

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 63-68

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Coverage-based Approach for Model-based Testing in Software

Product Line

Rabatul Aduni Sulaiman
1
*, Dayang Norhayati A. Jawawi

1
, Shahliza Abd Halim

2

1Software Engineering Department, Faculty of Computing, University Technology Malaysia, 81300 Skudai, Johor, Malaysia

2Software Engineering Department, Faculty of Computer Science and Information System, University Tun Hussein Onn Malaysia, 86400
Parit Raja, Johor, Malaysia

*Corresponding author E-mail: raduni2@live.utm.my

Abstract

Rapid Quality assurance is an important element in software testing in order to produce high quality products in Software Product Line
(SPL). One of the testing techniques that can enhance product quality is Model-Based Testing (MBT). Due to MBT effectiveness in

terms of reuse and potential to be adapted, this technique has become an efficient approach that is capable to handle SPL requirements. In
this paper, the authors present an approach to manage variability and requirements by using Feature Model (FM) and MBT. This paper
focuses on modelling the integration towards enhancing product quality and reducing testing effort. Further, the authors considered cov-
erage criteria, including pairwise coverage, all-state coverage, and all-transition coverage, in order to improve the quality of products. For
modelling purposes, the authors constructed a mapping model based on variability in FM and behaviour from statecharts. The proposed
approach was validated using mobile phone SPL case study.

Keywords: Mapping Model; Model-based Testing; Software Product Line; Software Testing.

1. Introduction

At present, most users remain unsatisfied with product solutions’
testing standards. This is attributed to an increased level of com-
plexity in multiple kinds of features that a product has to handle.
In addition, users are also concerned about the quality of product

variants. The product needs to be managed well to ensure that
product requirements and quality meet the standard provided.
Software Product Line (SPL) is one of the methods that is capable
to handle multi-size products [1]. This method aims to minimize
cost and time, enhance product quality, and improve product de-
mand in the market [2]. New products can be derived via reusing
and integrating software assets. Commonality and variability that
exist in software assets distinguish products from one another.

SPL variability describes the properties of each product. Nowa-
days, a model-driven technique is capable of supporting an engi-
neering process; it brings model-based testing technique (MBT) as
one of the efficient techniques which can be utilized [3]. The
model can be used to show important information and to make
information more understandable through formal description [4].
In SPL, model can support both manual and automatic test genera-
tion based on the defined model [5]. Much effort in software de-
velopment involves developing model representing systems under

test. However, in SPL scope, this kind of effort can be minimized
by managing commonality and variability of the development
model [6]. Quality assurance is an important element in SPL test-
ing, which can help to assure that high-level product features can
fulfil customer satisfactions and requirements [7]. MBT helps to
enhance SPL quality through implementing modelling technique.
Model-based test case generation also produces test cases with
higher interaction coverage as compared to other techniques in the

SPL [3]. In addition, the usage of MBT in SPL can help the testers

to recognize defects in requirements in the early stage of the soft-
ware development life cycle [8]. Consequently, the cost of devel-
opment can be minimized. In addition, in MBT, behaviour model
is commonly used to describe possible variation points. However,

behavioural model still lacks in terms of the relationship between
features and balanced information regarding the validity of the
features selected. In order to solve this issue, the relation between
features and behaviour model needs to be established to produce
features with more semantics. Specifically, behaviour model
serves MBT via selection of possible paths through graph con-
structed in the model.
In our previous work, we have proposed a product line modelling

methodology that integrates Feature Model (FM) and behaviour
model, known as statechart. We applied the proposed methodolo-
gy to a mobile phone case study; a basic case study in the SPL.
The proposed work on the case study revealed that modelling
effort can be minimized. However, a complete description on how
the features in FM were selected was not elaborated as the investi-
gation had not progressed to that extent in the previous work. The
work only described the functionalities of FM that were capable in

managing variability as well as the needs of FM in MBT as a
statechart’s complement for test generation. Further, the previous
work also did not describe in details the functionality and the defi-
nition of FM notations.
In this paper, we propose an extension of FM feature selection in
order to select useful features from FM. The main idea of this
work is to apply test coverage for model in MBT, which would
conclude the previously proposed work. FM and statechart are two
models applied in this work. We consider these two models for

