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Abstract In this paper, Maxwell fluid over a flat plate for convective boundary layer
flow with pressure gradient parameter is considered. The aim of this study is to compare
and analyze the effects of the presence and absence of λ (relaxation time), and also the
effects of m (pressure gradient parameter) and Pr (Prandtl number)on the momentum
and thermal boundary layer thicknesses. An approximation technique namely Homotopy
Perturbation Method (HPM) has been used with an implementation of Adam and Gear
Method’s algorithms. The obtained results have been compared for zero relaxation time
and also pressure gradient parameter with the published work of Fathizadeh and Rashidi.
The current outcomes are found to be in good agreement with the published results.
Physical interpretations have been given for the effects of the m, Pr and β (Deborah
number) with λ. This study will play an important role in industrial and engineering
applications.

Keywords Maxwell fluid equation; Navier-Stokes equations; pressure gradient; relax-
ation time; homotopy perturbation method (HPM); Adams method (AM); Gear method
(GM).
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1 Introduction

The flow of fluids in the geophysics, atmospheric sciences, oceanography, astrophysics, biologi-
cal sciences and technologies etc., is effected by the pressure exerted by the various conditions,
chemical compositions and forces on the fluid flow. The stress and rate of strain relation-
ship explains the non-Newtonian fluids. The complexity, non-linearity and behaviour of non-
Newtonian fluids for various applications have been discussed in Chhabra [1] and Málek [2].
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The Maxwell fluid is simpler category of rate type non Newtonian fluids. It explores the ef-
fects of stress relaxation also it becomes the Naviera-Stokes, keeping extra stress time zero Hayat
et al. [3], Noor [4] and Motsa et al. [5]. For the understanding of the dynamics of viscoelastic
material, a continuous research have been conducted by James Clerk Maxwell in 1867 [6]. In
an article “On the Dynamical Theory of Gases” Maxwell has discussed the equation of conti-
nuity, motion and system of pressures at any point of the fluid also the properties of elasticity
and viscosity under the dynamics of materials [7]. Some other researchers have also discussed
the flow of Maxwell fluid in Shateyi [8], Abbas et al. [9] and Hayat et al. [10]. Due to the
growing industrial, engineering, chemical, scientific applications, cooling of electronic devices
by fans, cooling of nuclear reactors during emergency shutdown and hydrodynamic processes
the pressure gradient have got attention of engineers, chemists, scientists and researchers [11].

Pressure gradient is the point in the flow field where local velocity of the fluid becomes
zero. The pressure gradient identifies the place in the fluid flow where the forthcoming flow
splits to move on both boundaries along the surface. This flow exists all over the place in
the sense that definitely appears as a part of more complex flow fields. Exemplarily in some
situations, flow becomes stagnated due to a solid wall on the other hand there is a line interior
to a homogeneous fluid domain or the interface between two immiscible fluids [12]. Bernoulli
equation illustrates that the stagnation pressure is at maximum value when the fluid velocity
is zero known to be the total pressure in terms of static pressure [13].

Homotopy Perturbation Method (HPM) has been taken as an approximation technique,
many researchers like Ji-Huan and others have discussed it’s effectiveness and novelty in [14–17].
Later on this method has been further developed and improved by Ji-Huan and other researchers
in [18–20]. To have solution of this problem, the two main algorithms, the Adams Method
(AM) [21] and Gear Method (GM) [22] have been used in [23]. Now, this has become the case
of the comparative study on Maxwell and Navier-Stokes fluid equations with pressure gradient
over a flat plate for convective boundary layer flow and heat transfer. Here, HPM as an
approximation technique has been implemented. The effect of pressure gradient m is studied
for different Deborah Numbers β and Prandtl numbers Pr upon velocity and temperature
profiles.

Present study with the inclusion of effects of pressure gradient will play an important role
in many industrial and engineering applications those come across in extrusion development,
like compulsive convection in conduits, paper and fibre glass production, paints application,
electronic chips, material processing, crystal growth, nuclear reactor cooling, food processing
and movement of biological fluids, drilling muds, shampoo, ketchup, cement, sludge, grease,
granular suspension, aqueous foams, slurries, plastics and several others [24, 25] and the refer-
ences therein. To the best of our knowledge, this problem has not been studied before and the
results reported here are new and original.

