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Abstract The fast-growing urbanization has contributed to the construction sector be-

coming one of the major sectors traded in the world stock market. In general, non-
stationarity is highly related to most of the stock market price pattern. Even though

stationarity transformation is a common approach, yet this may prompt to originality
loss of the data. Hence, the non-transformation technique using a generalized dynamic
principal component (GDPC) were considered for this study. Comparison of GDPC was

performed with two transformed principal component techniques. This is pertinent as
to observe a larger perspective of both techniques. Thus, the latest weekly two-years

observations of nine constructions stock market price from seven different countries were
applied. The data was tested for stationarity before performing the analysis. As a re-

sult, the mean squared error in the non-transformed technique shows eight lowest values.
Similarly, eight construction stock market prices had the highest percentage of explained

variance. In conclusion, a non-transformed technique can also present a better result
outcome without the stationarity transformation.

Keywords Construction stock market price; nonstationary; non-transformed; stationar-

ity test; time series data
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1 Introduction

Buildings constructions and materials suppliers have led to the construction sector as one of
the key contributors towards a country development. Remarkably, construction stock market
price is listed as one of the notable sectors worldwide. In general, non-stationarity is a common
pattern in the stock market price, which also includes the construction sectors. Indeed, station-
arity transformation is the popular approach in handling such datasets, such as first difference
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[1] linear [2] and log-transformation [3]. Although it is a common practice, however, it may
prompt to losing originality of the stock market price data.

Nevertheless, one of the approaches to overcome this is through principal component tech-
nique. In this study, ordinary principal component (OPC) were used as a baseline [4]. Note-
worthy, this technique has the capability to reduce the dimension and simultaneously keep
any existing variation in the data as much as possible. There is a strong connection between
OPC and factor models because they both evaluate variances, although with different execution.
Thus, the advancement in factor models also was incorporated in OPC. Therefore, following the
dynamic factor model, the principal component was extended to Brillinger dynamic principal
component (BDPC) [5]. Unlike OPC, BDPC used spectral density matrix instead of covariance
matrices to find the closest approximation to spectral density matrix of a given reduced rank.
Despite the widely used of both methods, they are mostly for the transformed series.

An alternative approach has been recently introduced, using a non-transformed technique
namely generalized dynamic principal component (GDPC) [4]. The main precedence of GDPC
lies in its ability to examine any mixed pattern of a time series data. Certainly, not all statistical
approaches have superiority over other approaches as it also has its own limitations. However,
the GDPC technique used in the studymay provide a better adaptation to the non-transformed
time series.

Thus, the comparisons of mean squared error (MSE) and the percentage of explained vari-
ance were carried out on the transformed and non-transformed principal component techniques
[6]. Organization of this article was as follows. Methods related to this study was layout in
Section 2. Further details on the construction stock market price and comparison results were
shown in Section 3. Conclusions of the findings were in Section 4.

2 Methodology

2.1 Methods Outline

The following subsections will lay the methodology that were used throughout the study. It
begins with the stationary test in Subsection 2.2 which is essential in identifying the stationarity
pattern of the construction stock market price series. Subsection 2.3 discussed on the principal
component technique and is divided into two parts. Firstly, on the transformed technique,
consisting of OPC and BDPC. Secondly on the non-transformed technique that is GDPC. When
the construction stock market price is nonstationary, both OPC and BDPC are restricted in
handling the data directly. Thus, for this reason, they had to be transformed prior to any
further analysis. The stationary transformation was carried out using first difference and log-
transformation for both OPC and BDPC construction stock market price. As for GDPC, it
has this added advantage of using the nonstationary construction stock market price directly
without any prior transformation. Finally, this section is concluded with information criteria
method for determining the models that will be chosen in the construction stock market price.

2.2 Augmented Dickey-Fuller (ADF) Test

Testing of stationarity is vital for understanding the time series pattern. There are few station-
arity tests available however, Augmented Dickey-Fuller(ADF) [7] is the most widely used. The
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main reason is because this test is more accessible to larger and complex time series datasets.
One can identify the series pattern through the existence of unit root, using hypothesis testing.
Following the assumption that time series follows an ARMA structure, null hypothesis, H0 is
tested against alternative hypothesis, Ha. Let the observations of stock market price series be
y1, y2, . . . , yn, hence the coefficients significance calculated as follows:

H0 : γ = 0

Ha : γ < 0

∆yt = γyt−1 +
∑p

j=1
(δj∆yt−j) + εt, ε ∼ (0, σ2) (1)

where ∆yt is the ADF test equation, define as the changes of the stock market price series, p
is the number of lagged used in the difference term, δj. Meanwhile, γ is test statistic and εt is
the error terms which is set to be serially uncorrelated. The presence of unit root shows that
y is nonstationary, where the critical values is less than γ in the null hypothesis.

