

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 30-34

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Security Source Code Analysis of Applications in Android OS

Sami Azam
1
*, Rajvinder Singh Sumra

1
, Bharanidharan Shanmugam

1
, Kheng Cher Yeo

1
, Mirjam Jonokman

1
,

Ganthan Narayana Samy
2

1School of Engineering and IT, Charles Darwin University, Australia

2Advanced Informatics School, Universiti Teknologi Malaysia, Malaysia
*Corresponding author E-mail: sami.azam@cdu.edu.au

Abstract

It is a known fact that Android mobile phones’ security has room for improvement. Many malicious app developers have targeted
android mobile phones, mainly because android as an open operating system provides great flexibility to developers and there are many
android phones which do not have the latest security updates. With the update of marshmallow in android, applications request
permission only during runtime, but not all users have this update. This is important because user permission is required to perform
certain actions. The permissions may be irrelevant to the features provided by an application. The purpose of this research is to
investigate the use and security risk of seeming irrelevant permissions in applications available from Google store. Two different

applications which seem to ask irrelevant permissions during installation were selected from Google store. To test these applications,
static analysis, dynamic analysis and reverse engineering tools were used. Findings show potentially malicious behavior, demonstrating
that downloading apps from Google play store do not guarantee security.

Keywords: Android security; Android testing tools; Dynamic analysis; Information leakage detection; Static analysis.

1. Introduction

Android has the largest mobile phone market share of around 80% of all
mobile phones, but fewer than 5% of phones are running on the current
version of Android Oreo, which was released recently. With the new
update of Oreo in Android, the application now displays all permissions
and request permission only during runtime. This is important because
user permission is required to perform certain actions. Permissions can be
manipulative and irrelevant to the features provided by an application.

Thus, if not understood well by app users, can result in exploitation of
confidential data [1]. Two different applications were selected from
Google store, as they ask irrelevant permissions during installation. How-
ever, there are other apps that can perform the same functions, with fewer
and only relevant permissions. The primary objective of this research is to
test these applications by performing static and dynamic analysis and use
reverse engineering tools to analyze the source code about the usage of
the collected data and permissions.

2. Security Vulnerabilities

Attackers create a variety of applications of different behaviors as per the
data they are targeting. Three main types of application behavior are:
malicious behavior, moderate risk behavior and dangerous behavior [2].
Apps that show malicious behavior can gain root access of a device and

steal secret credentials. These apps can also access device management
and communicate with malicious IP address and domains. Moderate risk
behaviors apps are generally deployed by entrusting and unknown
sources which mainly focus on reading or sending emails, SMS messag-
es and GPS information. Applications with dangerous behaviors can steal
the user’s information without notifying him and upload it on an app
server or sell it to advertising companies or analytic companies or data
aggregation companies.

The following section describes [3] where the collected data could be
leaked to malicious actors.

2.1. Leaking Information via IPC

Applications broadcast private information in Inter-Process Com-
munication (IPC) which is accessible to all other apps. Any apps
that protect the broadcast with permissions or do not specify the

target component can receive intent broadcasts. This is not safe if
the intent contains sensitive information. A malicious application
that eavesdrops on sensitive information in IPC can gain access to
this information.

2.2. Leaking Information via Logs

Apps with the READ_ LOGS permission can read the log
messages. Personal information is written for Android’s general

logging interface and URLs containing this personal information
are logged just before a network connection is made. Therefore,
apps can access the private information with the READ_LOGS
permission [4].

2.3. Unprotected Broadcast Receivers

A broadcast receiver is a component [5] issued by applications to
receive intent messages. A malicious application can forge mes-

sages if the receiver is not protected by permissions. Android has
introduced “protected broadcasts” for system intent types to elimi-
nate forging, but this appears to have limited impact.

International Journal of Engineering & Technology 31

2.4. Delegating Control

Apps use a “pending intent” to delegate actions to other
applications. An app first generates an intent message as if it was
performing some action. It then generates a reference to the intent,

based on the goal component type (restricting its usage). The
pending intent recipient can fill in the missing fields, but cannot
change the values. Thus, if the intent address is not mentioned, the
remote app with the original application’s permissions can redirect
an action that will be performed.