2 Basics of HPM

The fundamental concepts of this technique are given as follows:

Consider the nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω (1)
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Table 1: Nomenclature

Notation

u, v Fluctuating Velocity Components in
x and y Directions

n Number of Approximations
T Temperature
Tw Wall Temperature
T∞ Local Ambient Temperature
H Convective Heat Transfer Coefficient
P Pressure
L Linear Operator
N Non-linear Operator

AM Adams Method
GM Gear Method
NM Numerical Method

HPM Homotopy Perturbation Method
f Dimensionless Velocity Function
m Pressure Gradient Parameter
Pr Prandtl Number
p Embedding Parameter of Homotopy
q(r) Analytic Function
A General Differential Operator
B Boundary Operator
cp Specific Heat
x, y Coordinates Along and Perpendicular

to The Plate
Greek Symbols

Γ The Boundary of The Domain Ω
ρ The Fluid Density
κ The fluid thermal conductivity
µ The coefficient of fluid viscosity
η Dimensionless Variable
δ Boundary Layer Thickness
υ The Kinematics Fluid Viscosity
θ Dimensionless Temperature
ψ Streamline Function
β Deborah Number
λ The Relaxation Time or Maxwell

Parameter
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with boundary conditions
B(u, ∂u/∂n) = 0, r ∈ Γ (2)

where A is a differential operator, B is an operator, f(r) is an analytic function, Γ is the domain
Ω boundary. A can be presented as a sum of L linear and N nonlinear, therefore, Eq.(1) is of
the form:

L(u) +N(u)− f(r) = 0. (3)

By the homotopy method [26] and [27], a homotopy υ(r, P ) : Ω × [0, 1] → R is constructed,
which satisfies

H(v, p) = (1− p)[L(v)− L(uo)] + p[A(v)− f(r)] = 0,

p ∈ [0, 1], r ∈ Ω
(4)

Or
H(v, p) = L(v)− L(uo) + pL(uo) + p[N(v)− f(r)] = 0, (5)

where p ∈ [0, 1] is a parameter which is embedded, u0 is the initial approximated solution of
Eq.(1), where the boundary conditions are fulfilled. Clearly, from Eq.(4 or 5) H takes the forms

H(v, 0) = L(v)− L(uo) = 0, (6)

H(v, 1) = A(v)− f(r) = 0, (7)

the transformation of p from 0 to 1 is referred to v(r, p) from u0(r) to u(r). Topologically, this
is known as deformation, besides L(v) − L(u0), A(v) − f(r) are termed homotopic. In this
study, the embedding parameter p as a small parameter and assumed that the solution of Eq.(4
or 5) can be written as a power series in p:

v = v0 + pv1 + p2v2 + · · · (8)

Setting p = 1 results in the approximate solution of Eq.(1):

u = lim v
p→1

= v0 + v1 + v2 + · · · (9)

The coupling of the perturbation method and the homotopy method is called the homotopy
perturbation method, which has eliminated limitations of the traditional perturbation meth-
ods. On the other hand, the proposed technique can take full advantage of the traditional
perturbation techniques.

3 Mathematical Formulation

Consider the boundary layer flow over a flat plate having pressure gradient for Maxwell fluid
is governed by the continuity and the momentum equations. The governing equations of con-
tinuity, motion and the energy may be written in usual notation as [25,28,29]:

∂u

∂x
+
∂v

∂y
= 0 (10)

u
∂u

∂x
+ v

∂u

∂y
+ λ

[
u2∂

2u

∂x2
+ v2∂

2u

∂y2
+ 2uv

∂2u

∂x∂y

]
= −1

ρ

dP

dx
+ υ

∂2u

∂y2
(11)
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and

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρcp

∂2T

∂y2
, (12)

subject to the boundary conditions:

u = 0, v = 0, T = Tw at y = 0,

u = U∞, T → T∞ at y →∞,
(13)

where u and v are the velocity components in x− and y− directions respectively, υ is the
kinematic fluid viscosity, ρ is the fluid density, µ is the coefficient of fluid viscosity, λ is the
relaxation time, T is the temperature, κ is the fluid thermal conductivity and cp is the specific
heat. Now, the stream function ψ(x, y) is introduced as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (14)

For an external flow −1

ρ

dP

dx
can be replaced by U∞

dU∞
dx

, where as in relations with equation

(14), the equation (10) is identically satisfied and the equations (11 and 12) are reduced to the
following forms:

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
+ λ

[(
∂ψ

∂y

)2
∂3ψ

∂x2∂y
+

(
∂ψ

∂x

)2
∂3ψ

∂y3
− 2

∂ψ

∂y

∂ψ

∂x

∂3ψ

∂x∂y2

]

