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Graphical abstract 

Abstract 

The potential use of kaolin as silica and alumina precursor for the synthesis of zeolite NaX was 
investigated in this study. The synthesis involved three steps of reactions; the preparation of seed 
gel, the formation of feedstock gel using kaolin and the combination of overall gel followed by 
hydrothermal treatment at 105°C for 12 hours. Analysis using X-ray Diffraction (XRD) method 
indicated the transformation of kaolin into pure phase zeolite NaX with a small amount of kaolin was 
still visible. Detail microscopic analysis showed the morphology of zeolite X consisted of octahedral 
particles with a crystallite diameter of 20-30 µm. Analysis of surface acidity using pyridine as probe 

molecule indicated the zeolite X has high Brǿnsted acidity with 0.181 mmol/g of acid sites, 

significantly higher than Lewis acidity ~0.053 mmol/g. The N2 adsorption-desorption measurement 
indicated a type IV material with both microporous and mesoporous structures with an average pore 
size of 1.47 nm for micropore and 3.41 nm for mesoporous.   
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INTRODUCTION 

Zeolite consists of four connected AlO4 and SiO4 tetrahedrons 

connected via oxygen to form porous aluminosilicates framework. The 

intracrystalline channel in the zeolite framework is occupied with water 

molecule and cation to neutralise the negative charge of AlO4. The 

mobility of the cation and the flexibility of the size, shape and pore 

structure of the zeolite allows modification to accommodate catalytic 

desire. Zeolite is commonly produced from hydrogels aluminate and 

sodium silicate, however, production of zeolite from alternative silica 

and alumina source such as bagasse fly ash [1] [2], rice hush ash [3] 

and kaolin [4] have received considerable attention since the past few 

decades. Kaolin is naturally occurring minerals that abundantly 

available in Indonesia particularly in south Sumatra, Bangka Belitung 

and Java island. Kaolin from Bangka Belitung has low iron and 

titanium content but rich with silica (54.9 wt.%) and alumina (36 wt.%).  

Studies were previously carried out for the synthesis of zeolite X using 

kaolin originated from Bulgaria [5] and also the synthesis of zeolite Y 

from natural kaolin [6], kaolin obtained from China [7] and  Iran [8]. 

Kaolin is an ideal alternative candidate to replace commercial silica and 

alumina precursors due to a high level of silica and alumina with 

relatively low iron content. The use of kaolin as raw material for the 

synthesis of zeolite offers an alternative economical route by utilising 

naturally abundant resources rather than commercially available 

chemical. 

The aim to synthesis zeolite NaX is due to its unique three-

dimensional pore structure and surface acidity that can be utilised as a 

solid acid catalyst [9], ion exchanger [10], and adsorbent. Zeolite NaX 

belongs to faujasite family that composes of sodalite cage with 6-rings 

(D6R) to form hexagonal framework.  

Studies that were carried out on the synthesis of zeolite X from 

kaolin required acid or base leaching treatment to reduce its resistance 

towards chemical transformation to zeolite [11].  Kaolin also required 

thermal treatment at high temperature ~ 700–900°C to form amorphous 

metakaolin before it can be used for zeolite synthesize [12]. The 

additional pre-treatment process has an indirect effect on the production 

cost and also detrimental to the environment i.e., production of 

greenhouse gases.   

Here we investigate the potential of kaolin as alternative silica and 

alumina precursors without the need for pre-treatment to produce 

zeolite NaX via hydrothermal method. The physical properties of 

zeolite X were analysed using XRD, SEM, FTIR and N2-gas 

adsorption-desorption methods to obtain its crystal morphology, 

framework structure, pore structure and surface acidity.  

EXPERIMENTAL 

Materials 
Kaolin from Bangka Belitung contained 36 wt.% Al2O3, 54.9 wt.% 

SiO2, 3.34 wt.% Fe2O3 and 1.88 wt.% K2O. The materials used in the 

synthesis were sodium hydroxide (99 wt.% NaOH Merck), sodium 

aluminate (53 wt.% NaAlO2 Merck), silica colloidal (LUDOX) (30 

wt.% SiO2 and 70 wt.% H2O Merck), ammonium acetate (Merck) for 

ion exchanged and acidity characterization. Demineralized water was 

used for cleaning and chemical preparation. 