2.5. SD-Card Use

Any application which has access to the SD-card to write or read

data can also write or read any other application’s data on the
SD-card. These apps misuse the SD-card by obtaining the path of
the card’s root and discovering the free space available on the SD-
card.

2.6. Telephone Service Misuse

SMS API used in malicious applications [6] holds certain hard
coded phone numbers that misuse SMS Manager class by imple-

menting methods such as send Data Message(), send Multipart
text message, send a Text Message() etcetera to pass values for a
destination phone number.

2.7. Audio-Video Background Recording

Three key APIs are implemented for visual and audio information
recording i.e. Media Recorder class, Audio Record class and
Camera class. However, certain malicious applications misemploy
these classes in the background to steal data since these codes are

inaccessible to the activity component of the Android OS.

2.8. Information Database

Text messages and address book are sharing information which is
basically stored in a file based database. Many applications
attempt to hack these files and some of them succeed by bypassing
android security checks [7].

3. Android Application Data Siphoning Pro-

cess

Malicious android applications could use numerous methods to

siphon important data from mobile devices. In this section, we
will look at one example i.e., Android inter-app security vulnera-
bility analysis. This is a vulnerability pattern example explaining
how Inter-Process Communication (IPC) can also be used among
Android Apps to hinder data security. Android provides a flexible
model of IPC that uses a typical application level message, which
is known as intent. An Android application comprises of multiple
processes, i.e. Activity, Service that communicates using Intents.

Additionally, an application process can also send messages (in-
tents) to another application process to perform tasks such as send
a stext message, take picture, etc. As we will see in the given ex-
ample (Figure 1), how a combination of two benign applications
that are installed on a mobile device can be used for malicious
activities.

4. Potentially Harmful Android Applications

Android is continuously trying to improve the security of the us-
er’s personal data and the device. Google has decided to warn the
users for potentially harmful applications (PHA) at the time of
their installation (see Table 1). To illustrate this, an initial warning
will be given to users about the applications that can disable the

features of the Android Security such as SE Linux or root the de-
vice with disclosure and user consent [8-9]. However, some users
ignore these warnings. Individuals tend to ignore warnings issued
by the OS at the installation time. The ignorance of users to read
the policies at the app installation time has made it easy for attack-
ers to install malicious applications on the users’ devices. Android
malware that abuses possible vulnerabilities are a great challenge
for the developers.

Fig. 1: A malicious application exploiting the vulnerability [3].

Table 1: Potentially harmful applications definitions

PHA Definition

Hostile

Downloader

An application that is not in itself unsafe, but downloads

other potentially harmful apps. For instance, a gaming

application that does not contain noxious code, but rather

relentlessly shows a deceptive "Security Update" inter-

face that installs unsafe applications.

Mobile

Billing

Fraud

Application that charges the user in a deliberate deceptive

way. Mobile billing fraud is divided into SMS fraud, Toll

fraud and Call fraud, based on the misrepresentation

being committed.

SMS

Fraud

Application that charges clients to send premium SMS

without user knowledge, or tries to camouflage its SMS

activities by concealing divulgence agreements or SMS

messages from the device operator informing the user of

charges or affirming membership.

Spam An application that sends irrelevant commercial messag-

es to the mobile user’s contact list

Phishing An application that pretends to be from trustworthy

resource, request for mobile user’s credentials or billing

information, and sends this information to a third party.

Most common targets of phishing attacks incorporate

banking credentials, debit / credit card no. or online

banking credentials

Some of the Android malware that made their way to the Google
Play store and proved to be highly dangerous are spyware, adware,
backdoors, commwarriors and botnets [10].

