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ABSTRACT 
The current traffic light controls are 
ineffective and causes a handful of 
problems such as congestion and pollution. 
This study investigates the application of 
deep reinforcement learning on traffic 
control systems to minimize congestion at 
traffic intersection. The traffic data from 
Pulai Perdana, Skudai, Johor Intersection 
was extracted, analysed and simulated 
based on the Poisson Distribution, using a 
simulator, Simulation of Urban Mobility 
(SUMO). In this research, we proposed a 
deep reinforcement learning model, which 
combines the capabilities of convolutional 
neural networks and reinforcement 
learning to control the traffic lights to 
increase the effectiveness of the traffic 
control system. The paper explains the 
method we used to quantify the traffic 
scenario into different matrices which fed 
to the model as states which reduces the 
load of computing as compared to images. 
After 2000 iterations of training, our deep 
reinforcement learning model was able to 
reduce the cumulative waiting time of all 
the vehicles at the Pulai Perdana 
intersection by 47.31% as compared to a 
fixed time algorithm and can perform even 
when the traffic is skewed in a different 
direction. When the traffic is scaled down 
to 50% and 20 %, the agent continues to 
improve the waiting time by 69.5% and 
68.36 % respectively. It is proven in the 
experiment that a deep reinforcement 

learning model was able to reduce the  
cumulative waiting time at Pulai Perdana by 
47.31%. 
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INTRODUCTION 
 
The creation of traffic lights creates an equal 
opportunity to cross an intersection, but 
conventional traffic control systems only causes 
traffic congestion, which impedes the flow and 
causes many problems for the general commuters 
Gao, Shen, Liu, Ito, &Shiratori, (2017). Traffic jams 
are often associated with lost in productivity, 
frustration and accidents. It has also led to several 
serious social problems such as long travelling 
times, increased fuel consumption and air 
pollution Gao, Shen, Liu, Ito, &Shiratori, (2017). 
According to another study done by Boston 
Consulting Group (BCG) known as “Unlocking 
Cities”, they showed that drivers in Kuala Lumpur 
spend about 53 minutes stuck in traffic jams every 
day. That roughly sums up to 13.4 days in total 
spent in traffic in a year. 

Traffic problem is a very complex issue 
since it involves many parameters. Firstly, it is 
heavily dependent on the time of day and week, 
general during rush hours, which is in the morning 
or afternoon, the traffic flow is severely increased 
because users need to get to or off work. 
Weekends generally show a decrease in traffic 
loads. Secondly, existing traffic light control either 
deploys fixed programs without considering real-
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time traffic or considering the traffic to a very 
limited degree Liang, Du, Wang, & Han, (2018). 
 Adaptive traffic signal control, which 
adjusts traffic signal timing according to real-time 
traffic, has been shown to be an effective method 
to reduce traffic congestion. With recent 
advancements in Machine Learning technology, 
many researchers have shown interest in the 
capabilities of Deep Learning and Reinforcement 
learning since they are able to learn through a 
large set of data without supervision. In recent 
developments, we can see machine learning 
algorithms being able to surpass human level 
intelligence in the game of AlphaGo. 

In this research, we propose a deep 
reinforcement learning algorithm that can extract 
key features from a raw real-time traffic data 
which are useful for the adaptive traffic signal 
control system. By extracting those features such 
as position and speed of cars, and allowing the 
deep reinforcement learning algorithm to process 
them, the system will be able to make proper 
decisions to control the traffic lights more 
effectively. The objective of this research is to 
determine if the deep learning-based traffic light 
algorithm can perform better than conventional 
traffic management in managing the traffic at Pulai 
Perdana junction. 

Recently, more and more studies on 
smart traffic light control system are conducted. 
Many researchers now believe that machine 
learning algorithms can improve traffic light 
control and management. Furthermore, With the 
recent advancements in both the electronic 
hardware and deep learning algorithms, 
conducting researches in such areas has become 
easier. Generally, fixed time traffic signals are 
being deployed in urban area due to its regularity 
and predictability. Some traffic signals deliberately 
stop drivers from experiencing a string of green 
lights, thus discouraging high volumes of traffic 
while still preventing congestion. Inductive loops 
are generally used to keep traffic flowing in the 
main roads of traffic and to detect if there are 
vehicles waiting to cross from the side roads. Also, 
it can reduce waiting time at a traffic intersection 
and sometimes to change or lengthen traffic light 
phases if the queue is long. 
 In terms of Deep Reinforcement Learning, 
Li, Lv and Wang (2016) have proposed to use a 
deep stacked autoencoders (SAE) neural network 
to estimate the Q learning function which is an 
iterative algorithm. The neural net can take 
massive amounts of input states and return the 
possible Q value for each possible action. Genders 
and Razavi (2016) have shown that convolutional 
neural networks (CNN) can be used to 

approximate the optimal Q values. One of the 
most obvious contribution from their study is the 
use of discrete traffic state encoding (DTSE) as a 
better representation of traffic information. In the 
study of Van der Pol and Oliehoek (2016), they 
explained that the improvement from the previous 
study was that they used a target network to solve 
the moving target problem in reinforcement 
learning.  Liang et al. (2018) has improved the use 
of deep reinforcement learning in traffic light 
controls by introducing Double Dueling Deep Q 
Networks called 3DQN. 
 