MBT in SPL since their functionalities can complement each other.
Subsequently, the approach will be evaluated using mobile phone
SPL case study.

mailto:*raduni2@live.utm.my

64 International Journal of Engineering & Technology

The paper is outlined as follow. Section 2 describes related works.
Section 3 elaborates definition of FM used in this work. Section 4
provides the definition of statechart. Section 5 provides the pro-
posed approach. Section 6 provides results obtained from the case
study and discussion on the results. Lastly, Section 7 provides
conclusions and future works for the paper.

2. Related Works

In this section, we describe related works on MBT that have uti-
lized FM and UML model. The ability of software testing to en-
hance product quality has led to a high demand for testing across
many domains. In SPL testing domain, FM plays a critical role as
it is used to manage variability. As FM represents features through
symbols, this leads to generating test cases that are insufficient to

yield a valid result. The integration of models can help to fulfil
inadequacy of each model. However, there exist challenges to
integrate the models due to their different characteristics. In order
to integrate the models, several techniques have been proposed in
the literature.
In [7] proposed two approaches comprising top-down and bottom-
up approaches. These two approaches integrate FM with statechart.
Subsequently, the researchers compared the efficiency of product

variants covered and the system behaviour covered [7]. Works
done by [3, 9] also used FM and statechart for test generation.
However, they considered coverage criteria in the model. In our
work, a pairwise coverage is implemented in FM, whereas
statechart implements all-states, all-transition, and all-transition-
pairs. In contrast to our work, researchers such as [3, 9] focused
on defining and evaluating coverage criteria for models in detail,
whereas we only set the aim of coverage criteria without investi-

gating the condition in great detail, followed by comparing the
results. In our proposed approach, pairwise coverage, all-states,
and all-transition coverage are utilized for automation purpose.
Work by [10] utilized functionality of statechart as test model.
However, they only utilized a single test model known as 150%
test model consisting of multiple states and conditions. In compar-
ison to our approach, several test models are provided depending
on the features from FM. In [10] utilized IBM modelling Rhapso-
dy for modelling purposes and ATG tools to trim the test model.

In comparison to this, we utilize Eclipse plugin Papyrus for mod-
elling and manually select our test suite for test generation. Fur-
thermore, our objective is also distinguishable as compared to the
existing work which tried to analyse the efficiency of coverage
criteria. In our work, we aim to obtain a set of test cases while at
the same time trying to reduce testing effort.
Our previous work had only implemented the approach based on
FM and test model. In this work, we apply coverage criteria to

reduce feature selection possibilities with an addition of model-
based coverage.

3. Definition of Feature Model (FM)

The use of model can reduce complexity and increase users’ un-
derstanding of software. Here, we present FM to describe afore-

mentioned SPL features. According to American English Web-
ster’s Dictionary, feature is defined as an important element of a
characteristic. In Software Engineering community, feature is
defined as a characteristic that is distinguishable from software
item such as performance and functionality [10]. The feature has
been used frequently to express variable and regular elements in
the SPL [11]. The FM itself consists of elements known as fea-
tures. Features are used to show the “logical set of product re-

quirements”. The requirements and information from users and
developers can be managed well by using FM since it can be used
to separate important information that users prefer [12].
Figure 1 depicts a feature model for mobile phone SPL case study,
which will be used in this paper. The FM is depicted utilizing

Pure::Variants tool, in order to show variability that exists in mo-
bile phone industry [13]. An FM diagram is a tree structure con-
sisting of multiple features. Feature variability is represented as
arcs and grouping of features. There are four main feature groups
comprising mandatory, optional, alternative, and or [14]. Up until
now, the main standard of constructing an FM is non-existing, but
the graphical notation from FODA method is commonly used in
the SPL [15]. In Pure::Variants, individual features are represented

in an acyclic graph form. The graph consists of nodes and edges.
The nodes represent features that exist, whereas edges represent
basic relations.