There is not much information about how the Google app review
process works or what tools are used to test the applications. But,
it has been mentioned in the Google developer website that apps
are not filtered based on the permissions the app uses. Generally,
the review process takes 2-3 hours. Recently, Google play started
using a mixed approach which means that some apps can be
manually tested as-well. Apps need to comply with Google
developer policies which does not allow network and user data

abuse, malicious behaviour, improper ways to display ads, inse-
cure user data or offering rewards in return of leaving good re-
views.
Google play store discourages the installation of apps from any
third-party marketplace due to security concerns; however, it still
permits these. Third party developer apps are made available from
the official play store. Google uses Bouncer (a dynamic analysis
sandboxed environment), which is a reasonably effective security

mechanism to restrict any malware from entering the Google Play
store. Android also has provided the facility of running a

32 International Journal of Engineering & Technology

verification service, while installing applications from other mar-
ket places.
For this research two apps, Remit online money transfer app and
Voice recorder app, were selected for detailed analysis. The
selection was based on the fact that users often require financial
apps and voice calling apps.

5. Tools

The purpose of this research is to investigate the use and security
risk of seemingly irrelevant permissions in applications available
from Google store. This can be done using static and dynamic
analysis tools.

5.1. Static Analysis Tools

Static Analysis is performed without executing the code and hence
does not influence the device’s functioning. It is done by
de-compilation and disassembly. The static analysis process
involves several steps such as extracting n-gram statistics of .dex
file, disassembling of an application, pattern search for malicious
API calls and URLs and extraction of relevant information from
an Android Manifest file such as permission, intents, activities,
actions, services, and receivers [11].

In static analysis, reverse engineering tools are used to analyze the
code. The reverse engineering approach helps to decompile and
recompile an AK file. This is crucial to examine the code. Every
apk file contains three files. First, AndroidManifest.xml, which
defines the permissions, used in an application, secondly
Classes.dex which contains all the Java files (Java source code
needs to be retrieved with the help of another tool) and thirdly
Resources.arsc which contains Meta information about the

resources and nodes.

5.2. Dynamic Analysis Tools

Dynamic analysis observes the execution of instructions in a real

time environment, thus looks at the information flow and interac-
tion with other applications. This analysis has performance over-
heads as it performs real time monitoring of apps. Android appli-
cations facilitate several User Interface (UI) gestures, i.e. swipe,
tap, pinch, back key, menu key keyboard. It is of utmost im-
portance to address all these gestures during app development, but
unfortunately some of them may unknowingly be missed. This
may generate multiple entry points for malicious applications.

Therefore, this analysis triggers these events to prevent serious
issues. This analysis technique can be implemented on both virtual
and actual android devices for real time processing [12-13].

6. Android Permissions and Application Anal-

ysis

To gain controlled access of certain system data, critical resources
and features, Android apps request permissions from the operating
system before its installation. Permission security models and
Access Control Lists are the main mechanisms to provide access
to these resources and maintain security for the users and system.

However, various malicious android applications misuse these
permissions (refer to Table 2).
For this research two apps were selected for detailed analysis,
Remit online money transfer app and Voice recorder app. In the
first step, static analysis tools called Androbugs [14] and
Androwarn [15] were used. Based on the generated reports for
each application, further analysis about attack surface, vulnerabili-
ties and possible malicious code was performed. In the second
step, with the help of reverse engineering tools, the application

was decompiled and a comprehensive analysis was performed.

Table 2: Permission list [3].

Android Permis-

sion
Use Misuse

INTERNET

Allows the applications

to access the internet via

opening network sockets

for transferring data.

Granting this permis-

sion can be misused by

sending confidential

user data to unknown

URL.

ACCESS_

NETWORK_

STATE

Allows the application to

access information about

the type of network

available, type of net-

work devices

Connected, roaming or

local network and no. of

failed connection at-

tempts.

Misused by a malicious

application for main-

taining user profile

regarding his network

information.

ACCESS_

WIFI_

STATE

Allows the application to

access information about

Wi-Fi network

Can help the malicious

application in hacking

the Wi-Fi network and

sending user data by

using this information

READ_

PHONE_

STATE

Gives access to critical

data of phone like

IMEI/IMSI device identi-

fier, Phone Number,

Network Operator, Voice

Mail Box, SIM ID etc.