 

METHODOLOGY  

 
Pulai Perdana was selected as the case of study as 
it is one of the most congested traffic lights during 
the rush hours. Simulation of Urban Mobility 
(SUMO) was used to simulate the junction at Pulai 
Perdana as accurately as possible. Also, Python 
was utilized to interface with the simulation 
software and to deploy deep reinforcement 
learning to actuate the traffic signals. In Python, 
the deep learning library Keras was used to allow 
the algorithm to learn from its actions. Figure 1 
demonstrate an overview of how the software 
interacts with each other to perform the 
simulation. 

 

 
Figure 1 Simulation Software Architecture 

 

Problem Definition 

 

The lane edges (LE) are demonstrated as in figure 

2. LE1 depicts traffic coming from Pontian while 

LE3 shows traffic from Skudai. on the other hand, 

LE2 shows traffic coming from Persiaran Pulai 
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Perdana and LE4 shows traffic coming from Jalan 

Teratai. Each road was simulated to have 3 lanes in 

the signal side and 2 lanes on the other side as 

shown in Figure 2. A traffic video was taken for 

each road and fed into the Open CV algorithm by 

Özlü (2017) to count the number of cars passing 

through the junction during the rush hours. the 

traffic data obtained for an hour at the junction is 

shown in table 1. 

 

 

Figure 2 Simulated Junction 

 
Table 1: Traffic Information at Pulai Perdana 

Intersection 

Junction Number of cars 

per hour 

Green 

Signal 

Duration(s) 

LE1 1076 100 

LE2 796 38 

LE3 1345 79 

LE4 581 38 

 

 

Vehicle Arrival Process 
 
The traffic conditions are simulated based on 

Mathew (2014), which shows the method of 

simulating traffic flow through the use of random 

variates that follows the Poisson distribution to 

generate vehicles that arrives in a given time 

interval so that it follows a typical vehicle arrival 

process. In the SUMO simulation software, the 

traffic information is read from the route.xml file. 

The Illustration of Vehicles arriving modelling is 

shown in figure 3. 

 

 
Figure 3 Illustration of Vehicles arriving modelling 

𝑝 𝑥 =
𝜇𝑥𝑒−𝜇

𝑥!
# 1  

 
The Poisson distribution is commonly used to 
describe a random arrival process. Equation (1) is 
the probability of the density function. 
 

States 

 
The studies done by Genders and Razavi (2016), 
they utilized their discrete traffic state encoding 
(DTSE) method which allows them to retain useful 
traffic information. The agent will observe the 
states to be St= (P, V, L) ∈S for signal control. The 
states will then be used as what the DQNAgent 
“sees”, the environment encoded into a matrix for 
the agent to make sense of the environment and 
make decisions based on the states. Figure 4 
shows how the agent observes the environment, 
the agent created a Boolean value of 1 when it 
detected a car if present within the cell length, the 
velocity matrix was also obtained by dividing the 
actual speed of the vehicle with the max allowable 
speed. The states allowed the agent to perceive 
the entirety of the environment through the use of 
matrices instead of whole images in efforts to 
reduce computational difficulty. 
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Figure 4: (a) Example of simulated traffic (b) with 
corresponding Boolean (c) and real-valued velocity 
vectors 

 
 
Convolutional Neural Network 
 

After observing the states, the agent was able to 

take an action based on what it “sees”. The 

process of seeing involves the use of a 

Convolutional Neural Network that allows 

extraction of important features from the state 

matrices. 

 The input states or the agent’s observed 

states are positionMatrix, VelocityMatrix and lgts 

which are shown in figure 5. The first layer of 

convolution has 16 filters of 4x4 with stride of 2 

and it uses ReLU (Rectified Linear Units) as the 

activation function. The second layer has 32 filters 

of size 2x2 with a stride of 1 and uses ReLU. The 

3rd and 4th layers are fully connected layers with a 

size of 128 and 64 respectively. The final layer is 

then a layer with a linear output that outputs the 

Q value that corresponds to every possible action, 

this process is shown in figure 6. 

