individual data from

being stolen by the hackers. Therefore, this paper will be

focusing on reviewing different types of SQL Injection

prevention methods and SQL injection types. The initial finding

of this paper can make comparison of different types of SQL

Injection Prevention methods which will enable the Database

Administrator to choose the best and the efficient SQL Injection

Prevention Method for their organization. Consequently,

Preventing of SQL Injection Attack from happening which

would ultimately result in no data loss of an user.

Keywords—Comparison, SQL Injection, SQL Injection

Prevention, SQL, Prevention Methods

I. INTRODUCTION

A database is sorted or gathered information to keep vast

amount of data. Everything is stored in a Computer server or a

system. Hence, databases are more complex and are frequently

created utilizing formal structure/design and displaying

strategies and modelling techniques called DBM, the database

management system works in synergy with the database,

applications and end clients to analyses data and provide the

administrator with a direct access to the required database

information when required. Essentially, the database entries

with the DBMS and relevant applications form the database

system. Likewise, it is not uncommon to use the word

“database” to refer to the database system, DBMS or any

database related application. The expression "database" is

additionally used to freely allude to any of the DBMS, the

database system or an application related with the database.

Database management systems may also be arranged by

considering how they bolster different database models. The

1980s was dominated by social databases, during which

information was modelled as sections and lines in a table

progression. Information queries and composition were, for

the most part, also done using SQL. However, in the 2000s,

there was the emergence of non-social databases that was

dubbed NoSQL drawing on the fact that a rather diverse

question dialects were adopted.

A database is like a heart of any organization. This is

because without a database, the organization will not work or

would be incomplete. Database stores valuable information of

a customer or client or sales lead or it connects multiple

database which contains multiple tables which connects to a

bigger platform, making an organization complete. A good

example of database in organization would be Facebook,

Amazon, the Airline industry or banking system and there are

millions of such website that need database every mile second

of their work in order to run their business in an efficient and

organized manner rather than doing everything manual which

takes a lot of efforts and time and nearly seems impossible in

this era where we fully depend on technology and a great

example of this era technology would be database which helps

us in day to day life. In a formal sense, the word “database” is

used to refer the organization of a group of information that

are connected in some way. Furthermore, the DBMS is

actively used to access the information resource stored in such

database. This is possible as the DBMS consists of connected

computer systems that make it possible for users who need

any information contained in the database to have access to

them. However, in some cases there might also be restrictions

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

48

that are designed to make curtail the ability to access some

data.

Hence, in operation, DBMS ensures that users have a wide

range of functions that make massive information to be

entered, stored, and retrieved while allowing for efficient

management and organization of the information. Owing to

the existent relationship between the two “database” has

commonly been associated with information ensuring that

DBMS enthusiasts often use them interchangeably. In other

circles unrelated to information technology, “database” is

often used when discussing any group of connected

information like a card index or program. In observe it’s quite

common to own multiple databases. The database that deals

along with your order and client information can be fully

freelance from you information that deals with human

resource information. And in several organizations, you don’t

simply have multiple databases however they have multiple

DBMS. Typically it’s as a result of one DBMS is healthier at

one thing than the opposite.

DBMS can fall under different categories, including:

 Hierarchical Database Systems

 Relational Database Management Systems

 NoSQL Database Systems

 Object-Oriented Database Systems

 Network Database Systems

II. SQL INJECTION

Nowadays, a database is used in every organization since it

acts as the heart of all web applications and is used in the

storage of all the information that are required by such

applications, for example, credit card details, customer

personal information, client orders, company information, and

others. For that reason, databases have become attractive to

the hackers as they are much interested in getting access to the

information stored. Also, due to the rapid internet growth in

the world today and the emergence of various new

technologies has led to a wide application of internet

applications on the Web environment. Most of the companies

today make use of Web platforms in processing their

information. This has brought about a number of database

security issues that organizations have to fight today.

