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Abstract Free convection flow in a boundary layer region is a motion that results from

the interaction of gravity with density differences within a fluid. These differences occur
due to temperature or concentration gradients or due to their composition. Studies per-

taining free convection flows of incompressible viscous fluids have received much attention
in recent years both theoretically (exact or approximate solutions) and experimentally.
The situation where the heat be transported to the convective fluid via a bounding sur-

face having finite heat capacity is known as Newtonian heating (or conjugate convective
flows). In this paper, the unsteady free convection flow of an incompressible viscous

fluid between two parallel plates with Newtonian heating is studied. Appropriate non-
dimensional variables are used to reduce the dimensional governing equations along with

imposed initial and boundary conditions into dimensionless forms. The exact solutions
for velocity and temperature are obtained using the Laplace transform technique. The

corresponding expressions for skin friction and Nusselt number are also calculated. The
graphical results are displayed to illustrate the influence of various embedded parameters

such as Newtonian heating parameter and Grashof number. The results show that the
effect of Newtonian heating parameter increases the Nusselt number but reduces the skin
friction.

Keywords Free convection; vertical parallel plate; Newtonian heating; Laplace trans-
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1 Introduction

The general area of natural or free convection in vertical parallel plate channels for a single
phase has received a great deal of attention in previous years due to the fact that many practical
applications involve natural convection heat transfer [1]. There has been a great interest and
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research activity in free convection in vertical parallel plate. Generally, the problems of free
convection flows in parallel plate are usually modeled under the assumptions of constant surface
temperature, ramped wall temperature, or constant surface heat flux [2–7]. Viscous dissipation
effects on parallel plates with constant heat flux boundary conditions was investigated by Tso [8]
while Paul et al. [6] investigate transient free convective flow in a vertical channel with constant
temperature and constant heat flux on the walls. Kundu et al. [9] the effects the viscous
dissipation between two asymmetrically heated infinitely long parallel plates while effects of
wetted walls on laminar natural convection between vertical parallel plates with asymmetric
heating was investigate by Tsay [10].

However, in many practical situations where the heat transfer from the surface is taken to
be proportional to the local surface temperature, the above assumptions fail to work. Such
types of flows are termed as conjugate convective flows, and the proportionally condition of the
heat transfer to the local surface temperature is termed as Newtonian heating [11]. Lesnic et

al. [11] investigated free convection boundary-layer flow above a nearly horizontal surface in a
porous medium with Newtonian heating while Shehzad et al. [12] investigate three-dimensional
flow of Jeffrey fluid with Newtonian heating. There are many researchers consider Newtonian
heating in their research such as [13–18] but not many considered Newtonian heating in between
two parallel plates. Akbar et al. [19] were discussing effect of Newtonian heating for mixed
convective magnetohydrodynamics peristaltic flow of jeffrey fluid while Hamza [20] investigate
the influence of Navier Slip and Newtonian heating in transient flow of an exothermic fluid
in vertical channel. The main objective of the present paper is to investigate the influence of
Newtonian heating in free convection flow in vertical parallel plate.

2 Mathematical Analysis

In the present study, an unsteady flow of a viscous incompressible electrical conducting fluid
between two vertical plates with Newtonian heating is considered. The x′-axis is taken along
one of the plates in the vertically upward direction and the y′-axis is taken normal to the plates.
Initial, at time t′ ≤ 0, the two plates and the fluid are assumed to be the same temperature
T ′

h. At time t′ > 0, the temperature of the plate at y′ = 0 are raised to T ′

w and causing the
flow convection currents. Then the flow can be shown to be governed by the usual Boussinesq’s
approximations as presented below and Figure 1 shows the flow configuration and coordinates
systems of the flow.

