
Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

TRAFFIC LIGHT DISPERSION CONTROL

BASED ON DEEP REINFORCEMENT

LEARNING
Bryan Chuab,KamarulafizamIsmaila,b,*, Fazila Mohd Zawawib,
Nur Safwati Mohd Norb

a Media and Game Innovation Center of Excellence
bSchool of Mechanical Engineering,
UniversitiTeknologi Malaysia,
81200 Skudai, Johor Bahru,
Malaysia

Article history
Received

21 November 2019
Received in revised form

27 September 2019
Accepted

31 December 2019
Published Online

31 December 2019

*Corresponding author
kamarulafizam@utm.my

ABSTRACT
The current traffic light controls are
ineffective and causes a handful of
problems such as congestion and pollution.
This study investigates the application of
deep reinforcement learning on traffic
control systems to minimize congestion at
traffic intersection. The traffic data from
Pulai Perdana, Skudai, Johor Intersection
was extracted, analysed and simulated
based on the Poisson Distribution, using a
simulator, Simulation of Urban Mobility
(SUMO). In this research, we proposed a
deep reinforcement learning model, which
combines the capabilities of convolutional
neural networks and reinforcement
learning to control the traffic lights to
increase the effectiveness of the traffic
control system. The paper explains the
method we used to quantify the traffic
scenario into different matrices which fed
to the model as states which reduces the
load of computing as compared to images.
After 2000 iterations of training, our deep
reinforcement learning model was able to
reduce the cumulative waiting time of all
the vehicles at the Pulai Perdana
intersection by 47.31% as compared to a
fixed time algorithm and can perform even
when the traffic is skewed in a different
direction. When the traffic is scaled down
to 50% and 20 %, the agent continues to
improve the waiting time by 69.5% and
68.36 % respectively. It is proven in the
experiment that a deep reinforcement

learning model was able to reduce the
cumulative waiting time at Pulai Perdana by
47.31%.

KEYWORDS

Traffic Light Control; Deep Reinforcement
Learning; Pulai Perdana; SUMO;

INTRODUCTION

The creation of traffic lights creates an equal
opportunity to cross an intersection, but
conventional traffic control systems only causes
traffic congestion, which impedes the flow and
causes many problems for the general commuters
Gao, Shen, Liu, Ito, &Shiratori, (2017). Traffic jams
are often associated with lost in productivity,
frustration and accidents. It has also led to several
serious social problems such as long travelling
times, increased fuel consumption and air
pollution Gao, Shen, Liu, Ito, &Shiratori, (2017).
According to another study done by Boston
Consulting Group (BCG) known as “Unlocking
Cities”, they showed that drivers in Kuala Lumpur
spend about 53 minutes stuck in traffic jams every
day. That roughly sums up to 13.4 days in total
spent in traffic in a year.

Traffic problem is a very complex issue
since it involves many parameters. Firstly, it is
heavily dependent on the time of day and week,
general during rush hours, which is in the morning
or afternoon, the traffic flow is severely increased
because users need to get to or off work.
Weekends generally show a decrease in traffic
loads. Secondly, existing traffic light control either
deploys fixed programs without considering real-

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

time traffic or considering the traffic to a very
limited degree Liang, Du, Wang, & Han, (2018).
 Adaptive traffic signal control, which
adjusts traffic signal timing according to real-time
traffic, has been shown to be an effective method
to reduce traffic congestion. With recent
advancements in Machine Learning technology,
many researchers have shown interest in the
capabilities of Deep Learning and Reinforcement
learning since they are able to learn through a
large set of data without supervision. In recent
developments, we can see machine learning
algorithms being able to surpass human level
intelligence in the game of AlphaGo.

In this research, we propose a deep
reinforcement learning algorithm that can extract
key features from a raw real-time traffic data
which are useful for the adaptive traffic signal
control system. By extracting those features such
as position and speed of cars, and allowing the
deep reinforcement learning algorithm to process
them, the system will be able to make proper
decisions to control the traffic lights more
effectively. The objective of this research is to
determine if the deep learning-based traffic light
algorithm can perform better than conventional
traffic management in managing the traffic at Pulai
Perdana junction.