One of the most commonly known Web security issues

today is SQL injection. This issue has posed many problems

to databases despite the fact that a number of solutions have

been proposed. SQL injections occur when a developer

directly accepts user inputs that are placed in SQL statements

without validating or filtering out some dangerous characters.

To execute SQL injection, the attacker combines the

compilation of SQL statements with a weak input validation.

Such an input validation leads to a change in how the SQL

query is structured. Such can make it easier for the intruder

alter the SQL statements that has been passed to the database

as the parameters to enable them for getting access to all the

data. Following these, attackers can also modify and even

delete the entire database. Any database is vulnerable to SQL

injections in case the user input is not thoroughly filtered for

some malicious characters or if it is not strongly typed [17]. In

most scenarios, hackers and intruders carry out nefarious

activities on web servers and database backend by modifying

the contents of the webpage or steal vital information by

taking advantage of flaws in the SQL components.

SQL injection attacks are highly risky to an organization

and the consequences are severe. A successful SQL injection

attack bypasses authentication and authorization so as to get a

total control of the database, steal critical information, access

users’ credential information, change user passwords, carry

out illegal transactions and to cause destructions to the entire

database. To improve the standards of the operation security

of the web environment, a significant study of the detection

and prevention targeting SQL injection attacks should be done.

Database administrators have to understand how these attacks

are detected so that they can thoroughly filter User inputs from

within the database well before permitting them. You can also

understand these other ways in which such SQL injection

attacks can be minimized and prevented. For this reason,

researchers have been hugely concerned with and studied

extensively on detecting and defending SQL injections. The

widespread availability and ability and of firewalls and similar

information shielding defenses for information stored by

enterprises has heightened remote attacks seen on applications

of networked enterprises. Over the past few years, such

protective measures are however simply penetrated and

defeated by basic attacks of script injection, ensuring that the

SQLCIA – SQL command injection attack – can become

virulent. Web applications that have an information server

backend based on SQL, take inputs from users and forms

queries in a dynamic manner remains a SQLCIA associate

degree target [16]. Where this susceptible application exists,

associate degree SQLCIA exploits deformed input that

modifies the application’s SQL query for unauthorized

information access, while being able to manipulate, modify or

extract sensitive data.

The Common Vulnerabilities (CVE) list at

http:/cve.mitre.org, suggest a high prevalence and hierarchical

nature of SQL injection attacks as CVE assumed second

position on internet application attacks in 2006. The

proportion of such attacks in the general range of attacks

increased from 5.5% in 2004 to 14 July 2006. It is noteworthy

that the SQLCIA that affected Card System Solutions in 2006,

breaching MasterCard numbers in their thousands, is a prime

example of the damaging effects of associate degree attacks

on not only a company but the public at large. Taking code

search of Google into consideration, experts have discovered a

lot of programs and applications with sources that are prone to

such vulnerabilities. Additionally, Sutton (2006) and a number

of findings have reported that many web applications are

extremely prone to SQL injection attacks with this form of

attack consistently rising over the years [10].

There are two primary categories of research conducted on

SQL injection attacks; the approach could either be aimed at

attacking obstacles or identifying the apps vulnerabilities. In

identifying vulnerabilities, approaches adopted are geared

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

49

towards determining susceptible locations where SQL

injection attacks are likely to occur in an web based

application. It is usually important for an engineer to ensure

inputs are submitted and validated to prevent the susceptibility

of an application to SQL injection attacks by identifying

potential loopholes providing a handy technique that can be

employed in the static analysis of identifying the

vulnerabilities that may be inherent in a website. This involves

analyzing code and carrying out input validation checks prior

including it in a question. Although these static analyses are

incredible in detecting vulnerabilities, using them to address

disadvantages of SQL injections is still studied due to their

characterization of unvalidated inputs. For instance, they are

not efficient in ensuring input validation, hence many

programs with the potential of victimizing input validation are

able to go past the checks unidentified and therefore remain

prone to injection. Static victimization analysis progress

provides helping to check and validate the correctness of

functions. More in-depth analysis of this subject is discussed

in the categories and hindrance techniques of attacks that

ensure programs are retrofitted to prevent injection attacks.

