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Abstract 

Violacein from Chromobacterium violaceum has raised the enthusiasm of researchers in conducting 
comprehensive studies on these pigments due to their diverse biological activities including antibacterial 
and antioxidant properties. However, a limitation related with the solubility of the violacein pigment, by 
which it is commonly dissolved in toxic solvents such as dimethyl sulfoxide and methanol instead of 
being soluble in biological fluids and water. Hence, this study provides a method to synthesis the 
violacein pigment in nanoscale through an encapsulation technique using chitosan-tripolyphosphate (Cs-
TPP) nanoparticles. The synthesis of nanoparticles in this study involved ionic gelation between chitosan 
and tripolyphosphate (TPP), in which several parameters were taken into consideration in order to control 
the size and dispersion stability of the violacein pigment in the suspension. Preparation parameters, 
including the concentration of chitosan, TPP and pigment as well as the mass ratio of chitosan to TPP, 
were optimized using Response Surface Methodology (RSM). Minimum particle size of 149.0 nm with 
zeta potential of +23.40 mV was obtained at the optimal formulations of 2.33 mg/mL of chitosan, 1.5 
mg/mL of TPP, and 1 ppm of violacein pigment and at mass ratio of chitosan:TPP of 7:1. This nano-
sized violacein pigment is expected to be applied as safe additive, colorant, and therapeutic agents. 
Meanwhile, RSM in the study could provide the optimal formulations for producing stable nano-sized 
violacein pigment. 
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INTRODUCTION 

Natural pigments have been widely utilized in various industries in 

high demands since the public become more aware with the toxicity, 

carcinogenicity, and mutagenicity of its rival, synthetic pigments. 

These pigments contain chromophores which are important for 

appearance of color in animals, plants, and bacteria [1]. Although all 

taxonomic groups are known to produce natural pigments, bacteria are 

recognized as potential source of pigment owing to their distinctive 

advantages such as short life cycle, availability irrespective of seasons 

and geographical conditions, able to produce variety of colors and 

shades, as well as accessibility of production and downstream 

processing [2]. 

Violacein, 3-[1,2-dihydro-5-(5-hidroxy-1H-indol-3-yl)-2-oxo-3H-

pyrrol-3-ilydene]-1,3-dihydro-2H-indol-2-one (Figure 1) is a violacein 

pigment produced by Chromobacterium violaceum in the presence of 

free oxygen [3]. This unique violacein pigment has propelled the 

enthusiasm among researchers due to its antitumoral [4], antiviral [5], 

antifungal [6], antimicrobial [7], and anticancer activities [8].  

However, violacein has limited solubility in water and biological 

fluids and commonly dissolved in toxic solvents such as dimethyl 

sulfoxide and methanol [9]. Nanoencapsulation has become one of the 

recent emerging approach of encapsulation as nanoparticles can be 

conformed to envelop or reservoirs of bioactive particles which are 

trapped and released from the large surface area [10]. Martins et al. [9]

overcome the limitation solubility of violacein by encapsulating the 

violacein into polymeric poly-(D,L-lactide-co-glycolide) acid (PLGA) 

nanoparticles via nanoprecipitation method [9]. However, the loaded 

violacein-PLGA nanoparticles had negatively-charged outer surfaces, 

which restrict the interactions with negatively-charged cell membrane 

of bacteria [11]. This interferes the determination of antibacterial 

activity of the violacein against microorganism.  

Figure 1  Chemical structure of violacein [3]. 