= U∞
dU∞
dx

+ ν
∂3ψ

∂y3

(15)

and
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

κ

ρcp

∂2T

∂y2
. (16)

We introduce the dimensionless variables η, ψ and θ as:

η = y

√
U∞
νx

, ψ = f(η)
√
νxU∞, θ(η) =

T − T∞
Tw − T∞

and{
U∞ = bxm, m =

x

U∞

dU∞
dx

}
,

(17)

where Tw the temperature at wall, U∞ the uniform free stream velocity. Based on equation
(17), we have used similarity transformation to reduce the governing differential equations (15)
and (16) to an ordinary non-linear differential equations (18) and (19) respectively.

f ′′′ +m(1− f ′2) +

(
m+ 1

2

)
ff ′′ − β

2
[(m− 1)(3−m)ηf ′2f ′′ + 4m(m+ 1)f ′3

+ (m+ 1)2f 2f ′′′ − 2(m+ 1)(3m− 1)ff ′f ′′] = 0,

(18)

θ′′ +
Pr(m+ 1)

2
fθ′ = 0, (19)

where β = λU∞(x)/2x is Deborah number [30] and Pr = µcp/κ is the Prandtl number [31].
The boundary conditions are obtained from the similarity variables,

f(0) = 0, f ′(0) = 0, f ′(η∞) = 1,

θ(0) = 1, θ(η∞) = 0.
(20)
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4 HPM Solution

According to HPM method and equation (18) and (19) becomes:

(1− p)(f ′′′ − f ′′′0 ) + p(f ′′′ +

(
m+ 1

2

)
ff ′′ +m(1− f ′2)

− β

2
[(m− 1)(3−m)ηf ′2f ′′ + 4m(m+ 1)f ′3 + (m+ 1)2f 2f ′′′

− 2(m+ 1)(3m− 1)ff ′f ′′]) = 0

(21)

(1− p)(θ′′ − θ′′0) + p

(
θ′′ +

Pr(m+ 1)

2
fθ′

)
= 0 (22)

f = f0 + pf1 + p2f2 + · · · , (23)

θ = θ0 + pθ1 + p2θ2 + · · · . (24)

Assuming f ′′′ = 0, θ′′ = 0, and substituting f from equation (23) into equation (21) and θ from
equation (24) into equation (22) after some simplification and rearrangement based on powers
of p–terms, we have:

p0 : f ′′′0 = 0,

f0(0) = 0, f ′0(0) = 0, f ′0(η∞) = 1,

θ′′0 = 0,

θ0(0) = 1, θ0(η∞) = 0

(25)

p1 : f ′′′1 = m
(
f ′20 − 1

)
−

(
m+ 1

2

)
f0f

′′
0 + 2m (m+ 1) βf ′30

+
(
1− 2m− 3m2

)
βf0f

′
0f

′′
0 +

1

2

(
4m− 3η −m2η

)
βf ′20 f

′′
0 ,

f1(0) = 0, f ′1(0) = 1, f ′1(η∞) = 0,

θ′′1 = −Pr(m+ 1)

2
f0θ

′
0,

θ1(0) = 0, θ1(η∞) = 0

(26)

p2 : f ′′′2 = 2mf ′0f
′
1 −

(
m+ 1

2

)
(f1f

′′
0 + f0f

′′
1 ) + 6βm (m+ 1) f ′20 f

′
1

+ β
(
1− 2m− 3m2

)
× (f ′0f1f

′′
0 + f0f

′
0f

′′
1 + f0f

′
1f

′′
0 )

+ βη
(
−3 + 4m−m2

) (
f ′0f

′
1f

′′
0 +

1

2
f ′20 f

′′
1

)
+ β

(m+ 1)2

2

(
f 2

0 f
′′′
1

)
,

f2(0) = 0, f ′2(0) = 1, f ′2(η∞) = 0,

θ′′2 = −Pr(m+ 1)

2
(f0θ

′
1 + f1θ

′
0),

θ2(0) = 0, θ2(η∞) = 0

(27)
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p3 : f ′′′3 = mf ′21 + 2mf ′0f
′
2 −