The techniques don’t require much manual annotation,

offering more ways of prevention against SQL injection

attacks, instead of just sleuthing program vulnerabilities.

III. PROBLEM BACKGROUND

Many developers of the information system who suffered from

SQL injection attacks did not take security elements into

account during the initial design phases. Developers tend to

assume that the system flow will always follows as designed

and planned. This often allowed them to improperly handle

that errors that at most of the time led to a successful SQL

injection attack by the attacker. The attacker sends malicious

SQL codes to web applications, Data sets and so on in the

legitimate SQL statement that generates error messages

depending on the statement that was used. The differences in

results or error messages from the response would be used for

SQL injection attacks.

There are many SQL Injection Prevention

Method/Approaches that has been developed by many

different authors in order to Prevention SQL Injection Attacks

but unfortunately many of the database security expert spend

their most of the time on deciding which approach is the best

to prevent SQL Injection Attacks that results in Wasted of

Money, Time and energy. Many of the database security

experts deploy Intrusion Prevention System(IPS) or various

types of firewall in order to prevent SQL Injection Attacks

based on patterns that are known but this method is very much

costly what most of the small/medium origination cannot

afford.

Most of the SQL Injection Attacks happens because of bad

security coding or sometimes company hire 3rd party

developers to program and they tend to less care about the

Database security that is in resulting to SQL Injection Attacks

or the programmer tends to have no knowledge about SQL

Injection Attacks Prevention Methods / Approaches. In Order

to simplify things for programmers and Database Security

experts related to SQL Injection Attacks Prevention Methods /

Approaches, I will be doing the Paper on "A Survey on SQL

Injection Prevention Methods" which would help many

database security experts, Programmers etc. To identity on

which SQL Injection Prevention method is more reliable and

also suitable to safe guard the organization database thus

saving the organization money, time and energy. Also this

experiment will help on knowing the each SQL Injection

Prevention Method on their effectiveness.

TABLE 1. Paper Details

IV. SCOPE OF THE PAPER

This Paper will have the following scope:

 This Paper will be only focusing on SQL Injection

Prevention Effectiveness under a controlled

experimental approved environment.

 The experiments which would be conducted will have

various SQL Injection Attacks on the data set.

 Attacks will be conducted on various real life scenario

data set based on the approval from the data set

owner/application owner/website owner for

experiments purpose only.

V. AIM OF THE PAPER

This research will help Database Administrator on

deciding which is the best MySQL prevention method that can

be chosen in order to protect Database from SQL Injection

Attacks. This will be achieved by doing comparison study

based on different types of SQL Injection Prevention Method.

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

50

Furthermore, this study will also help researcher of the SQL

Injection Prevention Methods on knowing the flaws that they

have in their SQL Prevention method thus giving them

valuable feedback to improve their SQL Injection Prevention

Methods for future usage.

VI. METHODOLOGY

Fig. 1. Methodology

A. Planning Phase

In this phase, we discuss about the problem domain,

Objectives and time constraints.

B. Data Collect Phase

In this phase of the project, we will be working on Identifying

the Type Of Data set that the project would be required in

order to conduct the experiments. Once the Data set type is

being identify then I would be proceeding to identifying the

data set source.

C. Analysis Phase

In this phase, we will validate the data that was collected to

ensure that the data is a legit and can be used for our

comparison.

D. Experiment Phase

In this phase, we will conduct various types of SQL injection

attack using different types of SQL injection prevention

methods to determine which is the best SQL injection

prevention method. The SQL attack method and prevention

method are written down further in this paper.

E. Analysis of Finding Phase

In this phase, we will analyses the result of the SQL injection

attack which were conducted earlier using IBM SPSS software.

F. Result Phase

In this phase, we will conclude the results which were

outputted by the IBM SPSS software.