Recently, more and more studies on
smart traffic light control system are conducted.
Many researchers now believe that machine
learning algorithms can improve traffic light
control and management. Furthermore, With the
recent advancements in both the electronic
hardware and deep learning algorithms,
conducting researches in such areas has become
easier. Generally, fixed time traffic signals are
being deployed in urban area due to its regularity
and predictability. Some traffic signals deliberately
stop drivers from experiencing a string of green
lights, thus discouraging high volumes of traffic
while still preventing congestion. Inductive loops
are generally used to keep traffic flowing in the
main roads of traffic and to detect if there are
vehicles waiting to cross from the side roads. Also,
it can reduce waiting time at a traffic intersection
and sometimes to change or lengthen traffic light
phases if the queue is long.
 In terms of Deep Reinforcement Learning,
Li, Lv and Wang (2016) have proposed to use a
deep stacked autoencoders (SAE) neural network
to estimate the Q learning function which is an
iterative algorithm. The neural net can take
massive amounts of input states and return the
possible Q value for each possible action. Genders
and Razavi (2016) have shown that convolutional
neural networks (CNN) can be used to

approximate the optimal Q values. One of the
most obvious contribution from their study is the
use of discrete traffic state encoding (DTSE) as a
better representation of traffic information. In the
study of Van der Pol and Oliehoek (2016), they
explained that the improvement from the previous
study was that they used a target network to solve
the moving target problem in reinforcement
learning. Liang et al. (2018) has improved the use
of deep reinforcement learning in traffic light
controls by introducing Double Dueling Deep Q
Networks called 3DQN.

METHODOLOGY

Pulai Perdana was selected as the case of study as
it is one of the most congested traffic lights during
the rush hours. Simulation of Urban Mobility
(SUMO) was used to simulate the junction at Pulai
Perdana as accurately as possible. Also, Python
was utilized to interface with the simulation
software and to deploy deep reinforcement
learning to actuate the traffic signals. In Python,
the deep learning library Keras was used to allow
the algorithm to learn from its actions. Figure 1
demonstrate an overview of how the software
interacts with each other to perform the
simulation.

Figure 1 Simulation Software Architecture

Problem Definition

The lane edges (LE) are demonstrated as in figure

2. LE1 depicts traffic coming from Pontian while

LE3 shows traffic from Skudai. on the other hand,

LE2 shows traffic coming from Persiaran Pulai

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

Perdana and LE4 shows traffic coming from Jalan

Teratai. Each road was simulated to have 3 lanes in

the signal side and 2 lanes on the other side as

shown in Figure 2. A traffic video was taken for

each road and fed into the Open CV algorithm by

Özlü (2017) to count the number of cars passing

through the junction during the rush hours. the

traffic data obtained for an hour at the junction is

shown in table 1.

Figure 2 Simulated Junction

Table 1: Traffic Information at Pulai Perdana

Intersection

Junction Number of cars

per hour

Green

Signal

Duration(s)

LE1 1076 100

LE2 796 38

LE3 1345 79

LE4 581 38

Vehicle Arrival Process

The traffic conditions are simulated based on

Mathew (2014), which shows the method of

simulating traffic flow through the use of random

variates that follows the Poisson distribution to

generate vehicles that arrives in a given time

interval so that it follows a typical vehicle arrival

process. In the SUMO simulation software, the

traffic information is read from the route.xml file.

The Illustration of Vehicles arriving modelling is

shown in figure 3.

Figure 3 Illustration of Vehicles arriving modelling

𝑝 𝑥 =
𝜇𝑥𝑒−𝜇

𝑥!
1

The Poisson distribution is commonly used to
describe a random arrival process. Equation (1) is
the probability of the density function.