Synthesis of zeolite NaX 
Bangka Belitung kaolin used in this study was obtained from 

Bangka Belitung (Sumatra, Indonesia). Chemical and mineralogical 

composition of the received kaolin is listed in Table 1. The as-received 

kaolin contains a low level of metal oxide impurities with Si to Al molar 

ratio of 1.53. Kaolin was used for the synthesis of zeolite X without 

prior pretreatment. The mixture kaolin and other precursors were 
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dissolved in NaOH solution to produce amorphous Si and Al gel 

mixture which was then used for the hydrothermal synthesis of zeolite 

X. 

The synthesis of zeolite NaX was carried out following three steps; 

the preparation of seed gel, the production feedstock gel and the mixing 

of seed and feedstock gels to produce an overall gel. The seed gel 

(Al2O3.4SiO2) was prepared by the addition of the NaAlO2 dan silica 

colloidal mixture into NaOH solution. The mixture was stirred 

continuously to form a homogeneous mixture and was left to age for 24 

h at room temperature. The feedstock gel (Al2O3.4.3SiO2) was also 

prepared following similar procedures but sodium aluminate was 

replaced by kaolin. The resulting feedstock gel was then added to the 

seed gel with the ratio of 18:1 in order to get overall synthesis gel 

mixture. The gel mixture was left to age for 24 h at room temperature 

before transferred into Teflon line vessel and hydrothermally treated at 

105oC for 12h. The simplified synthesis process was illustrated in the 

schematic diagram in Fig.1. 

Fig. 1  The schematic diagram for the synthesis of zeolite NaX from 
kaolin. 

The resulting powder was washed thoroughly with distilled water 

until the pH of the supernatant was neutral. The powder was then dried 

and calcined under an air flow at 500°C for 1h at 2°/min ramp rate. The 

synthesised zeolite NaX was ion-exchanged with NH4
+ by mixing the 

resulting powder with ammonium acetate to form NH4X,  as shown in 

the following equation (1)(2).  

NaX  +  CH3COONH4    →   NH4X   +    CH3COONa (1) 

      NH4X   →   HX   +   NH3                                                         (2) 

The NH4X was then calcined at 550°C for 5 hours to form H-zeolite X 

framework.   

Characterization of synthesized zeolite NaX 
X-ray Fluorescence was used to obtain chemical composition of 

Kaolin.  The synthesized NaX powder and kaolin were also 

characterised using X-ray Diffraction (XRD) Philip Expert with CuKa 

(λ = 1.5405 Å) radiation to determine the crystalline phase and 

crystallinity. Data were recorded in the range of 5−40° with a step size 

of 0.02°. The infrared spectra of NaX (SiO2/Al2O3 ratio = 4) was 

recorded using Fourier Transform Infrared spectrophotometer (8400S 

Shimadzu) with KBr pellet method. Sample and KBr were mixed with 

the ratio of  1:99, crushed and molded into a pellet, then compressed 

using hydraulic pressure. The formed pellet was placed on the holder 

and recorded in 4000-400 cm-1.  

The morphology of the synthesis zeolite X was analysed using 

Scanning Electron Microscopy (SEM) ZEIS EVO MA 10 FT-IR. Prior 

to the analysis, the sample was placed on a carbon tape and coated using 

Pd / Au for 15 minutes at 6 x 10-2 mBar pressure, then scanned to 

analyse the sample morphology.  

Nitrogen adsorption-desorption isotherms were observed using the 

Quantachrome Corporation (Nova-1200) instrument. Prior to the 

analysis, 0.2 gram of sample was placed in the vacuum for 3 hours at 

300 °C to evacuate adsorbed water, the sample was then exposed to 

nitrogen gas at 77 K. The specific surface area (SBET) is calculated using 

BET (Brunauer-Emmet-Teller) equation. The total pore volume was 

obtained based on the amount of nitrogen adsorbed at P/Po 0-0.99, while 

the pore size distribution was analyzed using BJH (Barret-Joiner-

Halenda). The micropore size distribution was analysed using SF 

(Saito-Foley) method.  