G. Project Closure Phase

This phase will include full project report and closure approval

from supervisor, Examiner and school of computing. The

closure approval determines that the project report is as per the

standards of the UTM which is required.

VII. COMMON TYPES OF SQL ATTACKS

Tautologies: This type of attack operates by injecting the code

with one or more queries that are conditional SQL statements

in a bid to render the SQL command execute like a true

condition like (1=1) or (- -). Tautologies are often employed in

bypassing web page authentications permitting access to the

server of the database.

Piggy-backed Query: In this type of query, the attack on

the database employs delimiters in queries such as ";" to inject

more query statements than was present in the authentic query.

The original query is the first, while subsequent ones are

injected queries. This SQL attack is dangerous and can be

used by an attacker to inject almost any SQL command.

Logically Incorrect: This attack uses the error messages

that are returned following an incorrect request in the database.

This is handy for attackers as error messages provide valuable

information that can be used to determine how vulnerable

application parameters or schema are:

 Union query: Also called injection statement attack,

this breach occurs when a hacker adds more

statement into the initial SQL statement. A union

query attack can be carried out by including a

UNION query and is also possible by adding a form

"; < SQL statement > " statement into a vulnerable

parameter.

 Stored Procedure: The attacker focuses on the stored

processes in the database system in this technique.

Procedures stored run directly through the database

engine. It's an exploitable piece of code. The saved

procedure gives the authorized or unauthorized

customers true or false values. The attacker will write

"; SHUTDOWN;-" for SQLIA with login.

 Alternate Encodings: This type of attack happens

Once the injection query is changed by an attacker

using alternative encoding, such as hexadecimal,

ASCII and Unicode. This enables the attacker to

escape the filter of the developer, who scans input

queries for special known "bad character". If this

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

51

kind of attack combines with different attack

techniques, it maybe be strong as it can target

different layers in the application so that developers

need to be acquainted with all of them to provide an

efficient defensive coding to prevent alternative

encoding.

VIII. RISK ASSOCIATED WITH SQL INJECTION

SQL injection is harmful and the associated risks give

attackers an incentive to attack the database. The main

consequences of these vulnerabilities are attacks on the

following features [5]:

A) Authorization: The Critical and the valuable data that are

stored in a vulnerable SQL database can be modified by a

successful SQL Injection Attack.

B) Authentication: If the input fields within the authentication

page are not properly controlled, it may be possible to log in

as a normal user to a system without knowing the

authenticated user.

C) Confidential: Databases usually consist of sensitive

information such as personal data, credit card numbers and/or

social numbers. The loss of confidentiality is therefore an

awful problem with the vulnerability of SQL injection.

D) Integrity: Not only does an attacker read sensitive

information through a successful SQLIA, but it is also

possible to change or delete this private information.

E) Database Fingerprinting: The attacker can determine on the

type of database which is being used in the backend in order to

use the database-specific attacks that match weaknesses in a

particular database management system (DBMS).

IX. PREVENTION METHOD FOR SQL INJECTION ATTACKS

1. AMNESIA In, the author developed a technique called

AMNESIA, which is used to analyses and monitor the

neutralization of SQLIA. AMNESIA combines dynamic and

static analysis to detect and prevent vulnerabilities of web

applications during runtime. To generate different types of

query statements, AMNESIA uses static analysis. AMNESIA

interprets all queries in the dynamic phase before they are sent

to the database and validates each query against the statically

built models [4].

2. The authors [6] developed a WASP (Web Application SQL

Injection Protector) is a kind of tool that can help in

prevention and stopping more than 12,000 Attacks without

having false alarm. The limitation of this tool depends on the

approach which would use in the application that needs to be

deployed.

3. In this the author [21] has developed a R-WASP (Real

Time-Web Application SQL Injection Detector and Preventer)

tool capable of effectively stopping all attacks and detecting

SQLIAs in real time. The restriction of this tool requires more

practices to reduce attacks on stored procedures effectively. In

addition to detecting all classical SQLIA types, the authors

developed an appropriate Real Time Web Application SQL

Injection Protector (RT-WASP) tool to detect SQL injection

attacks in stored procedures. The disadvantages of the RT-

WASP tool, which does not detect the SQL Injection and XSS

attack, are therefore intended by the authors to extend the

RTWASP technique to include SQLI and XSS attacks in web

applications.