(
m+ 1

2

)
× (f2f

′′
0 + f1f

′′
1 + f0f

′′
2 ) +

6βm(m+ 1)
(
f ′0f

′2
1 + f ′20 f

′
2

)
+ β(1− 2m− 3m2)(f2f

′
0f

′′
0 + f1f

′
1f

′′
0 +

f0f
′
2f

′′
0 + f1f

′
0f

′′
1 + f0f

′
1f

′′
1 + f0f

′
0f

′′
2 ) + βη(−3 + 4m−m2)

(
1

2
f ′21 f

′′
0 + f ′0f

′
2f

′′
0 + f ′0f

′
1f

′′
1 +

1

2
f ′20 f

′′
2 ) + β(1 + 2m+m2)(

f0f1f
′′′
1 +

1

2
f 2

0 f
′′′
2

)
,

f3(0) = 0, f ′3(0) = 1, f ′3(η∞) = 0,

θ′′3 = −Pr(m+ 1)

2
(f0θ

′
2 + f1θ

′
1 + f2θ

′
0),

θ3(0) = 0, θ3(η∞) = 0

(28)

Solving equations (25)-(28):

f0 =
1

2η∞
(η2) (29)

f1 =
1

480η3
∞

(− 4βη6 + 12βη2η4
∞ − 2η5η∞ + 5η2η4

∞ + 12βη6m− 36βη2η4
∞m

+ 6η5η∞m− 80η3η3
∞m+ 105η2η4

∞m)

(30)

f2 =
1

2419200η5
∞

(812β2η10 − 3024β2η6η4
∞ + 5012β2η2η8

∞ + 800βη9η∞

− 1260βη6η4
∞ − 1008βη5η5

∞ + 2700βη2η8
∞ + 165η8η2

∞

− 420η5η5
∞ + 390η2η8

∞ − · · · )

(31)

f3 =
1

83026944000η7
∞

(2067120m5β3η14 − 29150880m4β3η14

+ 88679360m3β3η14 − 60281760m2β3η14 + 15444880mβ3η14

− 1383360β3η14 + 1134000m5β2η∞η
13 − 18265680m4β2η∞η

13

+ 61430880m3β2η∞η
13 − · · · )

(32)

θ0 =
1

η∞
(−η + η∞) (33)

θ1 =
1

48η2
∞

(η4m(Pr)− ηη3
∞m(Pr) + η4(Pr)− ηη3

∞(Pr)) (34)

θ2 =
1

80640η4
∞

(−40η7m2(Pr)2η∞ + 35η4m2(Pr)2η4
∞ + 5ηm2(Pr)2η7

∞

+ 18βη8m2(Pr)− 252βη4m2(Pr)η4
∞ + 234βηm2(Pr)η7

∞ + 12η7m2(Pr)η∞

− 336η5m2(Pr)η3
∞ + 735η4m2(Pr)η4

∞ − 411ηm2(Pr)η7
∞

− 80η7m(Pr)2η∞ + 70η4m(Pr)2η4
∞ + . . .)

(35)
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θ3 =
1

638668800η6
∞

(2772m4(Pr)β2η12 + 1176m3(Pr)β2η12 + 1232m2(Pr)β2η12

+ 1960m(Pr)β2η12 − 868(Pr)β2η12 − 8640m3(Pr)2βη∞η
11

− 14400m2(Pr)2βη∞η
11 − 2880m(Pr)2βη∞η

11

+ 2880(Pr)2βη∞η
11 + 864m4(Pr)βη∞η

11 + . . .)

(36)

5 Results and Discussions

The aim of this section is to analyze the effects of various physical parameters on the velocity
and temperature distributions such as momentum and thermal boundary layer thicknesses.
The validation of the present method using HPM is checked with the results obtained by
Fathizadeh and Rashidi [32] and the numerical results reported in it for the Newtonian fluids,
because Maxwell fluid equation becomes Navier-Stokes equation when Maxwell parameter λ
the relaxation time is taken to zero(i.e λ = 0). The Deborah number β becomes 0 because
β ∝ λ (i.e β = 0), Bhattacharyya et al. [25] reported that for Maxwell fluid β > 0. when
Deborah number is taken as β = 0. So the numerical values in [32] can be compared in case of
pressure gradient parameter m = 0. The reported results are the effects of m as well as β for
the different values.

Figure 1 represents Velocity profile for f ′(η) for the different values of m when β = 0.
Physically, Because of β zero it becomes the case of Newtonian fluid the results are same as in
. The separation point flow is observed for lower value of m = −0.120 it means the fluid is not
in contact with the surface. Where as, a two dimensional stagnation point flow is obtained at
the higher value of m = 0.00 which prevents the development of the boundary layer growth.
Higher value of m depicts the fluid flow is faster. It is observed that the velocity profile increases
with increasing m consequently, the momentum boundary layer thickness becomes thicker and
thicker.