Pyridine was used as a probe molecule for acidity studies.  The 

sample was weight ~10 mg and pressed to form a thin and transparent 

film. The film was then placed in the sealed sample holder and annealed 

in a tubular furnace under vacuum at 300 °C for 3 hours.  The film was 

cooled at 30 °C before exposed with pyridine. The temperature was 

increased to 150 oC to remove physisorbed pyridine on the surface.  The 

chemical adsorption of pyridine on the zeolite X was measured using 

FTIR and the adsorbed pyridine peak was determined using the 

Gaussian method. 

RESULTS AND DISCUSSION 

Characterisation of zeolite NaX  
Detail chemical composition of kaolin obtained from XRF 

analysis was summarised in Table 1. Kaolin predominantly consisted 

of SiO2 and Al2O3 at ~ 91 wt. % with the impurities  consisted of K2O, 

Fe2O3, and traces of metal oxides. Considering the low level of metal 

oxide impurities, kaolin was used without prior pre-treatment for the 

synthesis of zeolite X. We provide EDX analysis of the as-synthesised 

zeolite X that indicated the NaX consisted of siliconnium and oxygen 

as main elements for zeolite framework with sodium that presumably 

as stabilizer cation (Fig. 2). We imply that metal oxide impurities that 

were originally present in kaolin were successfully evacuated from the 

reaction mixture. The evacuation occurred during the dissolution of 

kaolin with sodium hydroxide followed by thorough washing with 

deionised water and air calcination at high temperature. 

Table 1  Minerals analysis by XRF for Kaolin. 

Minerals Wt. % 

Al2O3 36 
SiO2 54.9 
P2O5 0.88 
K2O 2.88 
CaO 0.58 
TiO2 0.551 
V2O5 0.03 
Fe2O3 3.37 
CuO 0.097 
Rb2O 0.18 
ZnO 0.02 
NiO 0.585 

Fig. 2  EDX analysis on the elemental composition of synthesized 
NaX 
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In order to synthesis zeolite NaX with high crystallinity and purity, 

the synthesis condition should be carefully controlled including the 

purity of the precursors. The hydrothermal treatment requires 

optimisation of synthesis condition by controlling the temperature and 

the crystallisation time. Variation of the molar ratio of starting materials 

significantly determined morphology, surface area and acidity of the 

synthesized zeolite.  Davis [13] reported that controlling the 

temperature of hydrothermal treatment affected the nucleation and 

crystal growth of zeolite. In general, hydrothermal synthesis at high 

temperature produced high thermal energy that consequently shortened 

the crystallization time. However, synthesis at high temperature often 

produced large aggregates of zeolite. We found the optimum 

crystallization temperature for the synthesis of zeolite NaX from kaolin 

was achieved at 105 °C. Detail analysis of the morphological structure 

and the purity of the synthesized zeolite was analysed using XRD and 

infrared spectroscopy. 

X-ray diffractogram of kaolin, synthesised zeolite NaX and 

commercial zeolite NaX were shown in Fig 3. The peaks corresponded 

to kaolin at 20o, 20.5o, 22o, 35o, 36o, 39o and 40o were significantly 

reduced in the as-synthesised zeolite NaX. The diffractogram pattern of 

zeolite NaX synthesised using kaolin showed peaks at 2θ = 6.15; 10.02; 

23.28; 26.64; 31.95° which were identical to the peaks appeared in 

standard zeolite X [13].  The XRD pattern of synthesized zeolite NaX 

was also in accordance with the peaks of NaX according to 

International Zeolite Association (IZA)[14]. However, two peaks 

corresponded to kaolin at 13o and 25o were still present but at 

significantly low intensity in zeolite NaX which suggested incomplete 

dissolution of kaolin with sodium hydroxide during the preparation of 

gel mixture.  