Alternatively, chitosan nanoparticles are taken into consideration 

since it has been widely studied for pharmaceutical and biomedical 

applications particularly in the drug delivery systems such as 

dexamethasone [11], indomethacin [12], quetiapine fumarate [13], 

methotrexate [14], sumatriptan succinate [15], and dextran-doxorubicin 

conjugate [16]. Properties of the chitosan including mucoadhesive, 

biocompatible, biodegradable, non-toxic, and possessing antimicrobial 

activity had made it as desirable polymer and encapsulating agent in 

drug delivery system [17]. Various encapsulation techniques have been 

explored and applied such as spray drying, ionic gelation, coacervation, 

liposome entrapment, and emulsion phase separation [18]. Ionic 

gelation has several advantages over the other methods as this 
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technique requires simple and mild conditions, does not involve high 

temperature or the use of organic solvents, and also prevents the 

possibility of damage to drugs, especially biological agents 

[12,15,17,18]. However, this technique is highly sensitive to numerous 

environmental variables, component, and process conditions [14]. The 

chitosan nanoparticles are known to aggregate or fuse directly after 

preparation and have a limited stability during storage. In previous 

studies, several parameters have been considered for assessing the 

interaction effects upon the responses such as particle size, 

polydispersity index, encapsulation efficiency, and zeta potential for 

optimization of chitosan nanoparticles. Abul Kalam et al. [12] reported 

on the interaction effect of three parameters of nanoparticles which are 

chitosan concentration, tripolyphosphate (TPP) concentration, and 

stirring rate to optimize the encapsulation of indomethacin to chitosan 

nanoparticles. The authors found that these parameters have synergistic 

effect on the size of the nanoparticles [12]. de Pinho et al. [19] 

optimized the chitosan nanoparticles formulation by analyzing the 

effect of pH, chitosan:TPP ratio, and acetic acid concentration in 

particle size and zeta potential of chitosan nanoparticles [19]. 

Therefore, it is important for researchers to study the optimization of 

preparation parameters to acquire the optimum conditions for attaining 

nano-sized encapsulated particles with low polydispersity index and 

high zeta potential.  

In the past, the optimization of chitosan nanoparticles using 

Response Surface Methodology (RSM) was conducted to produce 

stable particles [12–14]. RSM is a constructive tool that employs the 

combination of mathematical and statistical techniques that is used for 

designing, developing, optimizing, formulating, and improving 

processes [20]. Thus in present study, optimal conditions for the 

preparation of nano-sized violacein through encapsulation with 

chitosan nanoparticles by employing 3-factor 3-level Box–Behnken 

experimental design was investigated. Several parameters were 

optimized to produce nano-sized violacein with small particle size and 

high zeta potential which were concentration of chitosan, concentration 

of TPP, chitosan:TPP mass ratio, and concentration of violacein  

EXPERIMENTAL 

Materials 
Low molecular weight chitosan and sodium tripolyphosphate were 

purchased from Sigma-Aldrich (USA). Sodium hydroxide and Tween 

80 was purchased from Merck (Germany). Glacial acetic acid and other 

chemicals used were of analytical grade while ethylacetate and acetone 

used for extraction of pigments were of industrial grade. Ultrapure 

water was obtained by Milli-Q® water purifier (Millipore, France). 

Production of crude violacein pigment in 5-L bioreactor 
Chromobacterium violaceum UTM5 (GenBank accession no. 

HM132057), a violacein pigmented bacterial strain was obtained from 

the stock which have been collected, isolated, and prepared by UTM 

Bacterial Technology Research Group [7,21]. In this study, crude 

violacein was produced using liquid pineapple waste (LPW) in 

accordance with method from Aruldass et al. [7] as this approach 

highlighted potential low cost growth medium for the large-scale 

production process [7]. C. violaceum UTM5 was inoculated into a 

series of 250 mL Erlenmeyer flasks containing 62.5 mL nutrient broth 

(NB) and incubated at 30 ℃ (Memmert, United Kingdom) for 24 hours 

in the dark under static condition. Then, 50 mL inoculum (10 % (v/v)) 

was transferred into a 2-L Erlenmeyer flask containing 450 mL NB 

along with 150 mg/L L-tryptophan (from L-tryptophan stock solution; 

1000 mg/L) and incubated at 30 ℃ (Memmert, United Kingdom) for 24 

hours in the same aforementioned condition. Next, the culture (10 % 

(v/v)) with 5 × 107 CFU/mL, 500 mL was transferred into a 5-L 

bioreactor (Biotron Liflus GX 7 L, Korea) containing 4.5 L of 10 % 

(v/v; in sterile reverse osmosis water) LPW and cultivated for 24 hours 

under the following conditions: 30 ℃, 200 rpm, aeration rate 3 L/min, 

initial pH of 7.0, and with an addition of Antifoam A (Sigma, 

Germany). Crude violacein was extracted using ethyl acetate (J.T. 

