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Abstract In DNA splicing system, the potential effect of sets of restriction enzymes and

a ligase that allow DNA molecules to be cleaved and re-associated to produce further
molecules is modelled mathematically. This modelling is done in the framework of formal

language theory, in which the nitrogen bases, nucleotides and restriction sites are modelled
as alphabets, strings and rules respectively. The molecules resulting from a splicing system
is depicted as the splicing language. In this research, the splicing language resulting from

DNA splicing systems with one palindromic restriction enzyme for one and two (non-
overlapping) cutting sites are generalised as regular expressions.
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tem.
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1 Introduction

DNA is the molecule that plays the main role in DNA computing. The basic idea in DNA
computing is the information-processing capabilities of organic molecules in computers which
can be replaced with digital switching primitives [1]. Several models have been carried out using
present technology where some components and models are built based on DNA computing.
The mathematical model in splicing system is one of the models in DNA computing that
generates languages by using formal language theory.

Formal language theory is a branch of theoretical computer science that is devoted to the
study of sets of finite strings (called languages) of symbols chosen from a prescribed finite
set (called an alphabet) [2]. The fundamental knowledge of formal language theory and some
related molecular biological terms related to splicing system are presented in [3]. The language
resulting from a splicing system by using formal language theory is called a splicing language.
Research on DNA splicing systems with different types of restriction enzymes has been discussed
in [4], where the restriction enzymes cut DNA molecules in specific ways based on the cleavage
pattern of the enzymes.
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2 Literature Review

Deoxyribonucleic Acid (DNA) is a polymer strung together from monomers [1]. DNA has
four bases in their nucleotide chain which are two purines, adenine (A) and guanine (G); and
two pyrimidines, cytosine (C) and thymine (T). The set of double stranded DNA (dsDNA)
is represented by four-symbol alphabets a, g, c, and t where each alphabet stands for [A/T],
[G/C], [C/G] and [T/A], respectively.

A new manner of relating formal language theory to the study of informational macro-
molecules is initiated as splicing system by Head [2] in 1987. In a splicing system, a language is
associated with each pair of sets where the first set consists of double stranded DNA molecules
and the second set consists of the recombination behaviours allowed by specified classes of
enzymatic activities [2].As years passed by, several models in splicing system were developed,
namely Paun, Pixton, Goode Pixton and Yusof-Goode splicing system. Paun Splicing System,
known as SPA, was introduced by Paun in 1996 [5]. Paun’s formalism for splicing systems
patterns are pairs which define a binary relation, and that strings are allowed to tie together
if they contain patterns which are in this relation [5]. In the same year, Dennis and Pixton [6]
introduced Pixton Splicing system, SPI . This splicing system is not really a formal description
of the biological cut and paste phenomenon since it is presented as a substitute operation of the
splicing operation [7]. Besides that, Laun also developed a new model of splicing system known
as Goode-Pixton splicing system [8]. Then, a new extension of splicing system also has been
developed from Head and Goode-Pixton splicing system models as a simple splicing system in
[8]. Next, a new extension of splicing system known as Yusof-Goode (Y -G) splicing system is
presented by Yusof [9] in 2013. It was invented to present the transparent behaviours of the
DNA biological process besides the characteristics of the restriction enzyme itself. Furthermore,
simple, semi-simple and semi-null splicing systems are introduced in [10].

A splicing language is a language resulting from a splicing system. There are many types
of splicing languages such as persistent, strictly locally testable and uniform splicing language
which have been discussed in [2, 11, 12]. Besides, simple spicing languages are defined by Laun
[8] in 1999. A series of language-theoretic properties of simple splicing languages generated by
such systems with finite sets of axioms are investigated in [13, 14].

In wet lab, enzymes are biological catalysts that increase the rate of chemical reactions
taking place within living cells without themselves suffering any overall change[15]. In splicing
system, DNA molecules mix with a ligase and restriction enzymes which are called as endo-
deoxyribonucleases that allow the molecules to be cut and recombined [16].