4. In this the authors [3] used a prevention tool called

SecuriFly for java. This tool is used to chase string instead of

taint information character and try to remove query strings

that were generated using tainted input. This approach cannot

be used to stop an injection result from inserting SQL

commands into numerical fields. The main limitation of this

approach is that it is difficult to identify all the user input

sources. In addition, this technique partially stops all classical

SQLIA types due to the limitations of the underlying approach.

5. In this the author [8] presents a method for the automatic

prevention of SQLIA called CANDID by dynamic candidate

evaluations. This technique extracts the query structures

dynamically from every SQL query location that the developer

intends to use. CANDID therefore solves the problem of

modifying the application manually in order to create the

prepared statements. The disadvantage of this technique is that

SQLIAs are partially stopped due to the limitations of the

basic approach.

6. The author proposed a method which is to implemented

PHP Data Object (PDO). PDO extension is a lightweight,

consistent interface for accessing databases in PHP, and has

become one of the among trends in developing dynamic web

applications that connect to the database. The purpose behind

using PDO in would be easy installation, Security, flexibility

and faster execution when connected to the system database.

PDO Parameterized Queries is able to prevent various types of

SQL Injection attack [34]. Here, the authors talk about the use

of SQLMap to protect the attack (SQLI + DNS). The

SQLMap has the DNS Ex filtration feature and there are many

command lines designed specifically to prevent and detect

DNS. It is compatible with most versions of SQL database

[23].

1. Validation of the parse tree to prevent attacks with SQL

injection, The author adopted the parse tree framework

technique. The technique is based on the comparison of the

Tree Validation analysis of the SQL statement before the user

input is included when the input is included to be visualized if

it adapts to a model of that were expected in the queries [1].

2. Safe Query Objects Statically Typed Objects As Remotely

Executable Queries: Statically type objects as remotely

executable queries, The Author proposes this technique. They

used an API to access the database. This API can perform time

compile checks on query objects. This technology supports the

strong type monitoring approach. Safe query objects support

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

52

query shipping so that they are efficiently executed between a

database engine. Compile time metaprogramming is used to

improve secure query objects with strategies that send queries

to a relative execution database [2].

3. Use of query tokenization for detecting and preventing SQL

injection attacks: The author has proposed a technique

consisting of tokenizing each initial query and also the one

with an injection When this can be done each token constitutes

an array index and two arrays are formed at last Their work

involves the implementation of a technique that identifies a

single quote space or double dash A token is represented by

all strings before a quote before a space or before double

dashes All tokens sorted to form an array The tokenization for

each initial query and thus the query with an injection is

completed The arrays which are obtained are then compared

as required and then an injection is detected if their lengths

differ otherwise if their lengths differ this indicates that there

is no injection at the moment [9].

4. Using SQL Pattern Matching Database System: This

Author proposed this technique in order to prevent SQL

Injection ,In this technique the Known SQL Patterns are stored

in the database and every query is checked upon with the

pattern through the database to know whether the query is a

standard and non-harmful query or it is a malicious query

which matches the SQL injection pattern in the database.

X. DATASET

The paper will be using three dataset which are: Gotocode

Dataset. Gotocode contains 5 different type of dataset those

are:

1) Employee Directory Dataset

 2) Bookstore Dataset

 3) Events Dataset

 4) Classifieds Dataset

 5) Portal Dataset

Checkers Dataset: Checkers is a game application which is

developed by students and their dataset is available to the

public.

OfficeTalk Dataset: OfficeTalk is a purchase order

management system which is developed by students and their

dataset is available to the public.