Baker, USA) at the culture to solvent ratio of 4:1. Next, the extract was 

concentrated using a rotary evaporator (Büchi, Switzerland) at 50 ℃.  

Synthesis of violacein pigment nanoparticles 
Violacein nanoparticles were synthesized by encapsulating the 

violacein with chitosan using ionic gelation technique. Preparation of 

The violacein nanoparticles was prepared by following the methods 

explained by Aruldass et al. [7] and Hussain and Sahudin [22] with 

some modifications [7,22]. Chitosan was dissolved in 1 % (v/v) acetic 

acid and left stirred overnight. Chitosan solution was filtered through a 

0.45 μm syringe filter to remove undissolved residues. The 

concentration of chitosan solution ranged from 1–3 mg/mL were 

prepared using 1 % (v/v) acetic acid. TPP solutions with concentrations 

ranged from 0.5–1.5 mg/mL were prepared by dissolving TPP in 

ultrapure water and left stirred for 5 min. Then, TPP solution was 

filtered using 0.20 μm syringe filter. The pH of chitosan solution was 

adjusted to 4.8 using 1M NaOH solution prior to the addition of TPP. 

A stabilizer, Tween 80 (0.25% (v/v)) was used and  violacein with 

concentrations ranging from 1–3 ppm were added into the chitosan 

solution and left stirred for 10 min. The formation of chitosan 

nanoparticles was carried out by adding TPP as cross-linker dropwise 

into the mixture of chitosan, Tween 80, and violacein pigment under 

constant stirring (700 rpm) for 30 min at room temperature (25 ± 2 ℃). 

The suspensions were subsequently centrifuged at 25000 rpm using 

ultracentrifuge (ThermoFisher Scientific, USA) for 30 min. The 

resulting suspensions were immediately frozen at -20 ℃ for 

approximately 4 h and freeze dried (Alpha 1-2/LD Plus, Germany). All 

samples were then stored at ± 4 ℃ prior to analysis. 

RSM experimental design 
Design Expert Software (Design Expert 7.1.6) was utilized to 

perform regression and graphical analyses of experimental data 

obtained during the preparation of violacein pigment nanoparticles. 

Box-Behnken design (BBD) was chosen based on the selection of three 

levels for each of four factors namely the concentration of chitosan (A), 

the concentration of TPP (B), the chitosan:TPP mass ratio (C), and the 

concentration of violacein pigment (D). BBD was employed to evaluate 

the main effects, interaction effects, and quadratic effects of the 

aforementioned factors upon particle size (R1) and zeta potential (R2) 

as responses. A design consisted of 29 runs were developed and a 

polynomial equation was generated as follows [10]: 

R = b0 + b1A + b2B + b3C + b4D + b12AB +b13AC + b14AD + b23BC + 

b24BD + b34CD + b11A2+ b22B2 + b33C2 + b44D2              (1) 

whereby R is response, b0 is intercept, and b1-b44 indicate regression 

coefficient calculated from the observed values of R from the 

experiments. The interaction and quadratic terms are represented by 

(AB, AC, AD, BC, BD, and CD) and (A2, B2, C2, and D2), respectively. 

The three level design points (low, medium and high) of factors in 

actual and coded values with their responses are presented in Table 1. 

Stirring speed, stirring time, and concentration of Tween 80 were fixed 

at 700 rpm, 1 h, and 0.25 % (v/v), respectively. The design layout 

consists of 29 experimental formulations of violacein nanoparticles and 

their observations of factors on the responses are shown in Table 2. 