States

The studies done by Genders and Razavi (2016),
they utilized their discrete traffic state encoding
(DTSE) method which allows them to retain useful
traffic information. The agent will observe the
states to be St= (P, V, L) ∈S for signal control. The
states will then be used as what the DQNAgent
“sees”, the environment encoded into a matrix for
the agent to make sense of the environment and
make decisions based on the states. Figure 4
shows how the agent observes the environment,
the agent created a Boolean value of 1 when it
detected a car if present within the cell length, the
velocity matrix was also obtained by dividing the
actual speed of the vehicle with the max allowable
speed. The states allowed the agent to perceive
the entirety of the environment through the use of
matrices instead of whole images in efforts to
reduce computational difficulty.

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

Figure 4: (a) Example of simulated traffic (b) with
corresponding Boolean (c) and real-valued velocity
vectors

Convolutional Neural Network

After observing the states, the agent was able to

take an action based on what it “sees”. The

process of seeing involves the use of a

Convolutional Neural Network that allows

extraction of important features from the state

matrices.

 The input states or the agent’s observed

states are positionMatrix, VelocityMatrix and lgts

which are shown in figure 5. The first layer of

convolution has 16 filters of 4x4 with stride of 2

and it uses ReLU (Rectified Linear Units) as the

activation function. The second layer has 32 filters

of size 2x2 with a stride of 1 and uses ReLU. The

3rd and 4th layers are fully connected layers with a

size of 128 and 64 respectively. The final layer is

then a layer with a linear output that outputs the

Q value that corresponds to every possible action,

this process is shown in figure 6.

positionMatrix =

𝑃0

𝑃1

𝑃2

𝑃3

 ,velocityMatrix =

𝑆0

𝑆1

𝑆2

𝑆3

 ,

lghts =

𝐿0

𝐿1

𝐿2

𝐿3

Figure 5: State matrices

Action

When the green light interval ended, the current

time step t ended and a new time step began. The

agent then proceeded to observe a new time step

and chose the next action. The same actions might

be chosen across time steps, causing the green

light interval to run again for another 10 seconds.

However, if the action selected was different from

the previous action, such as changing the traffic

signals. The yellow lights actuated for 3 seconds

before actuating the green light. Since the agent’s

goal was to reduce the overall waiting time, the

agent needed to find an action policy that

maximizes the following cumulative future

rewards. After observing a given state, the agent

decided to take an action based on an action policy

π. The Traffic light phases for simulated lanes are

shown in table 2.

Rewards

One of the biggest differentiators between

reinforcement learning and other learning

algorithms is the rewards. Rewards functions as a

feedback system to allow the model to access its

performance based on its previous actions. Since

the main goal was to see if the model can increase

the efficiency of the traffic light control system,

the main parameters that can best reflect was the

vehicle waiting time efficiency. Thus, we defined

rewards as the difference in cumulative waiting

time between active and number of vehicles

previously in the inactive traffic, where r1 is the

cumulative number of vehicles at a given active

lane edge and r2 is the cumulative waiting time of

idle vehicles waiting at the inactive lane edge.

𝑟𝑡 = 𝑟1 − 𝑟2 # 2

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

The reward was then calculated after the agent

finished its action step, which in this case, the

reward was calculated after the 10 second period

of actuation of the green light. Then the reward

was reset to zero once the traffic agent changed

the phase and restarted once again.

Agent Hyperparameters

The greedy epsilon algorithm was deployed, where

the value of ε was 1.0 in the beginning to assume

explorative behaviors, however, the value of

epsilon started to decay at a rate of 99.5% every

single time the states were observed until it

reached the minimum value of 0.01, where the

agent started to change from taking explorative

actions to exploitative one. The discount factor for

future rewards was set at 0.95. The optimizer

selected was then the Root Mean Squared Prop

(RMSProp) algorithm, which used a moving

average of squared gradients to normalize the

gradient by itself, the algorithm was a stochastic

technique for mini-batch learning. The learning

rate for the RMSProp algorithm was set at 0.0002

for optimal results. The capacity of replay memory

was also set at 200 to minimize memory usage.

Figure 6: Convolutional neural network approximating the Q values

Table 2: Traffic light phases for simulated lanes.