Helps the malware

author to keep track of

your phone and can

involve your device in

malicious activities

using this

Information.

READ/

WRITE_

EXTERNAL_

STORAGE

Allow to read or write

external storage

Malware can read

confidential data of the

user and write its mali-

cious code on External

storage.

SEND_SMS,

RECEIVE_

SMS,

READ_SMS,

WRITE_SMS

Allow the activities

related to SMS

Help the malicious

application read, write

and send user’s per-

sonal Information to

the malware author.

ACCESS_

COARSE_

LOCATION,

ACCESS_

FINE_

LOCATION

Permissions to access

location related infor-

mation of mobile device

These two permissions

are used by the mali-

cious applications for

location based sniffing

6.1. Analysis of Remit Money Transfer App

This app is meant to transfer money from the US to Pakistan.

Analysis of the app is discussed with the help of images of results
from different tools. First the relevance of permissions required
during installation was evaluated. As seen in Figure 2, the app
showed many irrelevant permissions which are not justified by its
functionality. An alternative app (right side image), World remit,
requires no permissions; it is used to transfer money from any
country to any place in the world. This app was also tested and did
not show any suspect behaviour.

Fig. 2: Apps permission display

International Journal of Engineering & Technology 33

Androwarn report as shown in image Figure 3 gives useful infor-
mation like android manifest.xml, API’s used, application infor-
mation and analysis results about possible malicious behaviour in
an app.

Fig. 3: Androwarn report for Remit money transfer app

Figure 4 is a screenshot of Androbugs report, which shows ADB
backup/debugging are enabled. This means that anyone who has
physical access to this phone can make a backup of all app data.
For a money transferring app, it is a quite risky to have this feature
enabled by the developer.

Fig. 4: Androbugs report for Remit money transfer app

Reverse engineering of application: Audio video eavesdropping-
There are 5 classes for audio and video in this application. In one
of the class Audiohandler.smali on line 146, it shows a method to
record audio as shown in Figure 5.

Fig. 5: Source code analysis of app

Figure 6 shows that the application has a code to check the phone
status, whether the phone is ringing or in sleep mode.

Fig. 6: Source code analysis of app

Based on Figure 7 showing the class NetworkManager.smali on
line 612, it can be observed that the method connectivity change.

This could be used in changing connection to send data to a differ-
ent network. The connection interface ex-filtration means the use
of malicious code to transfer data from the mobile phone. It also
has a file storage.smali, which shows backing up of data, on line
38.

Fig. 7: Source code analysis of app

Figure 8 shows unencrypted transfer of data in Wireshark in which
encryption should be used to transfer confidential information
such as user name, account details, password and other infor-
mation. Without encryption, it is easier for someone to steal in-
formation by performing attacks like the man in the middle.

Fig. 8: Wireshark shows unencrypted transfer of data

To recapitulate, this app’s analysis demonstrated surprising results

such as user data misuse (audio video eavesdropping), data backup,
network and phone abuse and insecure data transfer.

6.2. Analysis of Voice Recording App

Permissions displayed by the Voice recorder app as shown in Fig-
ure 9 during the installation seem quite irrelevant for the main
features it means to provide. The second right-side image shows,
an alternative app doing the same job with far less permission.

Fig. 9: Permissions displayed by Voice recorder app

The result in Figure 10 from virus total shows a type of Trojan
malware android/generic.z.2ec701!tris.

Fig. 10: Virus total detecting a Trojan in app

34 International Journal of Engineering & Technology

Figure 11 shows there are many classes that deal with phone num-
bers activities (Note a very recent update of this app provided the
functionality of showing caller id like true caller app, while these
functions were not available during the testing of this app. Still,
this does not justify its behavior).

Fig. 11: Source code analysis of app

Figure 12 shows that there are many classes to get the user’s exact
location.