In a splicing system, a restriction enzyme cuts DNA molecules based on the cleavage pattern
of the enzyme [1]. Every restriction enzyme consists of a triple known as the cleavage pattern of
the enzyme [1]. The cleavage patterns of restriction enzymes can be shown through three ways;
5′ overhang, 3′ overhang or blunt ends. The recombinations of DNA molecules are allowed in
splicing systems by the cutting sites of enzymes. The symbols ↓ and ↑ refer to the cutting sites
by the restriction enzymes. The cutting sites and cleavage patterns of enzymes AgeI, KpnI and
DpnI for 5′ overhang, 3′ overhang and blunt ends respectively are illustrated in the following:

AgeI (a, ccgg, t):
5
′

−A
3
′

−T
↓ CCGG

GGCC ↑ ,
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KpnI (g, gtac, c):
5
′

−G
3
′

−C ↑
GTAC
CATG

↓ C − 3′

G − 5′ ,
and

DpnI (ga, 1, tc):
5
′

−GA
3
′

−CT
↓
↑

TC − 3′

AG − 5′ .

This research is done on DNA splicing system with 5’ overhang palindromic restriction
enzymes. Palindromic enzyme is one of the enzymes types in dsDNA where reading the single
strand 5’ to 3’ forward matches with 3’ to 5’ from backward [1]. For instance, the enzyme AgeI
is palindromic since the single strand 5’-ACCGGT-3’ is exactly the same with the single strand
3’-TGGCCA-5’ from backward. The name and sequence for every restriction enzyme that have
been used in this research are taken from [17].

3 Methodology

Splicing languages can be denoted using the notation of regular expressions in formal language
theory. Formal language theory is a theory on the general characteristics of programming
languages in computer science [18]. A formal language consists of a set of finite strings of
symbols anda set of alphabets in which the combinations of the symbols are called languages
[1]. A set of strings of concatenating zero or more symbols from an alphabet A is denoted as A∗.
The empty string is also contained in the set where the empty string is indicated as λ or 1; while
a set of strings of symbols without the empty string is known as A+. The notation of regular
expressions consists of a combination of strings of symbols from the alphabet, parentheses,
and the operators +, . and * [18]. The symbols +, . and * denote union, concatenation and
star-closure respectively.

Next, the definitions of splicing system and splicing language are stated.

Definition 1 [1] (Splicing System and Splicing Language)
A splicing system S= (A, I, B, C) consists of a finite alphabet A, a finite set I of initial strings
in A∗, and finite sets B and C of triples (c,x, d) with c, x and d in A∗. Each such triple in
B or C is called a pattern. For each such triple the string cxd is called a site and the string
x is called a crossing. Patterns in B are called left patterns and patterns in C are called right
patterns. The language L=L(S) generated by S consists of the strings in I and all strings that
can be obtained by adjoining to ucxfq and pexdv whenever ucxdv and pexfq are in L and (c, x,
d) and (e, x, f) are patterns of the same hand. A language, L is a splicing language if there
exists a splicing system S for which L=L(S).

Here, a splicing system involving certain DNA molecules and restriction enzyme is discussed.
A restriction enzyme cuts DNA molecule in a very specific way and the DNA molecules will paste
together with the existence of a ligase [1]. DNA molecules are taken from the sub sequences
or pattern in protein or nucleotide sequences which are also called as initial string in splicing
systems [19]. An example of a splicing system involving the restriction enzyme EcoRI is given
in Example 1.

Example 1 Suppose that S = (A, I , B, C) is a splicing system in which

A =

{

A, C, G, T
T G C A

}
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is the set of DNA alphabets,

I =

{

GAATTCTCTGTAAT
CTTAAGAGACATTA

}

is the set consisting of an initial string of molecules,

B =

{

G, AATT, C
C TTAA A

}

is the set of cleavage pattern for the enzyme EcoRI and set C is the null (Ø) set.
The initial string gaattctctgtaat with the cutting sites of the enzyme EcoRI is shown in the

following:
5′−G ↓ AATT CTCTGTAAT−3′

3′−C TTAA ↑ GAGACATTA−5′,

or written 180 degree wise,

5′−ATTACAGAG ↓ AATT C−3′

3′−TAATGTCTC TTAA ↑ G−5′.