LE1 LE2 LE3 LE4

 L0 L1 L2 L0 L1 L2 L0 L1 L2 L0 L1 L2

Phase 0 G G G r r r r r r r r r

Phase 1 y y y r r r r r r r r r

Phase 2 r r r G G G r r r r r r

Phase 3 r r r y y y r r r r r r

Phase 4 r r r r r r G G G r r r

Phase 5 r r r r r r y y y r r r

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

Phase 6 r r r r r r r r r G G G

Phase 7 r r r r r r r r r y y y

Agent Training

The agent was trained for 2000 episodes, each

episode corresponds to 1 hour. We first initialized

the neural network with random weights. At the

start of each time step, the agent observed the

current time step St and the input was fed into the

neural network and performs an action At that

would provide the highest cumulative future

reward. The agent then received a reward Rt and

proceeded to obtain the next step St+1 in the

environment. These information (St, At, Rt, St+1)

were stored as experiences in its memory. As the

memory was limited in size, the oldest data was

deleted when the memory was full. The DNN was

then trained by extracting training examples from

the memory. This was known as experience replay.

The agent then proceeded to learn features \theta,

by training the DNN network to minimize the

following Mean Squared Error (MSE) in (3).

𝑀𝑆𝐸 𝜃 =
1

𝑚
 𝑅𝑡 + 𝛾 max

𝑎′
𝑄(𝑆𝑡+1 , 𝑎′ ; 𝜃′) − 𝑄 𝑆𝑡𝐴𝑡 ;𝜃

2
𝑚

𝑡=1

 3

Since m was the size of the input data set, which in

our case was very large, it would be very

computationally expensive to calculate. Hence, we

would use the stochastic gradient descent

algorithm RMSProp with a minibatch of 32.

Figure 7: Graph of Cumulative Waiting Time Against Epoch

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
ti

ve
 w

ai
ti

n
g

ti
m

e(
s)

Epoch

Graphs of Cumulative Waiting Time Against Epoch

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

Figure 8: Graph of Total Rewards Time Against Epoch

RESULTS & DISCUSSION

By examining our simulation data shown in figure

7 & 8, we were able to show that the algorithm

was indeed in the right path in learning a good

action selection policy that effectively reduced the

cumulative vehicle waiting time at the traffic

lights. Our algorithm’s results started to converge

midway through the episodes and became more

stable.

During the training, the minimum cumulative

waiting time achieved was 115882 seconds. The

average value of the cumulative waiting time of all

vehicles at the junction was 203221 second.

At 200 episodes, we saw the waiting time of

vehicles at the junction gradually reducing as the

agent found suitable action policies that allowed it

to make better decisions. The spikes in the graphs

shows that the explorative nature of the agent

allows it to try out different actions, not

necessarily resulting in reduction in waiting time

but crucial for exploring different actions that may

give positive results. At 800 episodes, we saw the

results started to converge and the waiting time

started to stabilize from this episode onwards. The

stabilizing mechanisms such as the experience

replay was proven to be effective in stabilizing the

action selection policy.

After running the training for 2000

episode, the agent learnt a good action selection

policy and managed to reduce the cumulative

waiting time. The agent was then used to run the

simulation once again using several carrying traffic

conditions and compared to the fixed time

algorithm. The agent was tested on high traffic

conditions, high traffic conditions with traffic

skewed to another direction, medium traffic

conditions and low traffic conditions in comparison

with the fixed time algorithm to evaluate its

performance improvement as compared to the

fixed time algorithm.

 The skewed traffic was simulated by

adjusting the heavy traffic to lanes LE2 and LE4

instead of LE1 and LE3. The medium traffic and low

traffic were assumed at 50% and 20% of the high

traffic volume. Table 3 shows the simulated result

using the final weights of the algorithm after 2000

episodes of training.

-300000

-250000

-200000

-150000

-100000

-50000

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l R
ew

ar
d

s

Epoch

Graphs of Total Rewards Against Epoch

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

Table 3 Cumulative Waiting Time for Different Algorithms and Traffic Heaviness.