Data analysis, optimization and validation of applied model 
Analysis of variance (ANOVA) was used to determine the 

adequacy of the design model to describe the observed data as well as 

the significance of factors and their interactions upon the responses. 

The relative effects of factors on the responses could be estimated based 

on the magnitude (positive or negative) of regression coefficients of the 

fitted model. Best fitting experimental model of responses onto either 

linear, two factorial interaction (2FI), and quadratic was observed and 

evaluated statistically. The optimization of the violacein pigment 

nanoparticles were performed by setting the goal of responses attaining 

the violacein nanoparticles with minimum particle size as well as 

maximum zeta potential. A check-point analysis was done in order to 

establish and evaluate the reliability of the developed model. 

Characterization of violacein nanoparticles 
Physicochemical characterization of violacein nanoparticles were 

carried out on total of 29 formulations as proposed by RSM.  
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Table 1  Variables in Box Behnken design (BBD) used for optimization of nano-sized violacein pigment. 

Independent variables (Factors) Units 
Actual and coded levels 

-1 0 +1

A: Concentration of chitosan  mg/mL 1.0 2.0 3.0 
B: Concentration of  tripolyphosphate (TPP) mg/mL 0.5 1.0 1.5 
C: Chitosan:TPP mass ratio  - 5 6 7 
D: Concentration of violacein pigment ppm 1.0 2.0 3.0 

Dependent variables (Responses) Units Aims 
R1: Particle size nm Minimize 
R2: Zeta potential mV Maximize 

Table 2  Measured responses for factors of nano-sized violacein pigment. 

Runs 
Factors Responses 

A (mg/mL) B (mg/mL) C D (ppm) R1 (nm) R2 (mV) 

1 2.0 0.5 6.0 1.0 15.40 23.70 
2 2.0 1.5 5.0 2.0 78.98 12.94 
3# 2.0 1.0 6.0 2.0 146.53 6.10 
4 1.0 1.5 6.0 2.0 103.99 13.70 
5 2.0 1.5 6.0 1.0 13.26 23.97 
6 2.0 1.0 7.0 2.0 183.43 37.90 
7 3.0 1.5 6.0 2.0 97.28 30.53 
8# 2.0 1.0 6.0 2.0 222.37 29.70 
9 2.0 0.5 5.0 2.0 30.23 22.3 
10 2.0 1.5 6.0 3.0 63.58 3.86 
11# 2.0 1.0 6.0 2.0 133.47 23.00 
12 2.0 1.5 7.0 2.0 132.37 29.90 
13 2.0 1.0 5.0 1.0 22.24 9.16 
14 3.0 1.0 5.0 2.0 198.93 29.17 
15 1.0 1.0 7.0 2.0 223.83 20.07 
16# 2.0 1.0 6.0 2.0 198.73 17.40 
17 1.0 1.0 5.0 2.0 102.23 7.73 
18 1.0 1.0 6.0 1.0 46.61 -0.15
19 3.0 1.0 6.0 3.0 171.18 10.28
20 1.0 0.5 6.0 2.0 152.77 20.77
21 2.0 0.5 7.0 2.0 210.60 20.1
22 2.0 1.0 5.0 3.0 92.53 -0.614
23 2.0 1.0 7.0 3.0 118.54 1.32
24 2.0 1.0 7.0 1.0 97.07 19.1
25 2.0 0.5 6.0 3.0 192.34 11.65
26 1.0 1.0 6.0 3.0 50.64 -2.19
27 3.0 1.0 6.0 1.0 171.60 19.27
28# 2.0 1.0 6.0 2.0 204.03 13.40
29 3.0 0.5 6.0 2.0 284.60 42.43

#: Centre point 

Particle size and zeta potential 
Particle size distribution and zeta potential of violacein 

nanoparticles were determined through dynamic light scattering (DLS) 

by using Zetasizer Nano (Malvern, UK). Freeze-dried violacein 

nanoparticles were dissolved in 20 mL of ultrapure water and dispersed 

ultrasonically using probe sonicator (QSonica, USA) for 5 min prior to 

analysis. Measurements were performed by transferring about 1 mL of 

the solution into a disposable folded capillary cell. The analysis was 

then operated at 173o of scattering angle at room temperature (25 ± 2 

℃). The measurement of each samples were done in triplicates. 