2.3 Transformed Technique

2.3.1 Ordinary Principal Component (OPC)

Taking into consideration that the vector of time series, zt = (z1,t, . . . , zm,t), where 1≤ t≤ T and

assume for simplicity that z̄ = T−1
∑T

t=1 zt, estimation of mean is valued zero and stationary.
Given also Z is the T × m matrix, with rows z1, . . . , zm. Thus, the matrix of sample covariance,
C is calculated for OPC as the following:

C =
1

T

T
∑

t=1

ztz
′

t (2)

where λ1 ≥ λ2 ≥ . . . ≥ λm is the eigenvalues of C .
OPC may reduce the dimension, however, they may be limited in representing the stock

market price in construction when non-stationarity is presence.

2.3.2 Brillinger Dynamic Principal Component (BDPC)

In Brillinger [4], discussed on reconstructing the time series as follows. Given zero mean of m
dimensional stationary process, zt, −∞ < t < ∞, the dynamic principal components can be
found for m × 1 vectors ck, −∞ < h < ∞ and βj, −∞ < j < ∞. It is worth noting that h and
j here are the dynamic principal component, respectively and is the first principal component.
Hence, the linear combination becomes

ft =
∞
∑

h=−∞

c
′

hzt−h (3)

and subsequently

E

[

(

zt −
∑∞

j=−∞
βjft+j

)′ (

zt −
∑∞

j=−∞
βjft+j

)

]

(4)
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is minimum.
The principal components in cross spectral matrices is given by ch. This is the inverse Fourier

transform for each frequency. Meanwhile, from the same principal components conjugates also
we can obtain the inverse Fourier transform, βj, in which more details can be found in [4].

For both OPC and BDPC, the mean squared error (MSE) were calculated using this fol-
lowing formula:

MSE =
1

n

∑n

i=1
(yi − ŷi)

2
(5)

where n is the number of sample observations, yi is the observed values and ŷi is the predicted
value. It should be noted that BDPC are best with stationary series and can also work around
nonstationary series. Despite that, a best minimum MSE values may be difficult to achieve.

2.4 Non-transformed Technique

2.4.1 Generalized Dynamic Principal Component (GDPC)

Supposed that zj, t, 1 ≤ j ≤ m, 1 ≤ t ≤ T and consider two integer numbers k1 ≥ 0 and
k2 ≥ 0, as the lags and leads. Hence the first dynamic principal component as a vector
f = (f t)−k1+1≤t≤T+k2

, in which the reconstruction of series zj,t, were linear combination of
(ft−k1 , ft−k1+1, . . . , ft, ft+1, . . . , ft+k2) is optimum given the criterion of MSE. Also, f which
is a potential factor of a m × (k1 + k2) matrix of coefficients γ = (γj, i)1≤j≤m, −k1≤i≤k2

, and

α = (α1, . . . ,αm). Thus, initial series of zj,t reconstructed can be defined as

ẑj,t =
∑k2

i=−k1

γj,ift+i + αj

When k = k1 + k2

f∗
t = ft−k1 , 1 ≤ t ≤ T + k, β∗

j,h = γj,h−k1−1, 1 ≤ h ≤ k + 1

f∗∗
t = f∗

t+k, 1 − k ≤ t ≤ T

β∗∗
j,h = β∗∗

j,k+2−h, 1 ≤ h ≤ k + 1. (6)