Figure 2 is the pictorial comparison of the veolcity profile f ′(η) for the value of β = 0 in
Numerical, Navier-Stokes, Fathizadeh and Rashidi [32], also the Maxwell fluid results [32].

In Figure 3 represents θ(η) for the values m at β = 0 and Pr = 1. Physically, the separation
point flow is observed for higher value of m = 0.025 it means the fluid is not in contact with
the wall. Where as, a two dimensional stagnation point flow is obtained at the lower value of
m = −0.081 which prevents the development of the boundary layer growth. Also show that
the energy profile decreases with increasing m consequently, the momentum boundary layer
becomes thinner and thinner.

Figure 4 is the pictorial comparison of the energy profile f ′(η) for the value of β = 0
and Pr = 1 in Numerical, Navier-Stokes, Fathizadeh and Rashidi [32], also the Maxwell fluid
results [32].

Table 2 shows the data of the values of m when β = 0 from Figure 1. Table 3 shows the
absolute error for f ′(η) of the different results. Table 4 shows the tabular values of θ(η) for the
Figure 3. Table 5 shows the absolute error for θ(η) of the different results.
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β = 0

f'(η)

m = -0.120
m = -0.065
m = +0.000

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

η

Figure 1: f ′(η) for the Values m When β = 0

f'(η)

Numerical

Navier Stokes
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Maxwell at β = 0
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0.0
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0.4

0.6

0.8

1.0

Number of Values for f'(η)

Figure 2: The Pictorial Comparison of f ′(η) for the Values m = 0 When β = 0
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β = 0 and Pr = 1

θ(η)

m = -0.081
m = +0.000
m = +0.025

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

η

Figure 3: θ(η) for the Values m at β = 0 and Pr = 1
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Maxwell at β = 0
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0.8

1.0

Number of Values for θ(η)

Figure 4: The Pictorial Comparison of θ(η) for the Values m = 0 When β = 0 and Pr = 1
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Table 2: The Tabular Values of f ′(η) for the Figure 1

f ′(η)
η m

β = 0
0.000 −0.065 −0.120

0.0 0.000000 0.000000 0.000000
0.2 0.070328 0.037786 0.001397
0.4 0.140606 0.078154 0.007598
0.6 0.210705 0.121048 0.018608
0.8 0.280410 0.166368 0.034431
1.0 0.349425 0.213964 0.055056
1.2 0.417375 0.263621 0.080452
1.4 0.483811 0.315061 0.110550
1.6 0.548225 0.367935 0.145229
1.8 0.610057 0.421821 0.184304
2.0 0.668719 0.476226 0.227513
2.2 0.723611 0.530591 0.274500
2.4 0.774150 0.584303 0.324818
2.6 0.819799 0.636711 0.377919
2.8 0.860099 0.687143 0.433159
3.0 0.894707 0.734935 0.489814
3.2 0.923428 0.779465 0.547090
3.4 0.946255 0.820180 0.604156
3.6 0.963397 0.856640 0.660169
3.8 0.975307 0.888548 0.714316
4.0 0.982693 0.915783 0.765850
4.2 0.986519 0.938427 0.814126
4.4 0.987979 0.956766 0.858635
4.6 0.988443 0.971283 0.899021
4.8 0.989370 0.982614 0.935080
5.0 0.992164 0.991465 0.966726
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Table 3: Absolute Error for f ′(η) of the Different Results

NM HPM
η Fathizadeh & Rashidi [32] Navier-Stokes Maxwell β = 0

(1) (2) |(1)− (2)| (3) |(1)− (3)| (4) |(1)− (4)|
m = 0 Error m = 0 Error m = 0 Error

