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Abstract: The stock market is a complex, nonstationary, chaotic and non-linear dynamical system. Therefore,
predicting stock price movements is quite difficult. A novel type of learning machine called support vector machine
(SVM) has been receiving increasing interest in areas ranging from its original application in pattern recognition to
other applications such as regression estimation due to remarkable generalization performance. This paper deals
with the application of SVM in financial time series forecasting. Some results for stock price prediction are also
presented. Analysis of the experimental results proved that it is advantageous to apply SVMs to forecast financial
time series.
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1. Introduction

Financial time series forecasting is one of the most challenging applications of modern time series forecasting.
Financial time series are inherently noisy, nonstationary and deterministically chaotic [1,2]. These characteristics
suggest that there is no complete information that could be obtained from the past behaviour of financial markets to
fully capture the dependency between the future price and that of the past.

There are two main categories in financial time series forecasting: univariate analysis and multivariate
analysis. In multivariate analysis, any indicator, whether it is related to the output directly or not, can be incorporated
as the input variable, while in univariate analysis, the input variables are restricted to the time series being
forecasted. A general univariate model that is commonly used is based on the AutoRegressive Iniegrated Moving
Average (ARIMA) method. Compared to other multivariate models, the performance of ARIMA is not satisfactory
because this model is parametric, and additionally, it is developed on the assumption that the time series being
forecasted are linear and stationary. These constraints are not consistent with the characteristics of financial time
series. Therefore, Artificial Neural Network (ANN) assisted multivariate analysis has become a dominant and
popular tool in recent years. The prediction performance is greatly improved by the use of a neural network both in
terms of prediction metrics and trading metrics [3—6]. Multivariate models can rely on greater information, where not
only the lagged time series being forecasted, but also technical indicators, fundamental indicators or inter-market
indicators are combined to act as predicators. Moreover, a neural network is more effective in describing the
dynamics of non-stationary time series due to its unique non-parametric, non-assumable, noise-tolerant and adaptive
properties. Neural networks are universal function approximators that can map any nonlinear function without a
priori assumptions about the data.

However, a critical issue concerning neural networks is the over-fitting problem. It can be attributed to the
fact that a neural network captures not only useful information contained in the given data, but also unwanted noise.
This usually leads to a poor level of generalization. The performance of neural networks in terms of generalization
for the out-of-sample data—the data that are not used in training the network—is always inferior to that of the training
data. Therefore, the development of neural networks and the tasks related to architecture selection, learning
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parameter estimation and training, require substantial care in order to achieve the desired level of generalization. The
significance of good generalization is critical when using neural networks for financial time series forecasting.

The issue of generalization has long been a concern to researchers, who have explored a variety of
procedures for enhancing the generalization ability of neural networks. A typical approach uses crossvalidation,
where the data given is divided into three sub-samples. The first sample is for training, the second one for testing,
while the third one for validating. This approach involves a substantial amount of computation that is often referred
to as a weakness in theory. Nonparametric probability density estimation is another statistical tool used to improve
generalization [7], but its underlying assumption-that the distribution for both patterns and noise remains the same
over the model estimation and forecasting period—could often not be satisfied in financial time series. Other
techniques of enhancing the generalization ability of neural networks include modifying training algorithms [8],
pruning the connections or hidden nodes of the network [9], using adaptive learning parameters, and selecting
significant variables [10,11].

Recently, SVMs developed by Vapnik [12] have provided another novel approach to improve the
generalization property of neural networks. Originally, SVMs were developed for pattern recognition problems.
Recently, with the introduction of e-insensitive loss function, SVMs have been extended to solve non-linear
regression problems. Unlike most of the traditional learning machines that adopt the Empirical Risk Minimization
Principle, SVMs implement the Structural Risk Minimization Principle, which seeks to minimize an upper bound of
the generalization error rather than minimize the training error. This will result in better generalization than that with
conventional techniques.

The objective of this paper is to examine the functional characteristics of SVMs in financial forecasting.
This paper consists of five sections. Section 2 provides a brief introduction to SVMs while Section 3 contains the
experimental data. Section 4 discusses the experimental results followed by the conclusions drawn from this study in
the last section.

2. SVM for Regression Estimation

Compared to other neural network regressors, SVM has three distinct characteristics when it is used to estimate the
regression function. First, SVM estimates the regression using a set of linear functions that are defined in a high-
dimensional feature space. Second, SVM carries out the regression estimation by risk minimization, where the risk is
measured using Vapnik’s e-insensitive loss function. Third, SVM implements the SRM principle which minimizes
the risk function consisting of the empirical error and a regularized term.