 

positionMatrix =  

𝑃0

𝑃1

𝑃2

𝑃3

  ,velocityMatrix =  

𝑆0

𝑆1

𝑆2

𝑆3

  , 

lghts =  

𝐿0

𝐿1

𝐿2

𝐿3

  

Figure 5: State matrices 

 

Action 

 

When the green light interval ended, the current 

time step t ended and a new time step began. The 

agent then proceeded to observe a new time step 

and chose the next action. The same actions might 

be chosen across time steps, causing the green 

light interval to run again for another 10 seconds. 

However, if the action selected was different from 

the previous action, such as changing the traffic 

signals. The yellow lights actuated for 3 seconds 

before actuating the green light. Since the agent’s 

goal was to reduce the overall waiting time, the 

agent needed to find an action policy that 

maximizes the following cumulative future 

rewards. After observing a given state, the agent 

decided to take an action based on an action policy 

π. The Traffic light phases for simulated lanes are 

shown in table 2. 

 

Rewards 

 

One of the biggest differentiators between 

reinforcement learning and other learning 

algorithms is the rewards. Rewards functions as a 

feedback system to allow the model to access its 

performance based on its previous actions. Since 

the main goal was to see if the model can increase 

the efficiency of the traffic light control system, 

the main parameters that can best reflect was the 

vehicle waiting time efficiency. Thus, we defined 

rewards as the difference in cumulative waiting 

time between active and number of vehicles 

previously in the inactive traffic, where r1 is the 

cumulative number of vehicles at a given active 

lane edge and r2 is the cumulative waiting time of 

idle vehicles waiting at the inactive lane edge. 

 

𝑟𝑡 = 𝑟1 − 𝑟2 # 2  
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The reward was then calculated after the agent 

finished its action step, which in this case, the 

reward was calculated after the 10 second period 

of actuation of the green light. Then the reward 

was reset to zero once the traffic agent changed 

the phase and restarted once again. 

 

Agent Hyperparameters 

 

The greedy epsilon algorithm was deployed, where 

the value of ε was 1.0 in the beginning to assume 

explorative behaviors, however, the value of 

epsilon started to decay at a rate of 99.5% every 

single time the states were observed until it 

reached the minimum value of 0.01, where the 

agent started to change from taking explorative 

actions to exploitative one. The discount factor for 

future rewards was set at 0.95. The optimizer 

selected was then the Root Mean Squared Prop 

(RMSProp) algorithm, which used a moving 

average of squared gradients to normalize the 

gradient by itself, the algorithm was a stochastic 

technique for mini-batch learning. The learning 

rate for the RMSProp algorithm was set at 0.0002 

for optimal results.  The capacity of replay memory 

was also set at 200 to minimize memory usage. 

 

 

 
Figure 6: Convolutional neural network approximating the Q values 

 

 

Table 2: Traffic light phases for simulated lanes.

  

LE1 LE2 LE3 LE4 

 L0 L1 L2  L0 L1 L2  L0 L1 L2  L0 L1 L2 

Phase 0 G G G r r r r r r r r r 

Phase 1 y y y r r r r r r r r r 

Phase 2 r r r G G G r r r r r r 

Phase 3 r r r y y y r r r r r r 

Phase 4 r r r r r r G G G r r r 

Phase 5 r r r r r r y y y r r r 
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Phase 6 r r r r r r r r r G G G 

Phase 7 r r r r r r r r r y y y 

 

 

Agent Training 

 

The agent was trained for 2000 episodes, each 

episode corresponds to 1 hour. We first initialized 

the neural network with random weights. At the 

start of each time step, the agent observed the 

current time step St and the input was fed into the 

neural network and performs an action At that 

would provide the highest cumulative future 

reward. The agent then received a reward Rt and 

proceeded to obtain the next step St+1 in the 

environment. These information (St, At, Rt, St+1) 

were stored as experiences in its memory. As the 

memory was limited in size, the oldest data was 

deleted when the memory was full. The DNN was 

then trained by extracting training examples from 

the memory. This was known as experience replay. 

The agent then proceeded to learn features \theta, 

by training the DNN network to minimize the 

following Mean Squared Error (MSE) in (3). 

𝑀𝑆𝐸 𝜃 =
1

𝑚
   𝑅𝑡 +  𝛾 max

𝑎′
𝑄(𝑆𝑡+1  , 𝑎′ ;  𝜃′) − 𝑄 𝑆𝑡𝐴𝑡 ;𝜃  

2
𝑚

𝑡=1

 3  

Since m was the size of the input data set, which in 

our case was very large, it would be very 

computationally expensive to calculate. Hence, we 

would use the stochastic gradient descent 

algorithm RMSProp with a minibatch of 32. 