Morphological analysis using field emission scanning 
electron microscope (FESEM) 

Surface morphologies of violacein nanoparticles and chitosan 

nanoparticles as blank were observed using FESEM (Hitachi SU8020, 

Japan). A small drop of the suspension was put onto the stub and left 

dried in desiccators for 30 min. The stubs containing sample were 

sputtered and coated with platinum prior to analysis. The image was 

successfully acquired using electron accelerating voltage of 5 kV at 

magnification of 100,000. 

RESULTS AND DISCUSSION 

Data analysis and model fitting 
Model fitting of the observed responses (particle size and zeta 

potential) onto either linear, two factorial interaction (2FI), quadratic, 

and cubic were analyzed. Several statistical parameters such as standard 

deviation (SD), multiple correlation coefficient (R2), adjusted multiple 

correlation coefficient (adjusted R2), and predicted multiple correlation 

coefficient (predicted R2) were taken into consideration (Table 3). A 

model with low SD, R2, and adjusted R2 value close to 1.0 and adequate 

precision greater than 4 was selected as best fitting model. From the 

observations, the particle size and zeta potential were best fitted to the 

quadratic model as suggested by the Design Expert 7. Cubic model also 

showed signs of being fit model but it was determined as “aliased” since 

this model provided unreasonably little points or chooses the wrong 

points that lead to unstable coefficients and inaccurate graphs. Hence, 

aliased model (cubic) was not chosen.  

The quadratic model was further analyzed for the accuracy of the 

fit and the significance using ANOVA (Table 4). The R2, adjusted R2, 

and predicted R2 values for the surface quadratic model of particle size 

are 0.8250, 0.6499 and 0.1628, respectively. These values are 

considered lower than values obtained by Abul Kalam et al. [12] as the 

values were 0.9178, 0.8974 and 0.8856, respectively. The effects of 

chitosan concentration, TPP concentration, and stirring time on the 

particle size, encapsulation efficiency, and cumulative drug release 

were analyzed. Despite of the high values of aforementioned statistical 

parameters, the quadratic model of particle size had significant lack of 

fit (F-values: 18.04 and p-values: 0.0087). F-values and p-values are 

important in determining the significance of each coefficient. The 

corresponding coefficient term is considered to be more significant 

when magnitude of F-values and p-values are larger and smaller, 

respectively [23]. The model F-values for R1 (particle size) and R2 (zeta 

potential) are 4.71 and 5.36 respectively, which implied that the model 
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is significant for both responses. Responses R1 and R2 only have 0.32% 

and 0.17% chances, respectively due to noises. The “lack of fit F-

values” of 1.32 for R1 and 0.32 for R2 indicates the lack of fit is 

insignificant relative to the pure error. Lack of fit F-values were large 

with 42.46 % and 93.53 % chances for R1 and R2, respectively. Since, 

non-significant lack of fit was good, quadratic model of particle size in 

this study is better and the model was found to be fitted. 

Table 3  Model summary of statistical parameters. 

Table 4  ANOVA for response surface quadratic model. 

Terms 
Particle size (R1) Zeta potential (R2) 

F-values p-value > F Remarks F-values p-value > F Remarks 

Model 4.71 0.0032 Significant 5.36 0.0017 Significant 
Linear 
A 8.24 0.0123 24.03 0.0002 
B 7.11 0.0184 1.36 0.2636 
C 8.78 0.0103 4.55 0.0511 
D 4.71 0.0477 10.00 0.0069 
2FI 
AB 2.60 0.1289 0.14 0.7140 
AC 2.55 0.1326 0.08 0.7839 
AD 2.69x10-3 0.9594 0.29 0.5989 
BC 2.19 0.1613 2.20 0.1600 
BD 2.18 0.1624 0.39 0.5426 
CD 0.32 0.5786 0.38 0.5452 
Quadratic 
A2 0.68 0.4219 1.20 0.2922 
B2 4.95 0.0430 5.73 0.0313 
C2 1.87 0.1927 0.01 0.9319 
D2 21.18 0.0004 18.81 0.0007 
Lack of fit 1.32 0.4246 Insignificant 0.32 0.9353 Insignificant 