Given a set of data points {(x,,,),...(x,,»,)}, Where each x, c R" denotes the input space of the sample
and has a corresponding target value y, c R for i=1,..., [ where / corresponds to the size of the training data [12,

22]. The idea of the regression problem is to determine a function that can approximate future values accurately.
The generic SVR estimating function takes the form:

fG)=(w-D(x))+b O]

where wC R”, b R and ® denotes a non-linear transformation from R” to high dimensional space. Our goal is to
find the value of w and & such that values of X can be determined by minimizing the regression risk:
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where I'(}) is a cost function, C is a constant and vector W can be written in terms of data points as:

£

w=2(a, —a,.)d)(x,) (3

i=1

By substituting equation (3) into equation (1), the generic equation can be rewritten as:
£ 4
f)=3 (e, = YD) D) +b =D (@, -, Ye(x,,x) +b C))
i=l i=1

In equation (4) the dot product can be replaced with function k(x,,x), known as the kernel function. Kernel
functions enable dot product to be performed in high-dimensional feature space using low dimensional space data
input without knowing the transformation ® . The elegance of using the kemel function is that one can deal with
feature spaces of arbitrary dimensionality without having to compute the map explicitly. Any function that satisfies
Mercer’s condition [12] can be used as the kernel function. Common examples of the kernel function are the
polynomial kernel and the Gaussian kernel (radial basis function). The radial basis function (RBF) is commonly used
as the kernel for regression:

K(x,x,)= exp(—”"’x“%z) (5)
Some common kernels are shown in Table 1.

Table 1.Common kernel functions

Kernel Function

Linear x-y

Polynomial K(x,x)=<x,x, > d is a positive integer
Radial Basis Function (RBF) K(x,%,) = exp(]x -, ‘z /20°)  Ois auser defined value

The e-insensitive loss function is the most widely used cost function 0. The function is in the form:

I(;”(x)-y|_5’ for |f)-)ze ©)

otherwise

L/ (x)-» ={

By solving the quadratic optimization problem in (7), the regression risk in equation (2) and the e-insensitive loss
function (6) can be minimized:

%Z{:(a,' -a, )(a,‘ -a, )k(x,,x/)—Za,'(y,—a)—al (v, +¢)

subject to
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Z[:a, -a =0, a,a € [O,C] Q)

The Lagrange multipliers, &, and e, , represent solutions to the above quadratic problem that act as forces pushing
predictions towards target value y,. Only the non-zero values of the Lagrange multipliers in equation (7) are useful
in forecasting the regression line and are known as support vectors. For all points inside the ¢ -tube, the Lagrange
multipliers equal to zero do not contribute to the regression function. Only if the requirement| f(x)- y\ > ¢ (See
Figure 1) is fulfilled, Lagrange multipliers may be non-zero values and used as support vectors.

The constant C introduced in equation (2) determines penalties to estimation errors. A large C assigns higher
penalties to errors so that the regression is trained to minimize error with lower generalization while a small C
assigns fewer penalties to errors; this allows the minimization of margin with errors, thus higher generalization
ability. If C goes to infinitely large, SVR would not allow the occurrence of any error and result in a complex model,
whereas when C goes to zero, the result would tolerate a large amount of errors and the model would be less
complex.

Figure 1. Support vector regression to fit a tube with radius € to the data and positive slack variables {; measuring the
points lying outside of the tube.

Now, we have solved the value of W in terms of the Lagrange multipliers. For the variable &, it can be computed by
applying Karush-Kuhn-Tucker (KKT) conditions which, in this case, implies that the product of the Lagrange

multipliers and constrains has to equal zero:

ae+s, -y, +(wx)+b)=0

a (e+¢ +y, —(wx)-b)=0 ®)
and

(C-a), =0

(C-a), =0 ©

where and  are slack variables used to measure errors outside the e-tube. & is called the tube size and it is
equivalent to the approximation accuracy placed on the training data points. Both C and & are user-prescribed
parameters. Since o, ,ai' =0 and ¢ =¢ for a,” €(0,C), b can be computed as follows:

S
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b=y -(w,x)-¢ fora, €(0,C)

. (10)
b=y —-(w,x,)+e fora €(0,C)

Putting it all together, we can use SVM and SVR without knowing the transformation.

From the implementation point of view, training SVM is equivalent to solving the linearly constrained quadratic
programming problem (6) with the number of variables twice as that of the number of training data points. The
sequential minimal optimization (SMO) algorithm extended by Scholkopf and Smola [14], [15] is very effective in
training SVM for solving the regression estimation problem.

In the next section, we apply our inferential result of SVR based on the general type of e-insensitive loss function to
the regression of financial data, for example, indices and stock prices. By applying regression to the data, we can
build a dynamic system to model the data and hence use the system for predicting future prices.