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.2 0.066407 0.070328 0.003920 0.067951 0.001543 0.070328 0.003920
0.4 0.132764 0.140606 0.007841 0.135847 0.003082 0.140606 0.007841
0.6 0.198937 0.210704 0.011767 0.203544 0.004606 0.210704 0.011767
0.8 0.264709 0.280410 0.015700 0.270803 0.006093 0.280410 0.015700
1.0 0.329780 0.349425 0.019645 0.337298 0.007518 0.349425 0.019645
1.2 0.393776 0.417374 0.023598 0.402616 0.008839 0.417374 0.023598
1.4 0.456261 0.483811 0.027549 0.466272 0.010010 0.483811 0.027549
1.6 0.516756 0.548224 0.031468 0.527725 0.010968 0.548224 0.031468
1.8 0.574758 0.610057 0.035299 0.586395 0.011636 0.610057 0.035299
2.0 0.629765 0.668718 0.038953 0.641694 0.011928 0.668718 0.038953
2.2 0.681310 0.723610 0.042300 0.693055 0.011744 0.723610 0.042300
2.4 0.728981 0.774149 0.045167 0.739966 0.010984 0.774149 0.045167
2.6 0.772455 0.819798 0.047343 0.782012 0.009557 0.819798 0.047343
2.8 0.811509 0.860099 0.048589 0.818912 0.007402 0.860099 0.048589
3.0 0.846044 0.894706 0.048662 0.850554 0.004509 0.894706 0.048662
3.2 0.876081 0.923427 0.047346 0.877026 0.000944 0.923427 0.047346
3.4 0.901761 0.946254 0.044493 0.898635 0.003126 0.946254 0.044493
3.6 0.923329 0.963396 0.040067 0.915908 0.007421 0.963396 0.040067
3.8 0.941118 0.975306 0.034188 0.929578 0.011540 0.975306 0.034188
4.0 0.955518 0.982692 0.027174 0.940539 0.014979 0.982692 0.027174
4.2 0.966957 0.986519 0.019562 0.949780 0.017177 0.986519 0.019562
4.4 0.975870 0.987978 0.012108 0.958285 0.017585 0.987978 0.012108
4.6 0.982683 0.988443 0.005759 0.966911 0.015772 0.988443 0.005759
4.8 0.987789 0.989370 0.001580 0.976249 0.011540 0.989370 0.001580
5.0 0.991541 0.992164 0.000622 0.986487 0.005054 0.992164 0.000622



Amber Nehan Kashif and Zainal Abdul Aziz / MATEMATIKA 34:1 (2018) 31–47 43

Table 4: The Tabular Values of θ(η) for the Figure 3

θ(η)
η β = 0.0 and Pr = 1

m

−0.081 0.000 0.025
0.0 1.000000 1.000000 1.000000
0.2 0.944418 0.929672 0.925570
0.4 0.888850 0.859394 0.851201
0.6 0.833339 0.789295 0.777053
0.8 0.777957 0.719590 0.703385
1.0 0.722809 0.650575 0.630557
1.2 0.668039 0.582625 0.559021
1.4 0.613824 0.516189 0.489312
1.6 0.560382 0.451775 0.422034
1.8 0.507960 0.389943 0.357843
2.0 0.456840 0.331281 0.297428
2.2 0.407325 0.276389 0.241477
2.4 0.359731 0.225850 0.190651
2.6 0.314378 0.180201 0.145549
2.8 0.271576 0.139901 0.106661
3.0 0.231607 0.105293 0.074332
3.2 0.194711 0.076572 0.048719
3.4 0.161071 0.053745 0.029743
3.6 0.130794 0.036603 0.017055
3.8 0.103907 0.024693 0.010007
4.0 0.080354 0.017307 0.007630
4.2 0.059999 0.013480 0.008637
4.4 0.042655 0.012021 0.011448
4.6 0.028123 0.011556 0.014243
4.8 0.016264 0.010630 0.015064
5.0 0.007103 0.007835 0.011965
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Table 5: Absolute Error for θ(η) of the Different Results

NM HPM
η Fathizadeh & Rashidi [32] Navier-Stokes [32] Maxwell β = 0 [32]

(1) (2) |(1)− (2)| (3) |(1)− (3)| (4) |(1)− (4)|
m = 0 Error m = 0 Error m = 0 Error