Fig 1: Mobile phone SPL FM

In our constructed FM, it consists of four relations, including
mandatory, optional, alternative, and or. Five parent nodes of
mandatory relations will always be included within the products
listed. The list of parent nodes comprises of MobilePhone (MP),
MobileMessage (MM), MobileCalls (MC), MobileGPS (MG),

MobileMedia (MMe) and MobileScreen (MS). Other mandatory
relations (i.e., TextMessage (TM) and VoiceCall (VC) will always
be selected if the parent node is included in the FM. Optional fea-
tures comprising VoiceMessage (VCM), VideoMessage (VDM)
and VideoCall (VDC) can either be selected or not selected in the
FM. Meanwhile OR group will select at least one feature if the
parent feature is included. Examples of OR features include Cam-
era (CM), VideoPlayer (VP), and MusicPlayer (MY). Alternative

feature refers to one of the features that must be selected.
The list of alternative features comprises of BasicColours (BC),
HighResolution (HR), RadioPlayer (RP) and VoiceRecorder
(VRD). Requires relations in Figure 1 show alternative feature
selections. The require relations indicate constraints that exist in
the case study. These relations illustrate the implementation of
optional feature such as VDM requires HR features to ensure that
this feature will be selected. The details of feature configuration
will be provided as follows. Concerning the mobile phone case

study, we have listed all valid product configurations from overall

International Journal of Engineering & Technology 65

mobile phone products. This SPL consists of 18 features for mo-
bile phone (Fmp) as per valid configuration as follows:

In Definition 1, FM is defined following definitions expressed in
[9, 16]. Formal definition of FM is used as a fundamental calcula-
tion of valid feature selection and to map out feature to test model
artefacts.

Definition 1 (FM):
FM is defined as follows:

FM is defined as a set of features, F, comprising of whole nodes
collection, W, with the consideration of constraint, C, (if it exists).
In order to have a basic set of FM, FMF is defined to denote a set
of features from feature name, F, (FM∈FMF). The whole nodes

collection is separated, w ∈ W, into every node, which refers to

one feature, f∈F, where the related node is denoted as F→W.

The types of feature variability are described by using four types
of relations as follows. For each relation, variability is defined in
such a fashion that allows it to be distinguishable from other vari-
ability’s definition.

Variability definitions:

Definition 2 (Overall FM):
Overall FM is defined as follows:

Overall FM is defined as the combination of all four relations
comprising, mandatory, optional, alternative, and or. Definition 2
covers the whole FM tree structure. Existing constraint in features
is not included in this definition.
Constraint definition is provided in Definition 3. Features combi-
nation creates relation restriction, which we formally indicate as
constraint, C.

Definition 3 (FM constraints):
FM constraints are defined as follows:

In this paper, the implementation of FM is carried once pairwise
coverage among the features of mobile phone case study has been
located. The details of pairwise implementation are described in
the following section.

Pairwise coverage can be achieved by applying a pairwise testing
approach [17]. This approach is a well-known combinatorial test-
ing technique. It is used to find software faults based on the inter-
action between features [18-19]. There are several algorithms
which have been proposed to conduct pairwise testing approach,
including IPOG [20] and IPOG-D [21]. In this paper, CITLAB
framework is utilized to generate a set of valid features [22]. Fur-
thermore, this framework helps to satisfy 100% pairwise coverage

for mobile phone SPL based on FM. The results of the pairwise
coverage implementation produce subsets of all potential products.
The result can also be obtained through deriving valid pair of fea-
tures. Valid pair of features is defined for understanding. Defini-
tion 4 lists out pair of features that have been categorized.