There should be four different molecules since one form is rotated through 180 degrees.
When the enzyme EcoRI is added to the initial string, the result is as the following:

5′ − G − 3′

3′ − CTTAA − 5′

combines with
5
′

−AATTC−3′

3
′

−G−5′

which gives the following molecule

5
′

−GAATTC − 3′

3
′

−CTTAAG− 5′ .

Furthermore,
5′ − AATTCTCTGTAAT−3′

3′ −GAGACATTA−5′

combines with
5′−ATTACAGAG−3

′

3′−TAATGTCTCTTAA − 5′

gives the following molecule

5
′

−ATTACAGAGAATTCTCTGTAAT− 3′

3
′

−TAATGTCTCTTAAGAGACATTA− 5′ .

Thus, the new molecules are shown in the following:

5
′

−GAATTC − 3′

3
′

−CTTAAG − 5′
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and
5
′

−ATTACAGAGAATTCTCTGTAAT− 3′

3
′

−TAATGTCTCTTAAGAGACATTA− 5′ .

Therefore, the splicing languages resulting from this splicing system are:

5
′

−GAATTCTCTGTAAT − 3′

3
′

−CTTAAGAGACATTA− 5′ ,

5
′

−ATTACAGAGAATTC− 3′

3
′

−TAATGTCTCTTAAG − 5′ ,

5
′

−GAATTC − 3′

3
′

−CTTAAG − 5′

and
5
′

−ATTACAGAGAATTCTCTGTAAT− 3′

3
′

−TAATGTCTCTTAAGAGACATTA− 5′ .

4 Results and Discussion

The concept of palindromic restriction enzymes in DNA splicing systems has beenused in this
research. Two theorems to generalise DNA splicing systems with one palindromic restriction
enzyme for one and two (non-overlapping) cutting sites are presented respectively.

The generalisation of resulting splicing languages in DNA splicing system with one palin-
dromic restriction enzyme and one cutting site is presented in Theorem 1.

Theorem 1 Given S = (A, I, B, C) is a splicing system in which

A =

{

A, C, G, T

T G C A

}

is the set of DNA alphabets,

I =

{

N1N1 . . . N1X1Y X2N2N2 . . . N2

N
′

1N
′

1 . . .N
′

1X
′

1Y
′

X
′

2N
′

2N
′

2 . . .N
′

2

}

is the set consisting of an initial string with one cutting site of a palindromic restriction enzyme

X1Y X2

X
′

1Y
′

X
′

2

.

Set

B =

{

X1

X
′

1

, Y,
Y

′

X2

X
′

2

}

is the set of cleavage pattern for restriction enzyme and set C is the null (Ø) set, the resulting
splicing language is

(

N1N1 . . . N1

N
′

1N
′

1 . . .N
′

1

+
N

′

2N
′

2. . .N
′

2

N2N2. . .N 2

)

X1Y X2

X
′

1Y
′

X
′

2

(

N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

+
N

′

1N
′

1 . . .N
′

1

N1N1 . . .N1

)
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where
Y
Y

′ is the crossing site, N1, N2, X1, Y and X2 are complementaries for N
′

1, N
′

2, X
′

1, Y
′

and X
′

2 respectively,
X1

X
′

1

,
Y
Y

′ ,
X2

X
′

2

,
N1

N
′

1

and
N2

N
′

2

denote arbitrary DNA alphabet(s), and

X1Y X2

X
′

1Y
′

X
′

2

/∈

{

N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

,
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

}

.

Proof Suppose the restriction enzyme is palindromic, so the base sequence of enzyme reads
the same backwards and forwards:

X1Y X2

X
′

1Y
′

X
′

2

=
X

′

2Y
′

X
′

1

X2Y X1
.

Then
X1

X
′

1

=
X

′

2

X2
,

Y
Y

′ =
Y

′

Y
and

X2

X
′

2

=
X

′

1

X1
.