TABLE 1.2. Dataset information

XI. COMPARISON TECHNIQUE

There are many ways to make comparison nonetheless

here in this paper, we first selected the SQL Injection Attack

technique method based on the results of the SQL injection

Attack. The comparison will be done using IBM SPSS

software based on the statically output through the SQL

injection techniques method. There are two types of the SQL

injection attack technique method that can be divided into two

(2) parts which are Automatic Technique and Manual

Technique which would be further explained below:

A. Automatic MySQL Injection Technique:

SQL Injection attacks can be done through automatic matter

which means by using the software which automatically scans

the web application for SQL Injection vulnerabilities based on

the type of database selected and thus automatically showing

the result after test is completed. Below are the software which

will be used for the Automatic MySQL injection technique:

1. SQLMap.

2. Havij .

3. Safe3 SQL injector.

B. Manual MySQL Injection Technique

SQL injection is a security exploit in which the attacker adds

malicious SQL code to a Web form input box to gain access.

Manual testing for SQL injection is done through the browser

in where numerous of malicious SQL query code as

mentioned in section 2.7 are entered into web form input box

in order to check whether the web application is vulnerable to

that malicious SQL query code or not.

When testing whether there is a SQL injection vulnerability

in a Web application system, the simplest test method is to

attach an eternal (run as true) or a false (run as false) logic

condition to the suspicious injection point, and view the

execution result. If security detection has been added to the

system, relevant prompt information will appear or the page

will not be displayed properly. If the security test is not carried

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

53

out, and the SQL command is joined directly to the database

system, and the additional real-time injection of SQL command

execution results are consistent with the results of no additional

injection information, while the injection of SQL commands

with a false value will cause the page to fail to display properly.

Th employee's number is also used to query employee

information. The test process is shown in Fig. 2:

Fig. 2. Test process of SQL Injection (Manually)

XII. DISCUSSION

The SQL attack prevention method is implemented in

order to prevent and protect the confidential data from hackers

and unauthorized party. However, SQL attack prevention

method is not easily achieved just by implementing of any

method without doing comparison between the available

methods proposed by the various different authors. Every SQL

injection prevention method has their own advantages and

disactivates, one method maybe able to provide what the

organization required but might lack in the other requirements.

this Paper will be focusing on comparing different types of

SQL injection prevention methods as written in section VI

which are best to be implemented. The main goal of this paper

is review various types of SQL injection attacks, SQL

injection prevention methods and also to show the readers on

the comparisons can be done for different types of SQL

prevention methods. In order for them to select the best SQL

prevention method for their organization.

XIII. CONCLUSION

This chapter presents the literature review on an

Comparison on the efficacy of the SQL Prevention Methods.

Also it includes the risk associated with SQL injection and

various SQL Injection Prevention Techniques. In addition, in

this chapter include an insight on the requirement that shall be

applied in the following chapter three, which includes the

process, methodology, dataset used.

XIV. SUMMARY

The paper talks about various types of common SQL injection

attacks that organization face, the risk associated to this types

of SQL injection attacks and the types of SQL prevention

methods which can help organization to safeguard against SQL

attacks.

REFERENCES

[1] Buehrer, G., B. W. Weide, and P. A. G. Sivilotti. (2005). Using

Parse Tree Validation to Prevent SQL Injection Attacks.

Proceedings of the 5th International Workshop on Software

Engineering and Middleware. ACM: Lisbon, Portugal, 106-113.

[2] Cook, W. R. and S. Rai. (2005). Safe Query Objects: Statically

Typed Objects as Remotely Executable Queries. Proceedings of

the 27th International Conference on Software engineering.

ACM: St. Louis, MO, USA, 97-106.

[3] Michael Martin, B. L., Monica S. Lam. (2005). Finding

Application Errors and Security Flaws Using PQL: A Program

Query Language.

[4] William, G. J. Halfond, A. O. (2005). Preventing SQL Injection

Attacks Using AMNESIA.

[5] Halfond, W. G. J. and A. Orso. (2007). Detection and

Prevention of SQL Injection Attacks. Malware Detection, 85-+.