Fig. 3  The XRD pattern of NaX commercial standard, synthesize NaX 
and kaolin. 

The synthesized zeolite NaX was also analysed using infrared 

spectroscopy to provide spectroscopic evidence on the structure and the 

functional group of zeolite X. The IR spectra of zeolite X was also 

compared to kaolin as shown in Fig.4. The presence of a band at 1107 

cm-1 in the infrared analysis of kaolin indicated the stretching vibration 

of tetrahedral SiO4 and AlO4. The peak appeared at 1029 cm-1 is 

corresponded to the vibration of Si-O-Si (Si-O-Si in-plane stretching). 

The vibration of Al-O-H appeared at 913 cm-1 which subsequently 

disappeared in NaX spectra. The characteristic bands of NaX which 

consisted of FAU type structure occurred between 1250-950 cm-1[15] 

which showed external asymmetric stretching of TO4, where T is Si or 

Al. The band appeared at 790-650 cm-1 is external vibration associated 

with the sensitive tetrahedral structure of zeolite X (external symmetric 

vibration). This is a typical vibration that appears in most silica 

materials [16]. Asymmetric stretching and symmetric stretching of 

synthesized NaX can be seen occurred at 977.94 cm-1 and 744.55 cm-1. 

The specific TO4 (T = Si or Al) vibrational peak for zeolite was 

identified by band appeared at 451 cm-1. The peak observed at 561 cm-

1 was identified as vibrational of D6R rings that distinguished zeolite X 

structure with another aluminosilicate zeolite. The spectroscopic 

evidence obtained from the infrared analysis further consolidate the 

formation of zeolite X crystal structure that was synthesised using that 

kaolin as silica and alumina precursor. 

Fig. 4  The Spectra FTIR of synthesized NaX and kaolin. 

Fig. 5   The SEM micrograph of synthesized NaX. 

The morphology and crystallite size of the synthesised material 

was analysed using Scanning Electron Microscopy (SEM). Fig. 5 

shows the morphology of NaX which appears as a hexagonal structure 

with average crystallite size ~ 10-20 µm. This is a typical morphology 

for zeolite X which were observed previously by others [17] [18]. SEM 

images also show the NaX crystallite was in uniform aggregate size and 

some crystallite agglomerates to form large aggregates. The presence 

of remaining kaolin as a result of incomplete dissolution which was 

indicated by XRD analysis was observed as a thin layer occurs around 

the NaX crystallite. The incomplete dissolution of kaolin also affected 

the Si/Al ratios of the synthesised zeolite X. The EDX analysis shown  

Fig.2 indicated that the zeolite X was consisted of 23 wt % of Si and 18 

% of Al to give the Si/Al ratio of 1.28. This is significantly lower than 

the experimental value which also suggested incomplete dissolution of 

kaolin during the synthesis.  

The specific surface area of kaolin and zeolite X were analysed 

using BET method with the nitrogen adsorption-desorption profile 

provides information on the type of pore of zeolite (Fig. 6). Kaolin 

showed no nitrogen adsorption at relative pressure, P/Po within 0.1-0.3 

which indicated the type II non-porous material. The non-porous kaolin 

also has a very low surface area of ~ 14 m2/g. The transformation of 

(a) (b) 

(c) 

10 µm 10 µm 
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kaolin to zeolite X resulting in a high surface area (80 m2/g) material 

that is beneficial for research and industrial purposes.   The as-

synthesised zeolite HX showed an isotherm type IV which indicated 

the presence of mesoporous structure within the framework. 

Fig. 6 The Isotherm N2 Adsorption-Desorption of HX and H-kaolin. 

The isotherm N2 profile of HX exhibited an increasing nitrogen 

molecule adsorption at low relative pressure (0 to 0.3) corresponding to 

the adsorption occurred to fill the micropores of zeolite. At P/Po of 0.3, 

the surface of zeolite X was covered by a monolayer nitrogen molecule. 