0.0 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
0.2 0.933592 0.929826 0.003766 0.932044 0.001548 0.929672 0.003920
0.4 0.867235 0.859702 0.007533 0.864143 0.003092 0.859394 0.007841
0.6 0.801062 0.789758 0.011304 0.796441 0.004621 0.789295 0.011767
0.8 0.735290 0.720208 0.015082 0.729173 0.006117 0.719590 0.015700
1.0 0.670219 0.651348 0.018871 0.662666 0.007553 0.650575 0.019644
1.2 0.606223 0.583555 0.022667 0.597329 0.008894 0.582625 0.023598
1.4 0.543738 0.517277 0.026460 0.533644 0.010094 0.516189 0.027549
1.6 0.483243 0.453023 0.030219 0.472150 0.011093 0.451775 0.031468
1.8 0.425241 0.391350 0.033891 0.413418 0.011823 0.389943 0.035298
2.0 0.370234 0.332848 0.037386 0.358032 0.012202 0.331281 0.038953
2.2 0.318689 0.278111 0.040577 0.306551 0.012138 0.276389 0.042300
2.4 0.271018 0.227721 0.043296 0.259476 0.011542 0.225850 0.045168
2.6 0.227544 0.182208 0.045336 0.217212 0.010332 0.180201 0.047343
2.8 0.188490 0.142023 0.046467 0.180029 0.008461 0.139901 0.048589
3.0 0.143955 0.107501 0.036454 0.148027 0.004071 0.105293 0.038662
3.2 0.123918 0.078822 0.045095 0.121109 0.002809 0.076572 0.047346
3.4 0.088238 0.055982 0.032256 0.098964 0.010725 0.053745 0.034493
3.6 0.066670 0.038752 0.027917 0.081069 0.014399 0.036603 0.030067
3.8 0.058881 0.026666 0.032215 0.066706 0.007824 0.024693 0.034188
4.0 0.033042 0.018997 0.014045 0.055013 0.021970 0.017307 0.015735
4.2 0.031481 0.014772 0.016709 0.045053 0.013571 0.013480 0.018000
4.4 0.024129 0.012791 0.011338 0.035920 0.011791 0.012021 0.012108
4.6 0.017316 0.011691 0.005624 0.026858 0.009541 0.011556 0.005759
4.8 0.012210 0.010044 0.002165 0.017398 0.005187 0.010630 0.001580
5.0 0.008458 0.006500 0.001957 0.007485 0.000973 0.007835 0.000622
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6 Conclusion

In this study is to compare and analyze the effects of the presence and absence of β, also the
effects of m and Pr on the momentum and thermal boundary layer thicknesses. Both the fluid
equations have been considered with the inclusion of pressure gradient parameter and solved
them through an approximation technique Homotopy Perturbation Method (HPM) with an
application of algorithms of Adams Method (AM) and Gear Method (GM), after applying sim-
ilarity transformation which transforms these equations into an Ordinary Dierential Equation
(ODE). The obtained results have been compared for zero and non-zero Deborah number for
the velocity and temperature profiles. Also validated the results, after comparing with the
Fathizadeh and Rashidi previously published work. Those found to be in good agreement with
the results obtained. At first the results have been compared with published results in [32], in
case of Deborah number β = 0, pressure gradient m = 0 , those found to be in good agreement.
It can be observed that the velocity profile increases with an increase in pressure gradient m,
consequently the momentum boundary layer thickness becomes thicker and thicker. Similarly,
for energy in case of Deborah number β = 0, pressure gradient m = 0 and Pr = 1. As a whole
energy profile decreases with an increase in pressure gradient m consequently, the thermal
boundary layer thickness becomes thinner and thinner.
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[2] Málek, J. Introduction to non-newtonian fluid mechanics. 2012.

[3] Hayat, T., Abbas, Z. and Sajid, M. Mhd stagnation-point flow of an upper-convected
maxwell fluid over a stretching surface. Chaos, Solitons & Fractals. 2009. 39(2): 840–848.

[4] Noor, N. F. M. Analysis for mhd flow of a maxwell fluid past a vertical stretching sheet
in the presence of thermophoresis and chemical reaction. World Acad. Sci., Eng. Technol.
2012. 64: 1019–1023.

[5] Motsa, S., Khan, Y. and Shateyi, S. A new numerical solution of maxwell fluid over a
shrinking sheet in the region of a stagnation point. Mathematical Problems in Engineering.
2012. 2012.



Amber Nehan Kashif and Zainal Abdul Aziz / MATEMATIKA 34:1 (2018) 31–47 46

[6] Omowaye, A. and Animasaun, I. Upper-convected maxwell fluid flow with variable thermo-
physical properties over a melting surface situated in hot environment subject to thermal
stratification. J. Appl. Fluid Mech. 2016. 9(4): 1777–1790.

[7] Maxwell, J. C. On the dynamical theory of gases. Philosophical transactions of the Royal
Society of London. 1867. 157: 49–88.