[6] Halfond, W., A. Orso, and P. Manolios. (2008). WASP:

Protecting Web Applications Using Positive Tainting and

Syntax-Aware Evaluation. IEEE Transactions on Software

Engineering, 34(1), 65-81.

[7] Wang, H. F., W. Y. Chen, and S. L. Song. (2009). Design of

Jinan City Flood Prevention and Warning Decision-Making

Support System based on SQL Server and GIS. First

International Workshop on Database Technology and

Applications, Proceedings, 488-492.

[8] Bisht, P., P. Madhusudan, and V. N. Venkatakrishnan. (2010).

CANDID: Dynamic Candidate Evaluations for Automatic

Prevention of SQL Injection Attacks. ACM Transactions on

Information and System Security, 13(2).

[9] Ntagwabira, L. and S. L. Kang. (2010). Use of Query

Tokenization to Detect and Prevent SQL Injection Attacks. 2010

3rd International Conference on Computer Science and

Information Technology.

[10] Tajpour, A., et al. (2010). SQL Injection Detection and

Prevention Tools Assessment. Proceedings of 2010 3rd IEEE

International Conference on Computer Science and Information

Technology, 9(ICCSIT 2010), 518-522.

[11] Tajpour, A. and M. J. Z. Shooshtari. (2010). Evaluation of SQL

Injection Detection and Prevention Techniques. 2010 Second

International Conference on Computational Intelligence.

Communication Systems and Networks (CICSYN), 216-221.

[12] Narayanan, S. N., A. R. Pais, and R. Mohandas. (2011).

Detection and Prevention of SQL Injection Attacks Using

Semantic Equivalence. Computer Networks and Intelligent

Computing, 157, 103-112.

[13] Selvamani, K. and A. Kannan. (2011). A Novel Approach for

Prevention of SQL Injection Attacks Using Cryptography and

Access Control Policies. Advances in Power Electronics and

Instrumentation Engineering, 148, 26-+.

[14] Zhang, X. Z. and X. J. Zhang. (2011). Discussion on the

Detection and Prevention of SQL Injection. Applications of

Engineering Materials, Pts 1-4, 287-290, 3047-3050.

Shahbaaz Mohammed Hayat Chaki & Mazura Mat Din / IJIC Vol. 9:1(2019) 47-54

54

[15] Balasundaram, I. and E. Ramaraj. (2012). An Efficient

Technique for Detection and Prevention of SQL Injection

Attack using ASCII Based String Matching. International

Conference on Communication Technology and System Design

2011, 30, 183-190.

[16] Cherry, D. (2012). Securing SQL Server: Protecting Your

Database from Attackers. 2nd ed. Waltham, MA:

Syngress/Elsevier. xxii, 381.

[17] Clarke, J. (2012). SQL Injection Attacks and Defense. Waltham,

MA: Elsevier. xvviii, 547.

[18] Kumar, P. and R. K. Pateriya. (2012). A Survey on SQL

Injection Attacks, Detection and Prevention Techniques. 2012

Third International Conference on Computing Communication

& Networking Technologies (ICCCNT).

[19] Shafie, E. and A. Cau. (2012). A Framework for the Detection

and Prevention of SQL Injection Attacks. Proceedings of the

11th European Conference on Information Warfare and

Security, 329-336.

[20] Kar, D. and S. Panigrahi. (2013). Prevention of SQL Injection

Attack Using Query Transformation and Hashing. Proceedings

of the 2013 3rd IEEE International Advance Computing

Conference (IACC), 1317-1323.

[21] Munqath, H. Alattar, S. P. M. (2013). R-WASP: Real Time-

Web Application SQL Injection Detector and Preventer.

[22] Sadeghian, A., M. Zamani, and A. Abd Manaf. (2013). A

Taxonomy of SQL Injection Detection and Prevention

Techniques. 2013 International Conference on Informatics and

Creative Multimedia (ICICM), 53-56.