Traffic Heaviness Number of cars in

one hour in given

lane

Cumulative

Waiting Time (s)

LE1 LE2 LE3 LE4 Agent Fixed time

algorithm

High 1076 796 1345 581 213696 405587

High (skewed

traffic)

581 1076 796 1345 214522 704820

Medium 538 398 673 291 48592 153566

Low 215 159 269 116 18206 59549

Based on the results shown in table 3, it is clear

that the agent outperforms the fixed time

algorithm in every type of traffic heaviness, where

in high traffic conditions, high traffic conditions

with skewed traffic, medium traffic conditions and

low traffic conditions, there is a 47.31 %, 69.56%

,68.36 % and 69.43 % reduction in waiting time

respectively. The fixed time algorithm worked well

at high traffic conditions, however, as the signal

timing was set to meet the demand of the

junction, it’s performance greatly reduced when

the traffic was skewed to another direction.

Although the number of cars passing through the

intersection was the same, the fixed time

algorithm could not handle the change in direction

of the traffic heaviness as it was preset to a certain

timing algorithm. The agent on the other hand was

adaptive to traffic and was able to keep the

cumulative waiting time at a constant value of

213696s and 214522s. This showed that the agent

was adaptive and could execute a traffic control

policy to solve the current traffic conditions.

When the traffic heaviness was reduced to 50 %

and 20 % respectively, we could see that the

performance of the agent was 68.36% and 69.43%

better than the fixed time algorithm. The

performance was also better as compared to the

high traffic conditions. The fixed time algorithm

was not suited to adapt to the everchanging traffic

heaviness, especially at lower traffic conditions.

CONCLUSION

In this paper, we proposed to solve the traffic light
control problem at the Pulai Perdana intersection
using a deep reinforcement learning model. This
research study was a success with all objectives

achieved. The research started with the notion
that artificial intelligence could one day be used as
an agent to manage a traffic intersection by
controlling the traffic lights. It was proven in this
experiment that a deep reinforcement learning
model is able to reduce the cumulative waiting
time of all the vehicles at a given traffic junction as
compared to a fixed time algorithm-based traffic
management system at Pulai Perdana by 47.31%.

ACKNOWLEDGEMENT

The authors are grateful to the UniversitiTeknologi
Malaysia for providing the funding for this study
under the Research University Grant (RUG) with a
vot number 03G98. The financial support is
managed by the Research Management Centre
(RMC) UniversitiTeknologi Malaysia.

REFERENCES

[1] Gao, J., Shen, Y., Liu, J., Ito, M., &Shiratori, N.

(2017). Adaptive Traffic Signal Control: Deep

Reinforcement Learning Algorithm with Experience

Replay and Target Network. arXiv preprint

arXiv:1705.02755.

[2] Genders, W., &Razavi, S. (2016). Using a deep

reinforcement learning agent for traffic signal

control. arXiv preprint arXiv:1611.01142.

[3] Li, L., Lv, Y., & Wang, F.-Y. (2016). Traffic signal

timing via deep reinforcement learning. IEEE/CAA

Journal of AutomaticaSinica, 3(3), 247-254.

[4] Liang, X., Du, X., Wang, G., & Han, Z. (2018). Deep

reinforcement learning for traffic light control in

vehicular networks. arXiv preprint

arXiv:1803.11115.

[5] Mathew, D. T. V. (2014). Transportation Systems

Engineering, Chapter 13: Vehicle Arrival Models:

Count.

Journal of Transport System Engineering 6:1 (2019) 45–53

6:1 (2019) 45–53 | www.jtse.utm.my | eISSN 2289–9790 |

[6] Özlü, A. (2017). Vehicle Detection, Tracking and

Counting.

https://github.com/ahmetozlu/vehicle_counting

[7] Van der Pol, E., &Oliehoek, F. A. (2016).

Coordinated deep reinforcement learners for traffic

light control. Proceedings of Learning, Inference

and Control of Multi-Agent Systems (at NIPS 2016).

https://github.com/ahmetozlu/vehicle_counting

