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Abstract 

Fermat’s little theorem has been proved using different mathematical approaches, which majority of 
them are based on number theory. These approaches have only exposed the usability of Fermat’s
little theorem for logical, linear and structural predictions. Only small numbers of attempts had only 
been made to proof Fermat’s little theorem from other perspectives. This paper exhibits an 
alternative approach to proof the Fermat’s little theorem via dynamical system. Two lemmas are 
proven with respect to a redefined function, Tn (x) in order to achieve the task. 

Keywords: Fermat’s little theorem, dynamical system approach  

© 2018 Penerbit UTM Press. All rights reserved 

INTRODUCTION 

Fermat’s little theorem is a well-known result in number theory such 

that when p is prime, then ap ≡ a (mod p) for any natural number a. 

Fermat’s little theorem is a theorem regarding prime number in 

relation to modulo. It is quite a famous theorem by Fermat. It has 

broadly been proved in so many ways using number theory. 

However,  Iga published a paper titled ‘A Dynamical System Proof of 

Fermat’s Little Theorem’ in 2003 (Iga, 2003). The proof is totally 

different than any other researchers have offered before. This paper 

furnishes in details the proof of Fermat’s little theorem offered by Iga 

(2003). However, two important lemmas are proven with respect to a 

redefined function, Tn (x) in order to achieve the task.  

METHODOLOGY 

A fixed point of a function is an element of the function’s domain that 

is mapped to its self by the function. A fixed point is a point a such 

that f (a) = a (Holmgren, 2012).   

Consider a function Tn: [0, 1] → [0, 1]  for any n, where n ≥ 2 as 

T𝑛(𝑥) = {
(𝑛𝑥), 0 ≤  𝑥 ˂ 1 

1, 𝑥 =  1
                                                      (1) 

               

Hence, Tn  is an example of such a function. 

Iga (2003) started with the following lemma to introduce his novel 

proof of Fermat’s little theorem.  

Lemma 1 (Iga, 2003) 

Let n be a positive integers greater than 1. Then, the function Tn (x) 

has exactly n fixed point in [0, 1]. 

Proof   

Let a ∈ ℤ+ and 0 ≤ a ˂ n-1 with respect to equation (1), x must be in 

form of x = 
𝑎

𝑛−1
  so that 0 ≤  

𝑎

𝑛−1
 ˂ 

𝑛−1

𝑛−1
, i.e. 0 ≤ x ˂ 1 in order to fulfil 

the first domain condition of equation (1). 

Now to obtain the range,  

Tn (x) = (n x) by definition of Tn (x) 

    = 
𝑛𝑎

𝑛−1
 when x = 

𝑎

𝑛−1

    = 
𝑛𝑎

𝑛−1

In order to get Tn (
𝑛𝑎

𝑛−1
)= 

𝑎

𝑛−1
,  we have to manipulate 

(
𝑛𝑎

𝑛−1
− 𝑎)= (

𝑛𝑎−(𝑛−1)𝑎

𝑛−1
)= 

𝑎

𝑛−1
 as intended earlier. 

In order words we need to redefine Tn (x) = (nx – a) when x = 
𝑎

𝑛−1
. 

The second condition of equation (1) is then guaranteed; i.e. 

Tn (1) = 1 when x = 1 as a = n-1                                              ◼ 

The fixed points of the function of T3(x) is illustrated in Figure 1. 

Figure 1 The graph of T3(x). 
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For example, the fixed points of the function T3(x) are 0, 1/2, and 1.  

They are indicated by black circles in Figure 1. The function Tn (x) for 

n = 3, a = 0, 1, 2 with 0 ≤ a ˂ n-1 are as follow. 

When x = 0, T3(x) = (nx – a), where x = 
𝑎

𝑛−1
. 

Then x = 
𝑎

𝑛−1
 = 0 which implies a = 0 

T3 (0) = n(0) – 0 

    =  0 

Furthermore, when x = 
1

2

                            = 
𝑎

𝑛−1
 = 

1

2

                            = 
𝑎

3−1
 = 

1

2
when n = 3 

                            = 
𝑎

2
 = 

1

2
  which implies a = 1 

Hence,  T3(x) = (nx – a)  

                = n (x) – a 

                = 3 (
1

2
) – 1 

               = 
1

2

∴  T3 (
1

2
) =  

1

2

For the second condition of equation (1), when x = 1,  

T3 (x) = (nx – a), then x = 
𝑎

𝑛−1
 

                                = 
𝑎

3−1
  

                                = 
𝑎

2
 = 1 which implies a = 2 

Hence,  T3 (x) = (nx – a) 

                  = 3(1) – 2 

                  = 1   

∴  T3 (1) = 1                    

Therefore, the fixed point of T3 (x) = 0, 
1

2
, 1 i.e. the number of element 

of T3 (x) = 3 

The fixed point for T4 (x) are as follow for 0 ≤ a ˂ n-1 such that 

𝑎 ∈ ℤ+. 

When x = 0, T4(x) = (nx – a), where x = 
𝑎

𝑛−1
. 

Then x = 
𝑎

𝑛−1
= 0 which implies a = 0. 