This reconstruction can be achieved as

ẑj,t =
k
∑

i=−k1

βj,ift+i+k1 + αj =
k
∑

h=0

β∗
j,h+1f

∗
t+h + αj =

k
∑

h=0

β∗∗
j,h+1f

∗
t−h + αj

The series reconstruction can be obtained from k lags or k leads of the principal component.
Acquiring optimal forward solution will lead to backward solution as well as seen in Equation
(7). Meanwhile, MSE loss function is through reconstructing the m series using k leads, by

letting f =(f1, . . . , fT+k)
′

, β = (βj,i)1≤j≤m,1≤i≤k+1 and α = (α1, . . . , αm),

MSE (f , β, α) =
1

Tm

m
∑

j=1

T
∑

t=1

(

zj,t −

k
∑

i=0

βj,i+1ft+i − αj

)2

(7)
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The optimal options of f =(f1, . . . , fT+k)
′

and β = (βj, i)1≤j≤m,1≤i≤k+1, α=(α1, . . . ,αm) , are
defined by

(

f̂ , β̂, α̂
)

= argf∈RT+k,β∈Rm×(k+1),αRm minMSE(f , β, α) (8)

It should be noted that if f is optimal, clearly γf + δ is optimal too. Hence, f is chosen
in order that

∑T+k

t=1 ft = 0 and (1/(T + k))
∑T+k

t=1 f2
t = 1. From z1, . . . , zt observations, we can

obtained the first GDPC of order k, given by f̂ . Meanwhile, GDPC of order 0 represents the
first regular principal component

When Cj (αj) = (cj,t,q (αj))1≤t≤T+k,1≤q≤k+1 the (T + k) × (k + 1) matrix can be shown as

cj,t,q (αj) =

{

(zj,t−q+1 − αj) , 1 ∨ (t − T + 1) ≤ q ≤ (k + 1) ∧ t
0 , otherwise

(9)

such as a∨b = max (a, b) and a∧b = min (a, b) . Then, Dj (βj) = (dt,j,q(βj)) is (T + k) × (T +k)
becomes

dt,j,q (βj) =
t∧T
∑

v=(t−k)∨1

βj,q−v+1βj,t−v+1

if (t−k)∨1 ≤ q ≤ (t+k) ∧ (T+k) and 0 otherwise. Let

D (β) =
∑m

j=1
Dj (βj) (10)

Through ft differentiation in Equation (8), therefore

f= D (β)−1
m
∑

j=1

Cj (α) (βj) . (11)

As well as using least-square estimators, βj and αj coefficients with 1 ≤j≤m are as follows

(

βj

αj

)

=
(

F (f)
′

F (f)
)−1

F (f)
′

z(j) (12)

where z(j)=(zj,1, . . . ,zj, T ) ′ and F(f) is the T×(k+2) matrix with tth row (ft,ft+1, . . . , ft+k, 1).
Finally Equation (11) and Equation (12) define the first GDPC.

2.5 Information Criterion Method

The deviance must be defined prior to describing the methods for model comparison [8]. This
deviance is also known as log-likelihood (ratio) statistics [9]. Therefore, the two most widely
used log-likelihood model are Akaike Information Criteria (AIC) [10] and Bayesian Information
Criteria (BIC) [11]. In order to choose model formulation that have the smallest value, it can
be determine using information criteria methods. AIC and BIC equations are following the
standard; hence, they are not specific to OPC, BDPC and GDPC. Therefore, the equations
that were used to calculate AIC and BIC in all three principal component techniques as in
Equation (13):
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AIC = −2 log L + 2w
BIC = −2 log L + log (n) · w

(13)

where w is the number of estimated parameters in the model, L, is the maximum values of the
likelihood function for the model and n is the number of observations.

3 Result Analysis

The construction stock market price consists of nine listed companies in this sector, ob-
tained from seven countries. This stock market prices selected were 1800.HK (Hong Kong),
3336.KL and 4677.KL (Malaysia), FBU.NZ (New Zealand), 600170.SS and 600266.SS (Shang-
hai), IMPN.SW (Switzerland), CCP.BK (Thailand) and STRL (U.S.). It is worth noting that
the observations were weekly-based of a two-year period from 1st January 2016 until 1st January
2018. The construction stock market price weekly plot showed in Figure 1. The stationarity
result test is in Table 1. Table 2 shows the AIC and BIC for the construction stock market
price. Meanwhile, the MSE and percentage of explained variance of both transformed and
non-transformed technique is shown in Table 3.