∂u′

∂t′
= ν

∂2u′

∂y′2
+ gβ(T ′ − T ′

h) (1)

ρCp

∂T ′

∂t′
= k

∂2T ′

∂y′2
(2)

The initial and boundary conditions of the problem are

t′ ≤ 0 : u′ = 0, T ′ = T ′

h for 0 ≤ y′ ≤ h

t′ > 0 : u′ = U0,
∂T ′

∂y′
= −hs

k
T ′, at y′ = 0

u′ = 0, T ′ = T ′

h, at y′ = h (3)
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Figure 1: Flow configuration

Here u′ is the velocity of the fluid, g is the acceleration due to gravity, β is volumetric
coefficients of thermal expansion, t′ is time, h is the distance between two vertical plates, T ′ is
the temperature of the fluid, T ′

h is the temperature of the plate at y′ = h, ν is the kinematic
viscosity, k is the thermal conductivity of fluid, T ′

w temperature of the plate at y′ = 0 and hs

is the heat transfer coefficient. The non-dimensional quantities are now introduced as

y =
y′U0

ν
, t =

t′U2

0

ν
, u =

u′

U0

,

θ =
T ′ − T ′

h

T ′

w − T ′

h

, µ = ρν , H =
U0h

ν
, (4)

where u is the non-dimensional velocity, y is non-dimensional coordinates axis normal to the
plates, t is the non-dimensional time, θ is non-dimensional temperature, µ is the coefficient of
viscosity and H is the non-dimensional distance between the plates. Equation (1)-(3) with (4)
will reduce the equations as

∂u

∂t
=

∂2u

∂y2
+ Grθ (5)

Pr
∂θ

∂t
=

∂2θ

∂y2
(6)

The initial and boundary conditions are

t ≤ 0 : u = 0 , θ = 0, for 0 ≤ y ≤ H,

t > 0 : u = 1 ,
∂θ

∂t
= −γ(θ + 1), at y = 0

u = 0 , θ = 0, at y = H, (7)
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where Gr =
νgβ(T ′

w − T ′

h)

U3

0

is thermal Grashof number, Pr =
µCp

k
is Prandtl number and

γ =
hsν

U0k
is the Newtonian heating parameter. The solutions of velocity and temperature after

solving equations (5) and (6) with the initial and boundary conditions (7) by using Laplace
transform technique are obtained as

u(y, t) =
∞

∑

n=0

[f1(a, t)− f1(b, t)] + (8)

a2

a1

∞
∑

n=0

n
∑

m=0

(−1)m [f3(c, t)− f3(d, t) − f3(g, t) + f3(h, t)]

+
a2

a1

∞
∑

n=0

(−1)n
[

f3(b
√

Pr, t)− f3(a
√

Pr, t)
]

θ(y, t) =

∞
∑

n=0

(−1)n

[

k1

[

f2(a
√

Pr, t) − f2(b
√

Pr, t)
]

(9)

+k2

[

f2(a
√

Pr, t) − f2(b
√

Pr, t)
]

]

,

where
a = 2nH + y

b = 2nH + 2H − y

c = 2mH
√

Pr + a

d = 2mH
√

Pr + b

g = 2mH
√

Pr + 2H
√

Pr + a

h = 2mH
√

Pr + 2H
√

Pr + b

k1 =
γ√
Pr

k2 =
γ2H√

Pr

a1 = Pr − 1

a2 =
Gr(γ + γ2H)√

Pr

f1(z, t) = Erfc

(

z

2
√

t

)

f2(z, t) = 2

√

t

π
e

−z
2

4t − zErfc

(

z

2
√

t

)
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f3(z, t) =
1

3
(4t + z2)

√

t

π
e

−z
2

4t −
(

zt +
z3

6

)

Erfc

(

z

2
√

t

)

Here, z is a dummy variable and f1, f2, f3 are functions of dummy variable. Using expres-
sions (8) and (9), the skin friction and the rate of heat transfer are given by,

τ =
τ ′h

µU
= −∂u

∂y

∣

∣

∣

∣

y=0

(10)

or

τ =
∞

∑

n=0

[f5(r, t) + f5(s, t)]

+(
a2

a1

)2

∞
∑

n=0

n
∑

m=0

(−1)m [f5(r1, t)− f5(r2, t)− f5(r3, t) + f5(r4, t)] (11)

+
a2

a1

∞
∑

n=0

(−1)n
[

f6(r1

√
Pr, t) − f6(r2

√
Pr, t)

]

and

Nu =
qh

k(T ′ − T ′h)

∂T ′

∂y′

∣

∣

∣

∣

y=0

= 1 +
1

θ(0, t)
, (12)

where
r1 = 2nH

r2 = 2nH + 2H

r3 = 2mH
√

Pr + r

r4 = 2mH
√

Pr + s

r5 = 2mH
√

Pr + 2H
√

Pr + r

r6 = 2mH
√

Pr + 2H
√

Pr + s

f4(z, t) =
e−

z
2

4t

√
πt
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2

3
z

√
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2
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6
)√
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z
2
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6
√
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e−

z
2
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−1

3
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√

t

]
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6
)Erfc
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f6(z, t) = −2Prz
√

t

3
√
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2
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√
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6
)
√

t

3
√
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6
√
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Prz
2
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√
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6
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[
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θ(0, t) =
∑