R1, R
2: 0.8250; Adjusted R2: 0.6499;Predicted R2:0.1628 

R2, R
2: 0.8428; Adjusted R2: 0.6857;Predicted R2:0.4621 

Table 5  ANOVA for response surface reduced quadratic model. 

R1, R
2: 0.6632; Adjusted R2: 0.5943; Predicted R2: 0.4115 

R2, R
2: 0.7901; Adjusted R2: 0.7329; Predicted R2: 0.6 

Response Models SD R2 Adjusted R2 Predicted R2 Remarks 

R1 (nm) Linear 62.66 0.3606 0.2540 0.0625 

2FI 65.02 0.4836 0.1968 -0.4213

Quadratic 42.93 0.8250 0.6499 0.1628 Suggested 

Cubic 33.41 0.9546 0.7880 0.2593 Aliased 

R2 (mV) Linear 9.24 0.4484 0.3564 0.1793 

2FI 10.28 0.4875 0.2027 -0.5029

Quadratic 6.46 0.8428 0.6857 0.4621 Suggested 

Cubic 8.71 0.8875 0.4282 -4.1797 Aliased 

Terms 
Particle size (R1) Zeta potential (R2) 

F-values p-value > F Remarks F-values p-value > F Remarks 

Model 6.84 0.0003 Significant 13.80 < 0.0001 Significant 
Linear 
A 

7.10 0.0145 
28.28 < 0.0001 

B 6.12 0.0220 1.60 0.2197 
C 7.56 0.0120 5.35 0.0304 
D 4.05 0.0571 11.77 0.0024 
2FI 
AC 2.20 0.1533 

- - 

Quadratic 
B2 4.19 0.0533 6.09 0.0219 
D2 18.68 0.0003 25.63 < 0.0001 
Lack of fit 1.53 0.3688 Insignificant 0.31 0.9630 Insignificant 
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The “p-value > F” less than 0.05 indicates that the model terms are 

significant. As for R1, the significant terms are A, B, C, D, B2, and D2

while for R2, the significant terms are A, C, D, B2, and D2. The values 

greater than 0.10 indicate that the model terms are not significant and 

it should be removed from the model as model reduction (Table 5). 

Additionally, model reduction should also be considered for both 

responses since the “Predicted R2” value is not as close to the “Adjusted 

R2” as expected where values should be within 0.2. Thus, evaluation of 

the model adequacy on the basis of the “Adjusted R2” is necessary 

[23,24]. Each reduced quadratic model of responses R1 and R2 have 

new values of the “R2”, “Adjusted R2”, and “Predicted R2” whereby the 

corresponding values for response R1 are 0.6632, 0.5943, and 0.4115, 

respectively. As for reduced model response R2, new values of the “R2”, 

“Adjusted R2”, and “Predicted R2” are 0.7901, 0.7329 and 0.663, 

respectively. It could be observed for both cases that the “Predicted R2”

and "Adjusted R2” are in reasonable agreement. 

Interaction effects of factors on the responses 
In polynomial equations, the interaction and quadratic terms 

indicated by coefficients with more than one factor and with higher 

order terms respectively, suggesting the non-linear relationship 

between the factors and responses [12]. Additionally, the magnitude of 

coefficients in polynomial equation has either positive and negative 

sign that signified as synergistic effect and antagonistic effect, 

respectively, between the factors and responses [13]. The interaction 

effect of all the factors toward both responses could be observed from 

the Eq. (2) and (3) as presented in terms of coded factors as shown: 

Particle size = + 176.05 + 35.58A - 33.04B + 36.73C + 26.89D - 

34.27AC - 36.06B2 - 76.11D2    (2)

Zeta potential = + 19.55 + 9.14A - 2.17B + 3.98C - 5.90D + 5.59B2 - 

11.47D2   (3) 

A, C, and D were found to have synergistic effects on particle size 

(R1) while A and C only have synergistic effects on zeta potential (R2). 