[8] Shateyi, S. A new numerical approach to mhd flow of a maxwell fluid past a vertical
stretching sheet in the presence of thermophoresis and chemical reaction. Boundary Value
Problems. 2013. 2013(1): 1–14.

[9] Abbas, Z., Sajid, M. and Hayat, T. Mhd boundary-layer flow of an upper-convected
maxwell fluid in a porous channel. Theoretical and Computational Fluid Dynamics. 2006.
20(4): 229–238.

[10] Hayat, T., Mustafa, M. and Mesloub, S. Mixed convection boundary layer flow over
a stretching surface filled with a maxwell fluid in presence of soret and dufour effects.
Zeitschrift für Naturforschung A. 2010. 65(5): 401–410.

[11] Jafar, K., Ishak, A. and Nazar, R. Mhd stagnation-point flow over a nonlinearly stretch-
ing/shrinking sheet. Journal of Aerospace Engineering. 2011. 26(4): 829–834.

[12] Tilley, B. and Weidman, P. Oblique two-fluid stagnation-point flow. European Journal of
Mechanics-B/Fluids. 1998. 17(2): 205–217.

[13] Clancy, L. Aerodynamics, section 3.3, 3.5, 3.12. 1975.

[14] Abbasbandy, S. Application of he’s homotopy perturbation method for laplace transform.
Chaos, Solitons & Fractals. 2006. 30(5): 1206–1212.

[15] Beléndez, A., Hernandez, A., Beléndez, T., Fernández, E., Alvarez, M. and Neipp, C.
Application of he’s homotopy perturbation method to the duffing-harmonic oscillator.
International Journal of Nonlinear Sciences and Numerical Simulation. 2007. 8(1): 79–88.

[16] Cai, X., Wu, W. and Li, M. Approximate period solution for a kind of nonlinear oscillator
by he’s perturbation method. Int. J. Nonlinear Sci. Numer. Simulation. 2006. 7(1): 109–
112.

[17] Cveticanin, L. Homotopy–perturbation method for pure nonlinear differential equation.
Chaos, Solitons & Fractals. 2006. 30(5): 1221–1230.

[18] Ghori, Q., Ahmed, M. and Siddiqui, A. Application of homotopy perturbation method
to squeezing flow of a newtonian fluid. International Journal of Nonlinear Sciences and
Numerical Simulation. 2007. 8(2): 179–184.

[19] Ji-Huan, H. Approximate solution of nonlinear differential equations with convolution
product nonlinearities. Computer Methods in Applied Mechanics and Engineering. 1998.
167(1): 69–73.



Amber Nehan Kashif and Zainal Abdul Aziz / MATEMATIKA 34:1 (2018) 31–47 47

[20] Ji-Huan, H. Homotopy perturbation technique. Computer methods in applied mechanics
and engineering. 1999. 178(3): 257–262.

[21] Eric Weisstein, W. Adams Method. URL FromMathWorld--AWolframWebResource.http:

//mathworld.wolfram.com/AdamsMethod.html.

[22] Wolfgang, C. Gear Method. 2007. URL UniversityofCalifornia--SanDiego,http:

//renaissance.ucsd.edu/chapters/chap11.pdf.

[23] Matthew, B., Olyvia, D., Viral, P., Joel, S. and Eric Van, B. Adams and Gear methods
for Solving ODEs with Mathematica. 2007. URL https://controls.engin.umich.edu/

wiki/index.php/Solving_ODEs_with_Mathematica.

[24] Hayat, T., Shehzad, S. and Alsaedi, A. Study on three-dimensional flow of maxwell fluid
over a stretching surface with convective boundary conditions. International Journal of
Physical Sciences. 2012. 7(5): 761–768.

[25] Bhattacharyya, K., Hayat, T. and Gorla, R. S. R. Heat transfer in the boundary layer flow
of maxwell fluid over a permeable shrinking sheet. Thermal Energy and Power Engineering.
2013. 2(3): 72–78.

[26] Cebeci, T. and Bradshaw, P. Physical and Computational Aspects of Convective Heat
Transfer. New York: Springer-Verlag. 1988.

[27] Rebay, M. and Padet, J. Parametric study of unsteady forced convection with pressure
gradient. International journal of engineering science. 2005. 43(8): 655–667.

[28] Shagaiya, Y. and Daniel, S. Presence of Pressure Gradient on Laminar Boundary Layer
over a Permeable Surface with Convective Boundary Condition. American Journal of Heat
and Mass Transfer. 2015. 2(1): 1–14.
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