Adsorption of nitrogen to the zeolite surface was continuously 

increased at P/Po ~ 0.4-0.7, which indicated the nitrogen adsorption on 

the uniform slit-shaped intracrystal mesopore. The surface of the pore 

only allowed a limited layer of adsorbate, its called condensation and 

causing the hysteresis loop. Hysteresis loop was observed at P/Po 0.4-

1, occurred due to the desorption of nitrogen.  

Fig. 7 The pore size distribution of kaolin and synthesized HX from BJH  
(Ballet, Joiner, Halenda) method. 

Analysis of the pore size distribution using the BJH (Barret, Joiner, 

Halenda) method in Fig. 7 showed the presence of meso-sized pore type 

structure ~ 2-5 nm in diameter with a peak centered at 3.4 nm. It implies 

that the zeolite NaX consisted of the intra-crystal mesoporous structure 

with narrow and sharp pore distribution. We also compare the pore size 

distribution of zeolite NaX with the raw material kaolin that showed no 

significant pore structure can be observed in kaolin. This is in 

agreement with the  N2 adsorption-desorption analysis that revealed 

type II isotherm corresponded to the non-porous structure of kaolin. 

The formation of mesopores within the zeolite NaX structure is rather 

surprising due to in general the synthesis of mesoporous zeolite requires 

the presence of surfactant as structure directing agent. We suggested 

the formation of mesoporous structure is due to the arrangement of 

silica and alumina in the slit-pore of zeolite NaX. Apart from the 

presence of mesopores, analysis of zeolite NaX SF method as shown in 

Fig. 8 also indicated the presence of the microporous structure.  The 

micropore size distribution showed the highest pore diameter of ~ 1.47 

nm with a micropore volume of ~ 0.006 cm3/g contrary to kaolin that 

only consisted of relatively small micropore size within 0.36 and 0.90 

nm of diameter.  

The surface acidity was performed by infrared spectroscopy using 

pyridine as a probe molecule. The amount of adsorbed pyridine on the 

zeolite NaX was analysed in the 1700-1400 cm-1 of wavelength region. 

Protonated pyridine molecule in the form of pyridium ion (C5H5NH+) 

interacting with Brǿnsted acid sites shows a specific adsorption band at 

a wavenumber of ~ 1540-1545 cm-1. The pyridinium ion is a result of 

bond formation between pyridine with a proton from the surface 

hydroxyl group of zeolite X. Interaction between pyridine with Lewis 

acid site on the surface formed by coordinated bonding interaction 

between the free electron pairs of pyridine molecule with the empty 

orbital of extra -framework alumina in the zeolite. This interaction leads 

to the appearance of the absorption band at wavenumber ~1440-1452 

cm-1 [19]. 

Fig. 8 The micropore distribution of as-synthesized HX from the SF 
method 

     Fig. 9 The infrared spectra of pyridine adsorption of synthesized HX 
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The infrared spectra of the pyridine upon adsorption on zeolite HX 

showed pyridine peak vibration appeared ~ 1440-1452 cm-1 indicating 

the presence of Lewis acidity. The band appeared at 1545 cm-1 revealed 

Brǿnsted acidity and the band at 1490 cm-1 corresponded to the total 

adsorption of pyridine on both Lewis and Brǿnsted acid sites [20]. The 

peak area of adsorbed pyridine was determined using the Gaussian 

method to indicate the amount of surface acid site on the as-synthesised 

zeolite X. The calculated data showed the zeolite X has a high number 

of Brǿnsted acidity in comparison to Lewis acidity to give about ~0.18 

mmol/g of the Brǿnsted acid site and 0.05 mmol/g of Lewis acid site.  

CONCLUSION 

We investigated the potential use of abundantly available silica 

and alumina riched kaolin to be transformed into zeolite X. The 

synthesis occurs in three steps involving the preparation of seed gel, the 

formation of feedstock gel using kaolin and the mixture of these two 

gels to form the overall gel. The crystallization process was carried out 

under a hydrothermal condition at 105°C which produced zeolite NaX 

with both microporous and mesoporous structure. The zeolite NaX also 

consisted of high purity and crystallinity with high surface acidity 

which ideal as a catalyst in many catalytic applications.  
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