Figure 1: Nine Weekly Construction Stock Market Prices between 1st January 2016 to 1st

January 2018

The context of this study is focused only on non-stationarity. Therefore, the non-stationarity
pattern was verified using the ADF test. It was found out that the test statistics values were
higher than the 95% critical value in all nine constructions stock market price as shown in
Table 1. It is worth noting that the 95% critical value is at -1.95. This also shows that all of
the nine constructions stock market price fails to reject the H0 indicating the presence of unit
root. Therefore, the series can be concluded as non-stationary.
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Table 1: Stationarity Result using ADF Test

Construction stock market price Test statistics

1800.HK 0.4247

3336.KL -0.6060

4677.KL -0.5232

FBU.NZ 0.0819

600170.SS -0.3594

600266.SS 0.0487

IMPN.SW 0.6438

CCP.BK -1.0534

STRL 1.4018

Table 2: AIC and BIC at Original Stock Market Price and Lags k = 3 Model.

Construction stock market price AIC BIC

1800.HK 971.28 981.74

3336.KL 969.62 980.08

4677.KL 975.07 985.53

FBU.NZ 970.56 981.02

600170.SS 974.64 985.10

600266.SS 974.55 985.02

IMPN.SW 970.96 981.42

CCP.BK 975.75 986.21

STRL 974.78 985.24

Next, the models were tested through AIC and BIC model assessment, whereby those that
have smaller deviance indicates a better fit to the data. It should be noted that a number of
models were tested using different lags. Also, comparison of the models was made using both
AIC and BIC. Hence, the models that were chosen throughout this consist of the original value
and at lags k = 3 as shown in Table 2. From Table 2, it can be observed that AIC had smaller
deviance values in its nine constructions stock market price as compared to BIC.

Meanwhile, as can be observed in Table 3, the MSE for the non-transformed GDPC had
the lowest values in its eight constructions stock market price. This is followed by transformed
BDPC, where eight of its stock market prices were lower than OPC. Nevertheless, transformed
OPC had the highest MSE among the three methods. Hence, this shows that when non-
stationarity is presence, the non-transformed technique of GDPC has better performance model
as compared to the transformed techniques.

As can be observed in Table 3, eight constructions stock market price in the non-transformed
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Table 3: Mean Squared Error and The Percentage of Explained Variance of Transformed and
Non-transformed Method

Construction stock
market price

MSE Percentage of
Explained Variance

OPC BDPC GDPC OPC BDPC GDPC

1800.HK 13.042 6.240 0.082 57.1 83.3 93.4

3336.KL 1.135 1.714 0.002 59.9 87.2 89.6

4677.KL 10.962 1.378 0.001 57.5 67.7 94.7

FBU.NZ 11.387 4.091 0.066 50.9 82.4 95.8

600170.SS 7.180 3.556 0.011 59.3 94.7 85.4

600266.SS 11.420 1.786 0.211 50.3 76.6 88.9

IMPN.SW 6.520 2.573 2.914 52.1 79.1 93.9

CCP.BK 20.846 5.835 0.001 53.1 77.7 94.9

STRL 42.643 26.556 0.329 52.3 92.4 97.7

GDPC had the highest percentage of explained variance as compared to the other two meth-
ods. It should be highlight here that this values shown here is only for the first component,
as for demonstration [6]. In the transformed technique of BDPC, only 600170.SS and STRL
construction stock market price showed higher percentage of explained variance of 90% above,
whereas the remaining are less than 90%. As for the transformed OPC, the average of explained
variance percentage is about 50% only. This can be seen in the comparison of FBU.NZ in trans-
formed OPC which had almost a gap of 50% of percentage of explained variance as compared
to in the non-transformed GDPC. Hence, from Table 3, the comparison between transformed
and non-transformed technique had showed that much more information can be gain from the
non-transformed technique.

4 Conclusion

In conclusion, the non-transformed technique of GDPC has the capability of tackling the non-
stationarity which are present in the stock market price. This is achieved through direct ap-
plication of the series using principal component technique. Furthermore, the non-transformed
technique of GDPC had shown that it had better performance than of the transformed tech-
niques of OPC and BDPC. Furthermore, the ability of giving higher percentage of explained
variance in the first component of the construction stock market price showed that much infor-
mation can be gain only in the first component. As for the construction sector benefit, it is hope
that the findings will provide a baseline for modelling and prediction of the stock market price
in their respected field. Thus, the subject of future study may be extended to other sectors in
the stock market price.
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