The initial string
N1N1 . . . N1X1Y X2N2N2 . . .N2

N
′

1N
′

1 . . . N
′

1X
′

1Y
′

X
′

2N
′

2N
′

2 . . . N
′

2

with the cutting site of the enzyme

X1Y X2

X
′

1Y
′

X
′

2

is shown in the following:

N1N1 . . .N1X1

N
′

1N
′

1 . . .N
′

1X
′

1

↓ Y
Y

′

↑
X2N2N2 . . .N2

X
′

2N
′

2N
′

2 . . .N
′

2 .
(1)

Hence, the initial string is cut into two parts:

N1N1 . . .N1X1

N
′

1N
′

1 . . .N
′

1X
′

1 Y
′ (2)

and
Y X2N2N2 . . .N2

X
′

2N
′

2N
′

2 . . .N
′

2 .
(3)

Besides that, the initial string
N1N1 . . . N1X1Y X2N2N2 . . .N2

N
′

1N
′

1 . . . N
′

1X
′

1Y
′

X
′

2N
′

2N
′

2 . . . N
′

2

can read 180 degree wise as

N
′

2N
′

2 . . .N
′

2X
′

2Y
′

X
′

1N
′

1N
′

1. . .N
′

1

N2N2 . . .N2X2Y X1N1N1. . . N1 .
(4)

Since
X1

X
′

1

=
X

′

2

X2
,

Y
Y

′ =
Y

′

Y
and

X2

X
′

2

=
X

′

1

X1
, then (4) becomes

N
′

2N
′

2 . . . N
′

2X1

N2N2. . . N2X
′

1

↓ Y
Y

′

↑
X2N

′

1N
′

1. . . N
′

1

X
′

2N1N1 . . . N1
(5)

with the cutting site of the enzyme
X1Y X2

X
′

1Y
′

X
′

2

. The results of cutting (5) into two parts are

N
′

2N
′

2. . .N
′

2X1

N2N2. . .N 2X
′

1 Y
′ (6)
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and
Y X2N

′

1N
′

1 . . . N
′

1

X
′

2N1N1 . . . N1 .
(7)

When the enzyme
X1Y X2

X
′

1Y
′

X
′

2

is added to the initial string, (2) combines with (7) gives the

following string
N1N1 . . . N1X1Y X2N

′

1N
′

1. . .N
′

1

N
′

1N
′

1 . . . N
′

1X
′

1Y
′

X
′

2N1N1 . . . N1
.

(8)

Furthermore, (3) joins with (6) gives the following string

N
′

2N
′

2. . .N
′

2X1Y X2N2N2 . . . N2

N2N2. . .N 2X
′

1Y
′

X
′

2N
′

2N
′

2 . . . N
′

2 .
(9)

From (1), (5), (8) and (9), the resulting splicing language is
(

N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

+
N

′

2N
′

2 . . .N
′

2

N2N2. . .N 2

)

X1Y X2

X
′

1Y
′

X
′

2

(

N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

+
N

′

1N
′

1. . .N
′

1

N1N1. . .N 1

)

.
2

Theorem 2 is presented for generalisation of resulting splicing languages in DNA splicing
system with one palindromic restriction enzyme and two non-overlapping cutting sites.

Theorem 2 Given S = (A, I, B, C) is a splicing system in which

A =

{

A, C, G, T

T G C A

}

is the set of DNA alphabets,

I =

{

N1N1 . . .N1X1 Y X2M M . . .MX1 Y X2 N 2N2 . . .N2

N
′

1N
′

1 . . . N
′

1X
′

1Y
′

X
′

2M
′

M
′

. . . M
′

X
′

1Y
′

X
′

2N
′

2N
′

2 . . . N
′

2

}

is the set consisting of an initial string with two non-overlapping cutting sites of a palindromic

restriction enzyme
X1Y X2

X
′

1Y
′

X
′

2

, set B =

{

X1

X
′

1

, Y,
Y

′

X2

X
′

2

}

is the set of cleavage pattern for

restriction enzyme and set C is the null (Ø) set, the resulting string is

(

N1N1 . . . N1

N
′

1N
′

1 . . . N
′

1

+
N

′

2N
′

2. . . N
′

2

N2N2 . . .N2

)

X1Y X2

X
′

1Y
′

X
′

2

((

M M . . . M
M

′

M
′

. . .M
′ +

M
′

M
′

. . .M
′

M M . . .M

)