[23] Stampar, M. (2013). Data Retrieval over DNS in SQL Injection

Attacks.

[24] Djanali, S., et al. (2014). SQL Injection Detection and

Prevention System with Raspberry Pi Honeypot Cluster for

Trapping Attacker. 2014 1st International Symposium on

Technology Management and Emerging Technologies (ISTMET

2014), 163-166.

[25] Doshi, J. C., M. Christian, and B. H. Trived, (2014). SQL

FILTER-SQL Injection Prevention and Logging Using Dynamic

Network Filter. Security in Computing and Communications,

467, 400-406.

[26] Tajpour, A., et al. (2014). SQL Injection Detection and

Prevention Tools Assessment. Proceedings of the 2014

International Joint Conference on Neural Networks (IJCNN),

730-731.

[27] Wang, J., X. S. Cheng, and L. S. Ren. (2014). Construction of

Knowledge Base for Prevention and Control of Cucumber's

Diseases and Insect Pests Based on SQL Server 2005. 2014 4th

International Conference on Education and Education

Management (EEM 2014), Pt 6, 68, 197-201.

[28] Hanmanthu, B., B. R. Ram, and P. Niranjan. (2015). SQL

Injection Attack Prevention Based on Decision Tree

Classification. Proceedings of 2015 IEEE 9th International

Conference on Intelligent Systems and Control (ISCO).

[29] Masri, W. and S. Sleiman. (2015). SQLPIL: SQL Injection

Prevention by Input Labeling. Security and Communication

Networks, 8(15), 2545-2560.

[30] Qian, L., et al. (2015). Research of SQL Injection Attack and

Prevention Technology. Proceedings of 2015 International

Conference on Estimation, Detection and Information Fusion

ICEDIF 2015, 303-306.

[31] Ben-Ghorbel-Talbi, M., F. Lesueur, and G. Perrin. (2016).

Information Flow Control on a Multi-paradigm Web

Application for SQL Injection Prevention. Foundations and

Practice of Security (FPS 2015), 9482, 277-285.

[32] Chen, P., et al. (2016). Research and Implementation of SQL

Injection Prevention Method Based on ISR. 2016 2nd IEEE

International Conference on Computer and Communications

(ICCC), 1153-1156.

[33] Kamtuo, K. and C. Soomlek. (2016). Machine Learning for

SQL Injection Prevention on Server-Side Scripting. 2016 20th

International Computer Science and Engineering Conference

(ICSEC).

[34] Sendiang, M., A. Polii, and J. Mappadang. (2016). Minimization

of SQL Injection in Scheduling Application Development. 2016

International Conference on Knowledge Creation and

Intelligent Computing (KCIC).

[35] Singh, N., et al. (2016). SQL Injection: Types, Methodology,

Attack Queries and Prevention. Proceedings of the 10th

Indiacom - 2016 3rd International Conference on Computing

for Sustainable Global Development, 2872-2876.

[36] Voitovych, O. P., O. S. Yuvkovetskyi, and L. M. Kupershtein.

(2016). SQL Injection Prevention System. 2016 International

Conference Radio Electronics & Info Communications

(UkrMiCo).

[37] Ghafarian, A. (2017). A Hybrid Method for Detection and

Prevention of SQL Injection Attacks. 2017 Computing

Conference, 833-838.

[38] Hu, H. B. (2017). Research on the Technology of Detecting the

SQL Injection Attack and Non-Intrusive Prevention in WEB

System. Materials Science, Energy Technology, and Power

Engineering I, 1839.

[39] Nadeem, R. M., et al. (2017). Detection and Prevention of SQL

Injection Attack by Dynamic Analyzer and Testing Model.

International Journal of Advanced Computer Science and

Applications, 8(8), 209-214.

[40] Armiati, S. and R. M. Awangga. (2018). SQL Collaborative

Learning Framework Based on SOA. International Conference

on Mechanical, Electronics, Computer, and Industrial

Technology, 1007.

.