Definition 4 (FM pairwise coverage):
FM pairwise coverage is defined as follows:

Pairwise coverage conducted in CITLAB framework can explain
combinatorial generation by using FM [23]. The structure of
CITLAB integrated with the Eclipse framework helps to convert
FM from pure::variants into CITLAB in a straightforward fashion.

Currently, CITLAB does not provide any kinds of importer plugin
that can support FM from pure::variants by design. Due to this,
the current work converts model manually using CITLAB in order
to generate valid feature pairs. As depicted in Figure 2, a code
sample is provided to illustrate manual model conversion written
in CITLAB framework. As CITLAB concepts support Boolean
variables, all features involved, including their constraints are
subsequently listed down. Related constraints are also stated in

each of the variable. Upon executing IPOG in CITLAB, a list of
valid pairs of features are obtained. The results of the features are
provided in the result section.
From the list of valid results, only several feature pairs are utilized
to produce new FM, as a test generation using this kind of genera-
tor has produced 12 sets of valid features. Due to limited space to
list down all the valid features, only several feature pairs have
been randomly selected from the results generated by CITLAB.
Statechart modelling was proposed by [24]. This model is widely

used in Software Engineering which considers the behaviour con-
cept derived from Finite State Machine (FSM).

Fig 2: Pairwise code for features selection

VRD} RP, MY, CM, VP, HR, BC, VDC, VC,

 VDM, VCM, TM, MMe, MS, MG, MC, MM, {MP, = Fmp
(1)

FM = (F, W, C) (2)

manman DffifFFW ),('

= Mandatory variabil-

ity is represented

'f
as from feature

f
. (3)

optopt DffifFFW ),('

= Optional variability is repre-

sented as

'f
from feature

f
. (4)

altalt DffifFFW ),('

= Alternative variability is

represented as FF '

from the group of features,
f

. (5)

oror DffifFFW ),('

= Or variability is represented

as
FF }{'

. (6)

oraltoptman WWWWW 

(7)

FffifFFCreq )',(= Feature f requires

feature 'f in each product.
(8)

FffifFFCexd )',(= Feature f excludes fea-

ture 'f in each product.
(9)

},{ ba ffF 
= Valid combination of feature pairs

},{ ba ff
 from the list set of feature, F.

(10)

FffifFFCC altreq )',(),(
 Valid pairwise

covering all pairwise interaction including requires and
alternative constraints.

(11)

66 International Journal of Engineering & Technology

Functionalities of statechart including capability to simulate and
ability to automate software derivation brands it as an effective
model to be used in comparison to other models [10]. There are
two main components in statechart comprised of state and transi-
tion. State refers to concurrent submachine whereas transition
refers to the relationship between two states.

4. Definition of Statechart

In order for a statechart to be more understandable and standard-
ized with FM, statechart condition used in this work is defined.
Definition 5 expressed the proposed statechart.

Definition 5 (Statechart):
{S, s, t }is defined as a statechart equipped with a set of states, S,
which consists of each state, s, and each state s is related by using

transition, t.
In this paper, statechart is used for simulation and generation.
Simulation refers to the flow of the system while generation refers
to creation of test suites. Basic variants are derived based on the
behaviour of the system. Figure 3 depicts the statechart based on
the behaviour of a mobile phone. The behaviour illustrated in the
case study relates to product variant that shows the process of user
interaction. In the example, a statechart is chosen for one process

of mobile phone; mobile phone messages. This product variant
allows the sending of a message to receiver. Mobile users can
choose the types of message to be sent by selecting either,
(OpenMessageTab), (OpenVideoMessageTab) or
(OpenVoiceMessageTab). In TextMessage state, (SendMessage)
will send the user’s message to the server. Server state validates it
either as SuccessfullySent or FailToSend. Similar validation is
applied on VideoMessage and VoiceMessage states.

Fig 1: Statechart for sending message by using mobile phone

In MBT, the main function of a test model is to get the behaviour
of the system under test. It is used to obtain a set of test cases
based on coverage criteria defined either manually or automatical-

ly depending on the test case generator. In this work, valid feature
configurations have their own test model. This can be defined as
in Definition 6.