X1Y X2

X
′

1Y
′

X
′

2

)n−1

(

N2N2 . . .N2

N
′

2N
′

2 . . .N
′

2

+
N

′

1N
′

1 . . . N
′

1

N1N1. . .N1

)

where
Y
Y

′ is the crossing site, N1, M , N2, X1, Y and X2 are complementaries for N
′

1, M
′

,

N
′

2, X
′

1, Y
′

and X
′

2 respectively,
X1

X
′

1

,
Y
Y

′ ,
X2

X
′

2

,
N1

N
′

1

,
M
M

′ and
N2

N
′

2

denote arbitrary DNA

alphabet(s), and
X1Y X2

X
′

1Y
′

X
′

2

/∈

{

N1N1 . . . N1

N
′

1N
′

1 . . .N
′

1

,
M M . . . M
M

′

M
′

. . . M
′ ,

N2N2 . . .N2

N
′

2N
′

2 . . .N
′

2

}

.



Wan Heng Fong and Nurul Izzaty Ismail / MATEMATIKA 34:1 (2018) 59–71 66

Proof Suppose the restriction enzyme is palindromic, so the base sequence of enzyme reads
the same backwards and forwards:

X1Y X2

X
′

1Y
′

X
′

2

=
X

′

2Y
′

X
′

1

X2Y X1 .

Then
X1

X
′

1

=
X

′

2

X2
,

Y
Y

′ =
Y

′

Y
and

X2

X
′

2

=
X

′

1

X1
.

The initial string,
N1N1 . . . N1X1 Y X2M M . . . MX1 Y X2 N2N2 . . .N2

N
′

1N
′

1 . . .N
′

1X
′

1Y
′

X
′

2M
′

M
′

. . . M
′

X
′

1Y
′

X
′

2N
′

2N
′

2 . . .N
′

2

with the cutting

site of the enzyme
X1Y X2

X
′

1Y
′

X
′

2

is shown in the following:

N1N1 . . . N1X1

N
′

1N
′

1 . . . N
′

1X
′

1

↓ Y
Y

′

↑

X2 M M . . .M X1

X
′

2M
′

M
′

. . .M
′

X
′

1

Y
Y

′

X2N2N2 . . .N2

X
′

2N
′

2N
′

2 . . . N
′

2

(10)

for the first cutting site and

N1N1 . . . N1X1

N
′

1N
′

1 . . . N
′

1X
′

1

Y
Y

′

X2 M M . . .M X1

X
′

2M
′

M
′

. . . M
′

X
′

1

↓ Y
Y

′

↓
X2N2N2 . . .N2

X
′

2N
′

2N
′

2 . . . N
′

2

(11)

for the second cutting site. The initial string can be written 180 degree wise as

N
′

2N
′

2. . . N
′

2X
′

2Y
′

X
′

1M
′

M
′

. . .M
′

X
′

2Y
′

X
′

1N
′

1N
′

1. . .N
′

1

N2N2. . .N2X2 Y X1M M . . .MX2 Y X1N1N1 . . . N1 .
(12)

Since
X1

X
′

1

=
X

′

2

X2
,

Y
Y

′ =
Y

′

Y
and

X2

X
′

2

=
X

′

1

X1
, then the first and second cutting sites of

(12) are shown respectively in the following:

N
′

2N
′

2. . .N
′

2X1

N2N2. . .N 2X
′

1

↓ Y
Y

′

↑
X2M

′

M
′

. . . M
′

X1

X
′

2M M . . . M X
′

1

Y
Y

′

X2N
′

1N
′

1. . . N
′

1

X
′

2N1N1. . . N1
(13)

and
N

′

2N
′

2. . . N
′

2X1

N2N2. . . N2X
′

1

Y
Y

′

X2M
′

M
′

. . . M
′

X1

X
′

2M M . . .M X
′

1

↓ Y
Y

′

↑
X2N

′

1N
′

1. . . N
′

1

X
′

2N1N1. . . N1 .
(14)

When the enzyme
X1Y X2

X
′

1Y
′

X
′

2

is added to the initial string, (10) combines with (11) gives

N1N1 . . . N1X1

N
′

1N
′

1 . . . N
′

1X
′

1

↓ Y
Y

′

↑
X2N2N2 . . . N2

X
′

2N
′

2N
′

2 . . .N
′

2 .
(15)