Fig.12: Source code analysis of app

As a summary, this app’s main purpose is to record voice but it
shows a lot of suspect behavior such as accessing external storage,
contacts, network and user location.
Table 3 shows the list of Google developer policies violated by the
selected applications. The following table is a summary of the list
of vulnerabilities that has been discussed earlier.

Table 3: List of violated Google policies

Violation of Google Developer Policies

User

Data

Device and

Network

Abuse

Malicious

Behavior

Wrong Way

of Display-

ing Ads

Remit Money

Transfer
√ √ √

Voice Re-

corder
√ √ √

6. Conclusion

There is limited research on the security of data that is backed up
to a server. This is one of the major concerns for security as the
phone is a primarily an internet device and most of the infor-
mation is backed up and synchronized with a remote server. Find-
ings from analysis of applications demonstrate the insecure user
data, malicious behavior, and device and network abuse by an
application. Insecure transfer of confidential data without encryp-
tion speaks volume about an app security. Down-loading apps
from Google play store do not guarantee security. These apps may

be capable of stealing sensitive data from mobile phones without
the user’s knowledge. Android needs to strengthen its Google app
review process by involving more trusted static and dynamic tools
and accessing the results of red flag apps manually. The more
secure phones are based on optimized android OS like Solarin,
Blackberry dtek60, Blackphone2.

References

[1] Waddell, K. (2017). When apps secretly team up to steal your data.

https://www.theatlantic.com/technology/archive/2017/04/when-

apps-collude-to-steal-your-data/522177/.

[2] Sikorski, M., & Honig, A. (2012). Practical malware analysis: the

hands-on guide to dissecting malicious software. No Starch Press.

[3] Sadeghi, A., Bagheri, H., & Malek, S. (2015). Analysis of android

inter-app security vulnerabilities using COVERT. Proceedings of

the IEEE 37th International Conference on Software Engineering,

pp. 725-728.

[4] Enck, W, Gilbert, P, Chun, B-G, Cox, L, Jung, J, McDaniel, P &

Sheth, A. (2014). TaintDroid: An information flow tracking system

for real-time privacy monitoring on smartphones. Communications

of the ACM, 57(3), 99-106.

[5] Bhoraskar, R., Han, S., Jeon, J., Azim, T., Chen, S., Jung, J., Nath,

S., Wang, R., & Wetherall, D. (2014). Brahmastra: Driving apps to

test the security of third-party components. Proceedings of the

USENIX Security Symposium, pp. 1021-1036.

[6] Enck, W., Octeau, D., McDaniel, P. D., & Chaudhuri, S. (2011). A

study of android application security. Proceedings of the USENIX

Security Symposium, pp. 1-38.

[7] Elenkov, N. (2014). Android security internals: An in-depth guide

to Android's security architecture. No Starch Press.

[8] Dunham, K., Hartman, S., Quintans, M., Morales, J. A., &

Strazzere, T. (2014). Android malware and analysis. Auerbach Pub-

lications.

[9] source.android.com. (2017). Security report.

https://source.android.com/security/reports/Google_Android_Securi

ty_2016_Report_Final .pdf.

[10] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S.,

Conti, M., & Rajarajan, M. (2015). Android security: A survey of

issues, malware penetration, and defenses. IEEE Communications

Surveys and Tutorials, 17(2), 998-1022.

[11] Oberoi, S. (2014). AndroSAT: Security analysis tool for Android

applications. PhD thesis, Concordia University.

[12] Wang, P., Lin, W. H., Chao, W. J., Chao, K. M., & Lo, C. C.

(2015). Using dynamic taint approach for malware threat. Proceed-

ings of the IEEE 12th International Conference on e-Business En-

gineering, pp. 408-416.

[13] Sikorski, M., & Honig, A. (2012). Practical malware analysis: The

hands-on guide to dissecting malicious software. No Starch Press.

[14] Androbugs (n.d) Androbugs framework.

https://github.com/AndroBugs/AndroBugs_Framework.

[15] Androwarn (n.d). Androwarn.

https://github.com/maaaaz/androwarn.

https://github.com/maaaaz/androwarn