 

 

 

 

 

 

 
Figure 7: Graph of Cumulative Waiting Time Against Epoch 
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Figure 8: Graph of Total Rewards Time Against Epoch 

 
 

RESULTS & DISCUSSION 
 

By examining our simulation data shown in figure 

7 & 8, we were able to show that the algorithm 

was indeed in the right path in learning a good 

action selection policy that effectively reduced the 

cumulative vehicle waiting time at the traffic 

lights. Our algorithm’s results started to converge 

midway through the episodes and became more 

stable. 

During the training, the minimum cumulative 

waiting time achieved was 115882 seconds. The 

average value of the cumulative waiting time of all 

vehicles at the junction was 203221 second. 

At 200 episodes, we saw the waiting time of 

vehicles at the junction gradually reducing as the 

agent found suitable action policies that allowed it 

to make better decisions. The spikes in the graphs 

shows that the explorative nature of the agent 

allows it to try out different actions, not 

necessarily resulting in reduction in waiting time 

but crucial for exploring different actions that may 

give positive results. At 800 episodes, we saw the 

results started to converge and the waiting time 

started to stabilize from this episode onwards. The 

stabilizing mechanisms such as the experience 

replay was proven to be effective in stabilizing the 

action selection policy. 

After running the training for 2000 

episode, the agent learnt a good action selection 

policy and managed to reduce the cumulative 

waiting time. The agent was then used to run the 

simulation once again using several carrying traffic 

conditions and compared to the fixed time 

algorithm. The agent was tested on high traffic 

conditions, high traffic conditions with traffic 

skewed to another direction, medium traffic 

conditions and low traffic conditions in comparison 

with the fixed time algorithm to evaluate its 

performance improvement as compared to the 

fixed time algorithm. 

 The skewed traffic was simulated by 

adjusting the heavy traffic to lanes LE2 and LE4 

instead of LE1 and LE3. The medium traffic and low 

traffic were assumed at 50% and 20% of the high 

traffic volume. Table 3 shows the simulated result 

using the final weights of the algorithm after 2000 

episodes of training. 
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Table 3  Cumulative Waiting Time for Different Algorithms and Traffic Heaviness. 

Traffic Heaviness Number of cars in 

one hour in given 

lane 

Cumulative  

Waiting Time (s) 

LE1 LE2 LE3 LE4 Agent Fixed time 

algorithm 

High 1076 796 1345 581 213696 405587 

High (skewed 

traffic) 

581 1076 796 1345 214522 704820 

Medium  538 398 673 291 48592 153566 

Low 215 159 269 116 18206 59549 

 

 

Based on the results shown in table 3, it is clear 

that the agent outperforms the fixed time 

algorithm in every type of traffic heaviness, where 

in high traffic conditions, high traffic conditions 

with skewed traffic, medium traffic conditions and 

low traffic conditions, there is a 47.31 %, 69.56% 

,68.36 % and 69.43 % reduction in waiting time 

respectively. The fixed time algorithm worked well 

at high traffic conditions, however, as the signal 

timing was set to meet the demand of the 

junction, it’s performance greatly reduced when 

the traffic was skewed to another direction. 

Although the number of cars passing through the 

intersection was the same, the fixed time 

algorithm could not handle the change in direction 

of the traffic heaviness as it was preset to a certain 

timing algorithm. The agent on the other hand was 

adaptive to traffic and was able to keep the 

cumulative waiting time at a constant value of 

213696s and 214522s. This showed that the agent 

was adaptive and could execute a traffic control 

policy to solve the current traffic conditions. 

When the traffic heaviness was reduced to 50 % 

and 20 % respectively, we could see that the 

performance of the agent was 68.36% and 69.43% 

better than the fixed time algorithm. The 

performance was also better as compared to the 

high traffic conditions. The fixed time algorithm 

was not suited to adapt to the everchanging traffic 

heaviness, especially at lower traffic conditions. 

 

 

CONCLUSION 

 

In this paper, we proposed to solve the traffic light 
control problem at the Pulai Perdana intersection 
using a deep reinforcement learning model. This 
research study was a success with all objectives 

achieved. The research started with the notion 
that artificial intelligence could one day be used as 
an agent to manage a traffic intersection by 
controlling the traffic lights. It was proven in this 
experiment that a deep reinforcement learning 
model is able to reduce the cumulative waiting 
time of all the vehicles at a given traffic junction as 
compared to a fixed time algorithm-based traffic 
management system at Pulai Perdana by 47.31%. 
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