Furthermore, (13) combines with (14) gives the new string

N
′

2N
′

2. . .N
′

2X1

N2N2. . .N2X
′

1

↓ Y
Y

′

↑
X2N

′

1N
′

1. . . N
′

1

X
′

2N1N1. . . N1 .
(16)
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The results of the combination of (10) with (13) and (14) are shown in the following:

N1N1. . .N1X1Y
′

X
′

1M
′

M
′

. . .M
′

X1↓Y X2N
′

1N
′

1. . .N
′

1

N
′

1N
′

1. . .N
′

1X
′

1Y X1MM. . .MX
′

1Y
′

↑X
′

2N1N1. . .N1
,

(17)

N
′

2N
′

2. . . N
′

2X1 Y X2M M . . .M X1 ↓ Y X2N2N2 . . . N2

N2N2. . .N2X
′

1Y
′

X
′

2M
′

M
′

. . .M
′

X
′

1 Y
′

↑ X
′

2N
′

2N
′

2 . . . N
′

2
,

(18)

N1N1 . . . N1X1Y X2N
′

1N
′

1. . .N
′

1

N
′

1N
′

1 . . . N
′

1X
′

1 Y
′

X
′

2N 1N1 . . . N1
.

(19)

The results of the combination of (11) with (13) and (14) are:

N
′

2N
′

2. . .N
′

2X1Y X2N2N2 . . . N2

N2N2. . .N 2X
′

1Y
′

X
′

2N
′

2N
′

2 . . . N
′

2 ,
(20)

N
′

2N
′

2. . . N
′

2X1

N2N2. . . N2X
′

1

↓ Y
Y

′

↑
X2M

′

M
′

. . .M
′

X1

X
′

2MM . . . MX
′

1

Y
Y

′

X2N2N2 . . .N2

X
′

2N
′

2N
′

2 . . . N
′

2 ,
(21)

N1N1 . . . N1X1

N
′

1N
′

1 . . . N
′

1X
′

1

↓ Y
Y

′

↑

X2 M M . . .M X1

X
′

2M
′

M
′

. . . M
′

X
′

1

Y
Y

′

X2N
′

1N
′

1 . . .N
′

1

X
′

2N1N1 . . .N1 .
(22)

Moreover, when (15) and (16) combine with (21) and (22) respectively, the other new strings
arise:

N1N1 . . .N1X1Y X2M
′

M
′

. . . M
′

X1Y X2N2N2 . . .N2

N
′

1N
′

1 . . . N
′

1X
′

1Y
′

X
′

2M M . . .MX
′

1Y
′

X
′

2N
′

2N
′

2 . . . N
′

2 ,

N
′

2N
′

2. . . N
′

2X1 Y X2 M M . . . M X1Y X2N
′

1N
′

1 . . . N
′

1

N2N2 . . .N2X
′

1Y
′

X
′

2M
′

M
′

. . .M
′

X
′

1Y
′

X
′

2N
′

1N1. . . N1
.

By using induction, this theorem can be proved. For n = 1, the strings are stated in (15), (16),
(19) and (20).

Next, let n = k

(

N1N1 . . . N1

N
′

1N
′

1 . . . N
′

1

+
N

′

2N
′

2. . . N
′

2

N2N2 . . .N2

)

X1Y X2

X
′

1Y
′

X
′

2

((

M M . . . M
M

′

M
′

. . . M
′ +

M
′

M
′

. . . M
′

M M . . . M

)

X1Y X2

X
′

1Y
′

X
′

2

)k−1

(

N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

+
N

′

1N
′

1 . . .N
′

1

N1N1. . . N1

)

, kεZ+ (23)

The following strings are among the strings in (23):

N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

X1 ↓ Y X2

X
′

1 Y
′

↑ X
′

2

(

M M . . . M
M

′

M
′

. . . M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2 ,
(24)