Factor D was found to have an antagonistic effect with zeta potential 

but synergistic effect on particle size with high magnitude. The 

interaction effect of AC was found negative upon particle size. As for 

the quadratic effect, B2  and D2 showed antagonistic effects on particle 

size whereas quadratic effect of B2 was found to have a synergistic 

effect on zeta potential. Based on Eq. (2) and (3) both particle size and 

zeta potential were primarily affected by factors A and C. This was 

supported by perturbation plots (Figure 2) which showed sharp slope 

indicated that both responses were sensitive to factor A and C. 

Two-factorial interaction effects of the both factors A 

(concentration of chitosan) and C (chitosan:TPP mass ratio) on particle 

size and zeta potential while other two factors B (concentration of TPP) 

and D (concentration of violacein pigment) was kept constant were 

observed in Figure 3 and Figure 4 (3D and contour plots). It was 

observed from 3D surface plots (Figure 3 (a)) that the particle size of 

nano-sized violacein pigment increased as concentration of chitosan 

increased from 1.0 to 3.0 mg/mL. Similarly with chitosan:TPP mass 

ratio as high mass ratio increased the particle size of violacein. Thus, 

small particle size of nano-sized violacein is produced at low 

concentration of chitosan and mass ratio chitosan to TPP. The 2D 

contour plot corresponding to the 3D response surface graph (Figure 3 

(b)) indicated that nano-sized violacein pigment with size of 101.62 nm 

obtained at concentration of chitosan ranging from 1.0 to 1.6 mg/mL 

with chitosan:TPP mass ratio ranged from 5.0 to 5.7.  The results 

surpassed results reported by Hussain and Sahudin [22] whereby as 

larger particle size ranged from 122 to 227 nm was obtained at 

concentration of chitosan ranged from 0.5 to 2.0 mg/mL with constant 

chitosan:TPP mass ratio of 5:1 [22]. Formulation of larger particle size 

of violacein pigment (~198 nm) was observed as the concentration of 

chitosan reached 3.0 mg/mL. This might be due to the partial escalation 

in intermolecular cross-linking of the nanoparticles as the chitosan 

molecules keep approaching each other caused by the equilibrium 

between the interchain hydrogen bonding attraction and intermolecular 

electrostatic repulsion of the chitosan molecules [12]. 

Figure 2  Perturbation plots for (a) particle size (b) zeta potential. 

Figure 3  (a) 3D response surface graphs and (b) 2D contour plots 
illustrating the interaction effect of concentration of chitosan (A) and 
chitosan:TPP mass ratio (C) on particle size. 
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Figure 4  (a) 3D response surface graphs and (b) 2D contour plots 
illustrating the interaction effect of concentration of chitosan (A) and 
chitosan:TPP mass ratio (C) on zeta potential. 

As for the zeta potential, the 3D response surface graph (Figure 4 

(a)) showed that both concentration of chitosan as well as chitosan:TPP 

mass ratio exhibited similar effects. Increase in concentration of 

chitosan and chitosan:TPP mass ratio increased zeta potential of 

violacein nanoparticles. Zeta potential is defined as an electrical charge 

possessed by the particle on the surface that acts as a repulsive factor 

which provide stability to formulation [13]. Hence, high zeta potential 

value is achieved with high concentration of chitosan with large mass 

ratio of chitosan:TPP. The 2D contour plot of zeta potential (Figure 4 

(b)) indicated that violacein pigment nanoparticles with zeta potential 

of 28.75 mV was obtained at concentration of chitosan of 3.0 mg/mL 

with chitosan:TPP mass ratio ranged from 5.6 to 7.0. Hussain and 

Sahudin [22] reported that zeta potential of the chitosan nanoparticles 

was significantly increased from +19 to +52 mV as when the chitosan 

concentration was increased from 0.5 to 4 mg/ml. On the other hand, 

zeta potential linearly increased from +12 to +34 mV when the 

chitosan:TPP mass ratios were increased from 2:1 to 6:1. However, zeta 

potential was decreased from +34 to +26 mV as chitosan:TPP mass 

ratio increased from 6:1 to 10:1 [22]. 