3. Experimental Settings

In this section, we conduct experiments to illustrate the usefulness of SVM for financial prediction. In our
experiment, we use the daily closing prices of Kuala Lumpur Stock Exchange (KLSE) Index from 01 April 2002 up
to the end of December 2004. Among these data points, the training data points cover the period from 01 April 2002
up to the end of December 2003, while the data points staring from 01 March 2004 up to the end of December 2004
are used as the test data. We set the length of the shift window to 100. The dynamic system is modeled as /, = (7,4, I
3 11, I-1), where [, is the real stock price at time ¢, and /; is the predictive value at time ¢. Therefore, the first
training data set is a total of 100 days’ of KLSE index. For example the closing stock prices of a selected company
for 100 are shown in Figure 2. We use these to predict the next day’s index. This window is then shifted and an
entire training is performed again to predict the following day’s index for the remaining test data.
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Figure 2. Closing stock prices of a selected company for 100 days.
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4. Experimental Results

In this investigation, the Gaussian function is used as the kernel function of the SVMs because Gaussian kernels tend
to give good performance under general smoothness assumptions. Consequently, they are especially useful if no
additional knowledge of the data is available [15]. The SVR algorithm used in our experiment is modified from
LibSVM [23]. Before running the algorithm, we need to determine some parameters. They are C, the cost of error;
parameter of kerne! function, and the margins. After performing a crossvalidation in the first training data, we set
values of parameters. Our experiments show that a width value, o, of the Gaussian function of 10 is found to produce
the best possible results. C and ¢ are chosen to be 10 and 107 respectively, because these values produced the best
possible results according to the validation set.

The prediction performance is evaluated using the statistical metrics: Mean Squared Error (MSE). MSE is a measure
of the deviation between actual and predicted values. The smaller the values of MSE, the closer are the predicted
time series values to that of the actual values. The experiments are conducted on a Pentium 4, with 1.7 GHZ, 1 GB
RAM and WindowsXP. With these configurations, the prediction results are obtained within seconds.

The behaviour of the MSE (Mean Squared Error) is illustrated in Figure 3 and Figure 5. It is evident that the MSE on
the training set is very low during the entire training period as shown in Figure 3. The graphs of actual and predicted
stock price values for the training period of 100 days are almost overlapping. However, the MSE on the test set
fluctuates and is higher than the MSE for the training period, as shown in Figure 5. It can be seen in Figure 5, the
graphs of actual and predicted prices for the test period of 101 to 110 days are deviating from each other, whereas as
the graphs for the training period until 100 dgys are overlapping.
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Figure 3. Actual and Predicted stock prices for a training period of 100 days
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Past and Future Predicted Stock Price Values
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Figure 4. Predicted stock prices for a training period of 100 days and test period of day 101-110
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Figure 5. Actual and Predicted stock prices for training period of 100 days and test period of day 101-110

From Figure 5 it is evident that the predicted values obtained from SVMs are closer to the actual values, indicating
that there is a smaller deviation between the actual and predicted values. All the above results are found to be

consistent with the statistical learning theory.

As already mentioned above, before running the algorithm, we need to determine some parameters. They are C, the
cost of error; parameter of kernel function, and the margins. After performing a crossvalidation in the first training
data, we set values of parameters. Our experiments show that a width value, o, of the Gaussian function of 10 is
found to produce the best possible results. C and & are chosen to be 10 and 10 respectively, because these values
produced the best possible results according to the validation set. Also, we use different values for the kernel
parameter. Specifically, ¢ = 0.90, 2.5, 5, 7.5, 10, 12.5, 15. As we increase o, the accuracy of the prediction also
increases. This can be seen from Table 2.
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Table 2: MSE values for different values of ¢ for the test data

c 0.9 2.5 5 7.5 10 12.5 15

MSE 35.73 23.32 7.31 5.12 4.10 3.69 4.01

5. Conclusions

The use of SVMs in financial forecasting is studied in this paper. The support vector machines for regression is a
robust technique for function approximation. The study has concluded that SVMs provide a promising alternative to
time series forecasting. They offer the following advantages: 1) There is a smaller number of free parameters. C and
& are the only two free parameters of SVMs if the kernel function has been considered; 2) SVMs forecast better, as
SVMs provide a smaller MSE. This is because SVMs adopt the Structural Risk Minimization Principle, eventually
leading to better generalization than conventional techniques; 3) Training SVMs is faster. The regression function in
SVMs is only determined by the support vectors, and the number of support vectors is much smaller compared to the
number of training samples.
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