N1N1 . . . N1

N
′

1N
′

1 . . . N
′

1

X1 ↓ Y X2

X
′

1Y
′

↑ X
′

2

(

M M . . . M
M

′

M
′

. . .M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . .N
′

1

N1N1. . . N1 ,
(25)
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N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

X1 ↓ Y X2

X
′

1 Y
′

↑ X
′

2

(

M
′

M
′

. . . M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2 ,
(26)

N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

X1 ↓ Y X2

X
′

1 Y
′

↑ X
′

2

(

M
′

M
′

. . . M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . . N
′

1

N1N1. . .N1 ,
(27)

N
′

2N
′

2. . .N
′

2

N2N2 . . . N2

X1 ↓ Y X2

X
′

1Y
′

↑ X
′

2

(

M M . . . M
M

′

M
′

. . .M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . .N2

N
′

2N
′

2 . . .N
′

2 ,
(28)

N
′

2N
′

2. . .N
′

2

N2N2 . . . N2

X1 ↓ Y X2

X
′

1Y
′

↑ X
′

2

(

M M . . . M
M

′

M
′

. . .M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . .N
′

1

N1N1. . . N1 ,
(29)

N
′

2N
′

2. . . N
′

2

N2N2 . . .N2

X1 ↓ Y X2

X
′

1 Y
′

↑ X
′

2

(

M
′

M
′

. . . M
′

M M . . . M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2 ,
(30)

N
′

2N
′

2. . .N
′

2

N2N2 . . .N2

X1 ↓ Y X2

X
′

1Y
′

↑ X
′

2

(

M
′

M
′

. . .M
′

M M . . . M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . .N
′

1

N1N1. . . N1 .
(31)

Then, the above resulting strings combine with (11), (17), (18) and (14) when the enzyme
X1Y X2

X
′

1Y
′

X
′

2

is added. Hence, the other recombinations can be shown through four cases.

Case 1: The string (11) combines with (24) and (25) which produces new strings

N1N1 . . . N1X1

N
′

1N
′

1 . . .N
′

1X
′

1

Y
Y

′

X2 M M . . .M X1

X
′

2M
′

M
′

. . . M
′

X
′

1

Y
Y

′

X2

X
′

2

(

M M . . . M
M

′

M
′

. . . M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

(32)
and

N1N1 . . . N1X1

N
′

1N
′

1 . . .N
′

1X
′

1

Y
Y

′

X2 M M . . .M X1

X
′

2M
′

M
′

. . . M
′

X
′

1

Y
Y

′

X2

X
′

2

(

M M . . . M
M

′

M
′

. . . M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . .N
′

1

N1N1. . .N 1 .

(33)
Case 2: The string (17) combines with (26) and (27) produces new strings

N1N1 . . . N1X1

N
′

1N
′

1 . . .N
′

1X
′

1

Y
Y

′

X2M
′

M
′

. . .M
′

X1

X
′

2M M . . . M X
′

1

Y
Y

′

X2

X
′

2

(

M
′

M
′

. . .M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . .N2

N
′

2N
′

2 . . .N
′

2

(34)
and

N1N1 . . . N1X1

N
′

1N
′

1 . . .N
′

1X
′

1

Y
Y

′

X2M
′

M
′

. . .M
′

X1

X
′

2M M . . . M X
′

1

Y
Y

′

X2

X
′

2

(

M
′

M
′

. . .M
′

M M . . .M

X1Y ?−2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . . N
′

1

N1N1. . . N1 .

(35)
Case 3: The string (18) combines with (28) and (29) produces new strings

N
′

2N
′

2. . . N
′

2X1

N2N2. . . N2X
′

1

Y
Y

′

X2 M M . . .M X1

X
′

2M
′

M
′

. . . M
′

X
′

1

Y X2

Y
′

X
′

2

(

M M . . . M
M

′

M
′

. . .M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

(36)
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and

N
′

2N
′

2. . . N
′

2X1

N2N2. . . N2X
′

1

Y
Y

′

X2 M M . . .M X1

X
′

2M
′

M
′

. . . M
′

X
′

1

Y
Y

′

X2

X
′

2

(

M M . . . M
M

′

M
′

. . . M
′

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . .N
′

1

N1N1. . .N 1 .