∞

n=0
(−1)n

[

k1

[

f2(2nH
√

Pr, t) − f2(2H(n + 1)
√

Pr, t)
]

+k2

[

f2(2nH
√

Pr, t) − f2(2H(n + 1)
√

Pr, t)

]]

3 Results and Discussion

In order to get the physical insight of the problem, the numerical values of the temperature field,
velocity field, skin friction and Nusselt number are computed for different values of the param-
eters such as Newtonian heating parameter, Grashof number, Prandtl number and time.The
effects of these parameters on velocity and temperature fields are depicted in Figures 2-10.

Figure 2: Temperature Profiles with Different Pr with γ = 0.1,H = 1,t = 0.4

Figure 3: Temperature Profiles with Different γ for Pr = 0.71,H = 1,t = 0.1
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Figures 2 and 4 present the temperature profiles which include different values of Pr number
and different values of t. It is found when the Pr number inreases, the temperature profiles will
decrease. This is because for small values of Pr number, the fluid in highly thermal conductive.
Physically, if Pr increases, the thermal diffusivity decreases and these phenomena lead to the
decreasing of energy ability that reduces the thermal boundary layer. Figure 3 shows the effect
of γ in the temperature. It is seen that increasing the γ will cause increase in temperature.

Figure 4: Temperature Profiles with Different Values of t with Pr = 7, γ = 0.1, H = 1, t = 0.1

Figure 5: Velocity Profiles with Different Pr and γ = 0.1,H = 1,t = 0.4

Figure 6: Velocity Profiles with Different γ for Pr = 0.71, Gr = 5, H = 1, t = 0.1.
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Velocity profiles graph are presented in Figures 5-7. Figure 5 shows velocity profiles with
different Pr. It is seen that increasing the value of Pr will decrease the velocity of the fluid.
Physically this is possible because fluid with higher Prandtl number have greater viscosity
which makes the fluid thick and hence move slowly. While Figure 6 shows the velocity profiles
with different γ and Figure 7 shows velocity profiles with different values of t. Increasing the γ

number and t will increase the velocity of the fluid.

Figure 7: Velocity Profiles with Different Values of t for γ = 0.1 Pr = 0.71, Gr = 5, H = 1.

In Figures 8 - 10 each of them illustrates the variation of skin friction and Nusselt number
against time, Figures 8 and 9 show skin friction against t for different Gr number.The effect of
increasing Gr number is to decrease the shearing stress on the surface. It is also noticed that
as the time passes, the skin friction rises for Gr < 0 while it falls for Gr > 0. For Figure 10,
it is observed that increasing Pr number enhances the heat transfer coefficient. The positive
values of Nusselt number show that the heat is transferred from the surface to the medium,
which results in positive heat transfer coefficient. Further, it is noticed that the increase in t
leads to a decrease in Nusselt number.

Figure 8: Skin Friction against t for Gr > 0 and γ = 2, H = 1, Pr = 0.71
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Figure 9: Skin Friction against t for Gr < 0 and γ = 2, H = 1, Pr = 0.71

Figure 10: Nusselt Number against t for γ = 0.5, H = 1

4 Conclusion

Free convection boundary layer flow between two vertical parallel plates with Newtonian heating
have been studied theoretically. The dimensionless governing linear partial differential equations
are solved analytically using Laplace transfom method. Numerical calculations have been
calculated from different parameter such as Newtonian heating parameter γ, Grashof number
Gr and Prandtl number Pr. A brief summary of the major findings are as follows:

1. Fluid velocity decreases with an increase in the Prandtl number and increases with in-
creasing the Grashof number.

2. The fluid temperature decreases with an increase of Prandtl number.

3. The velocity and temperature of the fluid are enhanced with an increase in the Newtonian
heating parameter.

4. The skin friction is decreasing with increasing the Grashof number.

5. Nusselt number increase when Prandtl number is increasing.

6. The solutions satisfied the given boundary conditions.
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