Definition 6 (Feature configuration and test model):

FCtmforfcFC a 
is defined as the feature configuration

mapped to test model for all types of valid product features.
In software testing, it is difficult to determine the right time to stop
testing. The implementation of coverage criteria can help to de-
termine a suitable cut-off time for testing. Coverage criteria can
enforce requirements from test model [25]. In this work, only two
coverage criteria for MBT are considered to comprise all-states

and all-transition [4]. These criteria have been chosen as they are
two most basic coverage criteria for MBT [26].

5. Approach

An overall approach is depicted in Figure 4. Several inputs are
required in the approach. Input such as product variation can be

illustrated by using FM. FM is used to describe features depend-
ency and illustrate the relationships among product features. In
order to conduct MBT, one of the models that can be used to au-
tomate test case generation is by using a behaviour model. In this
work, statechart is used to consider product behaviour and gener-
ate test cases. Further, statechart is used to describe the behaviour
of product features. The combination of functionalities of these
two models is chosen as the functionalities would be lacking if

there is only one model used. In this approach, FM is used to pre-
sent features whereas statechart is used to describe the behaviour
of feature for test case generation. This illustrates that these two
models complement each other in a model-based testing for SPL.
In order to connect the relationship of the models used, the map-
ping needs to be performed so that all features can be handled.
State machine revises the behaviour of the features depending on
the features of FM. This dependency is balanced by using
statechart elements, which are used to show the behaviour of FM.

The mapping between these two models is based on multiple FMs
with multiple statecharts. Due to limited space, only one example
is illustrated as shown in Figure 4. Product requirements are repre-
sented as features in FM. As depicted in Figure 4, product variants
are derived from FM. In order to derive the products, a coverage
criterion is applied to the FM.

Fig 2: Model-based proposed approach

It helps the tester to select important features from FM before
applying MBT. By having the implementation of coverage criteria
for FM, a set of possible product variants can be selected. This can
avoid unsuitable features from being selected as the removal of
unnecessary product variants will only involve more effort. The
detail regarding coverage criteria is explained in coverage criteria

International Journal of Engineering & Technology 67

subsection. Once the product variants have been selected, various
FMs will be constructed to show all possible features. At the same
time, we have manually drawn a statechart consisting of case
study’s variation point. However, the variation point of statechart
drawn still lacks information (i.e. relationship among features with
information regarding the validity of feature selections). This indi-
cates that the connection between features of FM with the
statechart is greatly required.

6. Results and Discussion

Our main contribution in this paper is to relate feature-based and
requirement-based concept in MBT. The paper was proposed with
the intent to minimize the testing effort by using model-based
testing with consideration of coverage criteria. This approach

relies on the integration between FM and statechart as the models
used for test generation. Furthermore, the proposed approach is
supported by pairwise and model-based coverage criteria which
had assisted in reducing the selection of unrelated test cases before
and after test generation. A preliminary study was performed on a
small case study; a mobile phone SPL.
The approach was evaluated based on pairwise coverage criteria,
all-states, and all-transition. Valid generated pairwise features are

listed in Table 1. Based on Table 1, there are 12 valid features. In
this paper, only one valid combination of pairwise features was
selected and demonstrated for testing. Further, as for behaviour
model, the phone message example was selected to demonstrate
the flow of testing. Test 7 (Refer Table 1) was selected as all fea-
tures configurations are marked as TRUE as compared to other
test instances.

Table 1: List of valid features configurations

Label Variation Type
Parent Unique

Name
Parent Type

MobilePhone ps:mandatory

MobileMessage ps:mandatory MobilePhone ps:feature

MobileCall ps:mandatory MobilePhone ps:feature

TextMessage ps:mandatory MobileMessage ps:feature

VoiceMessage ps:optional MobileMessage ps:feature

VideoCall ps:optional MobileCall ps:feature

VideoMessage ps:optional MobileMessage ps:feature

VoiceCall ps:mandatory MobileCall ps:feature

For mapping of features to statechart, manual mapping of the fea-
tures with the statechart based on CITLAB result was carried out.
Based on the mapping, configurations of statechart that were not
related to valid features configurations were removed. Table 2

contains the list of valid features upon the removal of invalid con-
figurations. The list of valid configurations are based on the re-
sults of implementation of pairwise coverage.