(37)
Case 4: The string (14) combines with (30) and (31) produces new strings

N
′

2N
′

2. . . N
′

2X1

N2N2. . . N2X
′

1

Y
Y

′

X2M
′

M
′

. . . M
′

X1

X
′

2M M . . . M X
′

1

Y
Y

′

X2

X
′

2

(

M
′

M
′

. . .M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

(38)
and

N
′

2N
′

2. . . N
′

2X1

N2N2. . . N2X
′

1

Y
Y

′

X2M
′

M
′

. . . M
′

X1

X
′

2M M . . . M X
′

1

Y
Y

′

X2

X
′

2

(

M
′

M
′

. . .M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)k−1
N

′

1N
′

1 . . . N
′

1

N1N1. . . N1 .

(39)
By simplifying strings (32), (33), (34), (35), (36), (37), (38) and (39), the resulting strings are:

N1N1 . . . N1

N
′

1N
′

1 . . . N
′

1

X1Y X2

X
′

1Y
′

X
′

2

(

M M . . . M
M

′

M
′

. . . M
′

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N2N2 . . .N2

N
′

2N
′

2 . . .N
′

2 ,

N1N1 . . . N1

N
′

1N
′

1 . . . N
′

1

X1Y X2

X
′

1Y
′

X
′

2

(

M M . . . M
M

′

M
′

. . . M
′

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N

′

1N
′

1 . . .N
′

1

N1N1. . . N1 ,

N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

X1Y X2

X
′

1Y
′

X
′

2

(

M
′

M
′

. . .M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N2N2 . . .N2

N
′

2N
′

2 . . .N
′

2 ,

N1N1 . . .N1

N
′

1N
′

1 . . .N
′

1

X1Y X2

X
′

1Y
′

X
′

2

(

M
′

M
′

. . .M
′

M M . . .M

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N

′

1N
′

1 . . .N
′

1

N1N1. . . N1 ,

N
′

2N
′

2. . .N
′

2

N2N2. . .N2

X1Y X2

X
′

1Y
′

X
′

2

(

M M . . . M
M

′

M
′

. . .M
′

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2 ,

N
′

2N
′

2. . .N
′

2

N2N2. . .N2

X1Y X2

X
′

1Y
′

X
′

2

(

M M . . . M
M

′

M
′

. . .M
′

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N

′

1N
′

1 . . . N
′

1

N1N1. . .N1 ,

N
′

2N
′

2. . .N
′

2

N2N2. . .N 2

X1Y X2

X
′

1Y
′

X
′

2

(

M
′

M
′

. . . M
′

M M . . . M

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2 ,

N
′

2N
′

2. . .N
′

2

N2N2. . .N 2

X1Y X2

X
′

1Y
′

X
′

2

(

M
′

M
′

. . . M
′

M M . . . M

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1
N

′

1N
′

1 . . . N
′

1

N1N1. . . N1 .

Therefore, the resulting splicing language can be summarised where n = k + 1:
(

N1N1 . . . N1

N
′

1N
′

1 . . . N
′

1

+
N

′

2N
′

2. . . N
′

2

N2N2 . . .N2

)

X1Y X2

X
′

1Y
′

X
′

2
((

M M . . . M
M

′

M
′

. . . M
′ +

M
′

M
′

. . . M
′

M M . . . M

)

X1Y X2

X
′

1Y
′

X
′

2

)(k+1)−1

(

N2N2 . . . N2

N
′

2N
′

2 . . . N
′

2

+
N

′

1N
′

1 . . . N
′

1

N1N1. . . N1

)

, kεZ+.

Hence, Theorem 2 is proved. 2
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5 Conclusion

In this research, generalisations of DNA splicing systems with one palindromic restriction en-
zyme for one and two (non-overlapping) cutting sites are presented in Theorem 1 and Theo-
rem 2 respectively. These theorems are proved by using direct method and induction method
respectively. The generalisations hence display the resulting languages of splicing systems as
regular expressions. In other words, splicing languages from DNA splicing system with one
palindromic restriction enzyme for one and two (non-overlapping) cutting sites can be obtained
without having to manually compute them when different initial strings and restriction enzymes
are used.
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