Therefore,  T4 (0) = n(0) – 0 

                      = 0 

Furthermore, when x = 1/3, them 

                               x = 
𝑎

𝑛−1
 = 

1

3

                                  = 
𝑎

3
 = 

1

3
which implies a = 1 

Hence, T4 (x) = (nx – a) 

                = 4 (
1

3
) – 1 

                =  
1

3

                                                

Therefore, T4 (
1

3
) =  

1

3
. 

When x = 
2

3
, then  x = 

𝑎

𝑛−1
= 

2

3

                         = 
𝑎

3
 = 

2

3
which implies a = 2. 

Hence, T4 (x) = (nx – a)  

                 = 4 (
2

3
) – 2 

                 = 
2

3

Therefore,  T4 (
2

3
) =  

2

3

For the second condition of equation (1), when x = 1,  

                   T4 (x) = (nx – a)  

                             = 
𝑎

𝑛−1
 

                              = 
𝑎

4−1
  

                              =  
𝑎

3
 = 1 which implies a = 3 

                       T4 (x) = (nx – a) 

                                = 4(1) – 3 

                                = 1   

                       T4 (1) = 1                    

Therefore, the fixed point of T4 (x) = 0, 
1

3
, 

2

3
, 1  i.e. the number of 

element of T4 (x) = 4; i.e. T4 (x) has four fixed point as listed earlier.  

Now, the question is whether Tn (x) has exactly n fixed points in  

[0, 1]? In order to answer this question, we introduce our own lemma, 

called lemma 2. 

It was an ordinary statement by Iga (2003) in his paper. He did not 

supply the proof. However, we prove it as lemma 2 using 

mathematical induction on our own modified Tn (x) = nx – a function.  

Lemma 2 
The function Tn (x) = n, ∀𝑛 ∈ ℕ  

Proof: (by mathematical induction) 
Let P(n) be the statement 

P(n) :  Tn (x) = n, ∀𝑛 ∈ ℕ  such  that   x = 
𝑎

𝑛−1
 , a ∈ [0, n – 1) 

P(1)  

T1(x) = 1 since x = 
𝑎

𝑛−1
this implies that a = 0 for 0 ≤ x ˂ 1

Hence, 

              T1 (x) = 1x – a 

                        = x – 0 

                        = x  

In order words, T1 (x) has exactly 1 fixed point. 

P(n) ⇒ P(n+1) 

Assume P(n) is true; i.e. Tn (x) = n. 

Now, 

Tn+1 (x)   = (n + 1) x – a by redefine of Tn (x) 

         =   nx + x – a                    

         =   nx – a + x 

         =  Tn (x) + x 

         =     n    + x      by assumption 

         =    n + T1 (x)   since T1 (x) = x 

         =      n + 1  

Therefore, Tn (x) = n is true, ∀𝑛 ∈ ℕ    ◼  

In Iga (2003), he produced the following lemma. 

Lemma 3 (Iga, 2003) 
Let r and s be any positive integers for every  

x ∈ [0, 1], then Tr (Ts (x)) = Trs (x).  

However, in this paper, we will prove the equivalence of Iga’s lemma

in (2003) as stated in lemma 2 using our own modified Tn (x) as 

follows. 

Lemma 4 

Let r, s ∈ ℤ+ such that Tn (x) = (nx – a) for some a ∈ ℤ+ and  

x ∈ [0, 1].  Then Tr (Ts (x)) = Trs (x) 
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Proof 
Tr (Ts (x)) = Tr (sx - a)             by definition of Ts (x) 

                      = r (sx – a) – a   by definition of Tr (x) 

                      = r sx –ra – a 

                      = r sx –a(r + 1) 

                      = rsx – a*   by equating a* = a(r + 1) ∈ ℤ+ 

                     = Trs (x)      as required.                                       ◼                           

  

We are ready to furnish in detail the proof offered by Iga (2003) for 

Fermat’s little theorem using our own redefined Tn (x) (i.e. Tn (x) = 

(nx – a)) and lemmas. We reinstate the theorem as follows. 

  
Theorem 5  
If p is a prime, then ap ≡ a (mod p), ∀𝑎 ∈ ℕ 

 
Proof 
Consider Ta

p (x) as in lemma 1 with a ≥ 2 and p be any prime. 

By lemma 2, Ta (x) has an exact a fixed point. Similarly, Ta
p (x) has ap 

fixed point. From lemma 4, Ta (x) = Ta (Ta (… Ta (x)…)) which 

means Ta iterated p times, which also implies composition of function 

with itself repeatedly. These are the p – period point of Ta
p (x) which 

is the fixed point of Ta
p (x). 

Therefore, any point of Ta (x) is automatically a fixed point of  

Ta
p (x), which means that there is exactly a fixed point of Ta (x) in  

Ta
p (x) .  Since p is a prime, the rest of them has least period p or 

minimal period p under Ta . This implies that there is ap – a points that 

have least period p. 

Each point of least period p lies in an orbit of size p. There is ap – a 

point divisible by p in the orbit of size p. Since this is an integer, 

therefore ap – a is divisible by p. 

Hence,  

 ap ≡ a (mod p).                                                             ◼ 
 

CONCLUSION 
 
This paper highlights some important elements of dynamical system 

approach to proof the Fermat’s little theorem. Finally the paper 

presents an alternative proof of Fermat’s little theorem by the method. 

Some lemmas and manipulation of Tn (x) were provided in order to 

achieve the task.   
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