Table 2: Selected features from valid configurations

Text

Message

Voice

Message

Video

Message

Voice

Call

Video

Call

Mobile

GPS

TRUE true false false true true

TRUE false true true false true

FALSE true true false true false

FALSE false true true true false

TRUE false false false true true

FALSE true false true false true

TRUE true true true true false

Theorem 1 SPL test suite SPLts:

aaats fcfcTtctctcSPL  ,),(
 where a test case from

feature configuration is selected with consideration of coverage
criteria based on product set.
Based on all-transition coverage criteria used in statechart, a man-
ual generation of test suite was conducted producing several test
cases as shown in Table 3. The test suite generation had consid-

ered all defined coverage criteria, including whole transition and

states in the statechart. As a result, nine test suite sequences with
51 event calls were produced. All test sequences are based on
pairwise coverage as per set in CITLAB.

Table 3: List of test sequences

No. Test Suite Sequences

1 {OpenMessageTab,OpenTestMessageTab, SendMessage,

FailToSend,MessageTabClose}

2 {OpenMessageTab,OpenTestMessageTab, SendMessage,

SuccessfullySent,MessageTabClose}

3 {OpenMessageTab,OpenTestMessageTab, SendMessage,

FailToSend,Retry}

4 {OpenMessageTab,OpenMobileMessageFunction,

OpenVoiceMessageTab,SendMessage,

FailToSend,MessageTabClose}

5 {OpenMessageTab,OpenMobileMessageFunction,

OpenVoiceMessageTab,SendMessage, FailToSend,Retry}

6 {OpenMessageTab,OpenMobileMessageFunction,

OpenVoiceMessageTab,SendMessage,

SuccessfullySent,MessageTabClose}

7 {OpenMessageTab,OpenMobileMessageFunction,

OpenVideoMessageTab,SendMessage, FailToSend,

MessageTabClose }

8 {OpenMessageTab,OpenMobileMessageFunction,

OpenVideoMessageTab,SendMessage, FailToSend, Retry}

9 {OpenMessageTab,OpenMobileMessageFunction,

OpenVideoMessageTab,SendMessage, SuccessfullySent,

MessageTabClose }

Based on Definition 5 and 6, we have generated SPL test suite for
coverage criterion. The applications of SPL mobile phone case
study were introduced in Section 2. The case study was evaluated
according to pairwise coverage and model-based coverage. The

coverage was determined from the combination of two models
comprising of FM and statechart. Two main advantages of this
approach include:
1. Features configuration can be considered by using statechart.
2. Incorrect selection of requirements based on products can be

avoided.

In terms of product selection, mapping can help to check the valid-

ity of the requirements before conducting MBT. However, in
terms of efficiency, much work need to be done to refine the ap-
proach as FM and statechart models need to be tested rigorously
prior to conducting testing. Time constraint remains an area that
still could be improved as we had tried to minimize the time by
automating the process of drawing and mapping the model. Fur-
thermore, in this work, we chose to apply coverage criteria to the
FM. Through the proposed work, valid product features were able
to be obtained while unnecessary features were managed to be

removed prior to mapping with statechart. Based on the valid fea-
tures obtained, there were 12 features that could be validated with
the statechart. We considered to validate each constructed model
carefully to make sure that the result is as detailed as possible in
describing each requirement.
For mapping strategy, an automated mapping had been considered.
However, as the work is still in its early stage, much work still
needs to be done prior to achieving full automation of the entire

manual process of mapping. The proposed approach had consid-
ered two MBT coverage criteria. The coverage had helped the
process of test generation by checking on the transition of
statechart at least once. Despite this, in this work, all-states and
all-transition coverage produced similar results, in which they
both yielded six test cases. Despite this, the results could be af-
fected due to cases of the implemented statechart. Owing to this,
we could not conclude that this result would be the same if cover-

age criteria were implemented as it depends on the behaviour of
the model. Different behaviour model would produce different
results depending on the types of case study implemented.