Data optimization and model validation 
Based on the model obtained, it was found that optimal formulation 

to obtain a predicted 55.21 nm size and 24.82 mV zeta potential of 

violacein nanoparticles was at concentration of chitosan 2.3 mg/mL, 

1.5 mg/mL of TPP, chitosan:TPP mass ratio of 7:1 and 1 ppm of 

violacein concentration. However, the experimental values of particle 

size and zeta potential responses were deviated from the predictions as 

the values are 149 nm for particle size and 23.4 mV for zeta potential 

(Table 6).  

This could be due to the variation error from the extraneous sources 

such as machine malfunction (freeze-dry) during the preparation 

process over a period of time [25]. Moreover, chitosan easily degrades 

due to its high susceptibility to environmental factors and processing 

conditions that applied stress on its structure [26]. The adequate 

precision for model particle size is 8.648 and 14.842 for zeta potential 

indicates that both models can be used to navigate the design space. The 

adequate precision that measures the signal-to-noise ratio (error) 

[10,12] for model of both responses were found to be larger than 4 

which is desirable for navigating the design space.  

Table 6  ANOVA for response surface reduced quadratic model. 

Optimized 
formulation 
(A:B:C:D) 

Responses Actual 
value 

Predicted 
value 

Formulation 1 

2.33:1.5:7:1 

Particle size (nm) 149.0 55.21 

Zeta potential (mV) 23.40 24.82 

Formulation 2 

2.47:1.5:7:1 

Particle size (nm) 224.60 41.41 

Zeta potential (mV) 17.36 25.96 

Formulation 3 

2.41:1.5:7:1 

Particle size (nm) 299.10 41.19 

Zeta potential (mV) 8.00 24.96 

Morphological analysis using field emission scanning 
electron microscope (FESEM) 

Figure 5 shows FESEM images representing the surface 

morphology of violacein nanoparticles and chitosan nanoparticles 

(blank). It is observed that the violacein nanoparticles are in smaller 

size and uniformly distributed as compared to the blank. The 

aggregation of particles were observed in the blank and the particles 

seemed to be large in size. 

Figure 5  FESEM images of (a) chitosan nanoparticles (b) violacein 
nanoparticles at 100,000 magnifications. 

CONCLUSION 

Factors involved in the preparation of nano-sized violacein pigment 

through encapsulation with chitosan nanoparticles had been optimized 

using response surface methodology. Particle size of 149 nm and zeta 

potential of 23.4 mV of violacein pigment nanoparticles were obtained 

at the optimal formulation of 2.33 mg/mL of chitosan, 1.5 mg/mL of 

TPP and 1 ppm of violacein pigment with chitosan:TPP mass ratio of 

7:1. The violacein pigment nanoparticles were characterized for their 

morphological structure using FESEM which showed uniform 

distribution with less aggregation as well as smaller than the blank. The 

development of nano-sized violacein pigment from this study could 

improve the solubility of violacein pigment which is known as poorly 

water-soluble pigment. Additionally, the reduction in size of violacein 

pigment into nano-scale could minimize its toxicity towards human in 

order to be applied as an additive and a colorant in various materials 

such as foods, cosmetics, clothes, ink, paper and so forth. The 

synthesized of nano-sized violacein pigment can also possibly act as 

therapeutic agents in the pharmaceutical fields. Moreover, the 

optimization studies could give ideas on the important preparation 

parameters to be considered when synthesizing violacein pigment in 

nano-scale. 
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