68 International Journal of Engineering & Technology

7. Conclusion

In this paper, we had described a state-of-the-art approach that
was used to link FM with model-based artefacts. We had also
discussed a few observations and limitations of our proposed
model-based approach. We explained on potential improvements

of this topic which had combined feature-based and requirement-
based concepts in MBT for SPL. This paper had produced test
generation which integrated Pure::variants with CITLAB and
other tools. Some steps in our proposed approach still require
further refinement whereby the results might vary in the future
once the research has progressed further. Our main aim in this
paper was to minimize testing effort. The reuse concept in model
remains an interesting niche that MBT has to offer in testing as

compared to other techniques. The implementation of pairwise for
FM also leads to valid feature selection which can potentially
replace manual checking of possible valid feature configurations.
From the usability viewpoint, this approach is intuitive since there
is an integration of feature-based and requirement-based concepts
under one approach. Our concern in this work is regarding the size
of features implemented for test generation. Once a manual test
generation step could be fully automated, it would be possible to

evaluate and compare the proposed approach on features of a larg-
er size. In the future, features of a larger size would be considered,
including considering all statechart features in mapping. Addition-
ally, coverage criteria metric would be defined to evaluate the
coverage utilized in the proposed approach. In addition, it remains
our focus to try to minimize the complexity of the proposed ap-
proach so as to minimize future user’s effort in utilizing the ap-
proach. Furthermore, we will also try to automate test generation

from selected states and transition with the integration of existing
tools such as ParTeG.

Acknowledgement

This research was supported by the Ministry of Higher Education
Malaysia (MOHE) and Universiti Tun Hussein Onn Malaysia
(UTHM). We would like to express our profound gratitude to lab

members of Software Engineering Department, Universiti
Teknologi Malaysia (UTM) for their continuous support and con-
structive feedbacks towards the completion of this paper.

References

[1] Clements, P. & Northrop, L. (2003). Software Product Lines. Addi-

son-Wesley, 1–105.

[2] Wang, S. Ali, S., Yue, T. & Liaaen, M. (2013). Using Feature

Model to Support Model-Based Testing of Product Lines: An In-

dustrial Case Study. Proceedings of the 13th International Confer-

ence on Quality Software, pp. 75-84.

[3] Cichos, H., Oster, S., Lochau, M. & Schuerr, A. (2011). Model-

Based Coverage-Driven Test Suite Generation for Software Product

Lines. Model Driven Engineering Languages and Systems, Lecture

Notes in Computer Science, 6981, 425–439.

[4] Utting, M., Pretschner, A. & Legeard, B. (2012). A Taxonomy of

Model-Based Testing Approaches. Software Testing, Verification

and Reliability, 24(5), 297-312.

[5] Siavashi, F. & Truscan, D. (2015). Environment Modeling in Mod-

el-Based Testing: Concepts, Prospects and Research Challenges: A

Systematic Literature Review. Proceedings of the 19th International

Conference on Evaluation and Assessment in Software Engineering,

pp. 1–6.

[6] Wang, S., Gotlieb, A., Ali, S. & Liaaen, M. (2013). Automated Test

Case Selection Using Feature Model: An Industrial Case Study.

Model Driven Engineering Languages and Systems, Lecture Notes

in Computer Science, 237–253.

[7] Weißleder, S. & Lackner, H. (2013). Top-Down and Bottom-Up

Approach for Model-Based Testing of Product Lines. Electron.

Proc. Theor. Comput. Sci., 111, 82–94.

[8] Olimpiew, E. M. & Gomaa, H. (2009). Reusable Model-Based

Testing, Formal Foundations of Reuse and Domain Engineering.

Lecture Notes in Computer Science, 5791, 76–85.

[9] Lochau, M., Oster, S., Goltz, U. & Schürr, A. (2012). Model-Based

Pairwise Testing For Feature Interaction Coverage in Software

Product Line Engineering. Software Quality Journal, 20 (3–4),

567–604.

[10] Oster, S. (2012). Feature Model-based Software Product Line Test-

ing. PhD thesis, Technische Universitat.

[11] Haslinger, E. N., Lopez-Herrejon, R.E. & Egyed, A. (2013). Using

Feature Model Knowledge to Speed Up the Generation of Covering

Arrays. Proceedings of the Seventh International Workshop on Var-

iability Modelling of Software-Intensive Systems, pp. 1–6.

[12] Olimpiew, E. M. (2008). Model-Based Testing for Software Prod-

uct Lines. Doctoral Dissertation, George Mason University Fairfax.

[13] Beuche, D. (2003). Variant Management With Pure:: Vari-

ants. Technical report, Pure-Systems GmbH.

[14] Lian, X. Zhang, L., Jiang, J. & Goss, W. (2018). An Approach for

Optimized Feature Selection in Large-Scale Software Product Lines.

Journal of Systems and Software, 137, 636-651.

[15] Beuche, D. & Dalgarno, M. (2007). Software Product Line Engi-

neering with Feature Models. Overload Journal, 78, 5-8.

[16] Machado, I. (2014). Fault Model-Based Variability Testing. PhD

thesis, Universidade Salvador.

[17] Lopez-Herrejon, R. Ferrer, J., Haslinger, E. N., Chicano, F., Egyed,

A., & Alba, E. (2014). Comparing Pairwise Testing in Software

Product Lines: A Framework Assessment. Proceedings of the Inter-

national Conference Software Product Line, pp. 1-15.

[18] Parejo, J. A., Sánchez, A. B., Segura, S., Ruiz-Cortés, A., Lopez-

Herrejon, R. E., & Egyed, A. (2016). Multi-Objective Test Case

Prioritization in Highly Configurable Systems: A Case Study. Jour-

nal of Systems and Software, 122, 287-310.

[19] Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B. & le Traon, Y.

(2012). Pairwise Testing for Software Product Lines: Comparison

of Two Approaches. Software Quality Journal, 20(3–4), 605–643.

[20] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007).

IPOG: A General Strategy for T-Way Software Testing. Proceed-

ings of the 14th Annual IEEE International Conference and Work-

shops on the Engineering of Computer-Based Systems, pp. 549–

556.

[21] Brucker, A. D. & Julliand, J. (2008). IPOG/IPOG-D: Efficient Test

Generation for Multi-Way Combinatorial Testing. Software Testing,

Verification and. Reliability, 18(3), 125-148.

[22] Calvagna, A, Gargantini, A. & Vavassori, P. (2013). Combinatorial

Testing for Feature Models Using CITLAB. Proceedings of the

IEEE Sixth International Conference on Software Testing, Verifica-

tion and Validation Workshops, pp. 338-347.

[23] Calvagna, A., Gargantini, A. & Vavassori, P. (2013). Combinatori-

al Interaction Testing with CITLAB. Proceedings of the IEEE Sixth

International Conference on Software Testing, Verification and

Validation, pp. 376-382.

[24] Harel, D. (1987). Statecharts: A Visual Formalism for Complex

Systems. Science of Computer Programming, 8(3), 231–274.

[25] Rodrigues, E. D. M. (2013). Plets: A Product Line of Model-Based

Testing Tools. PhD thesis, Pontifical Catholic University of Rio

Grande do Sul.

[26] Doungsa-ard, C., Dahal, K. P. Hossain, M. A., & Suwannasart, T.

(2007). An Automatic Test Data Generation from UML State Dia-

gram using Genetic Algorithm. Proceedings of the Second Interna-

tional Conference on Software Engineering Advances, pp. 47-52.

