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Abstract Inventory Routing Problem (IRP) has been continuously developed and im-

proved due to pressure from global warming issue particularly related to greenhouse gases
(GHGs) emission. The burning of fossil fuel for transportations such as cars, trucks, ships,

trains, and planes primarily emits GHGs. Carbon dioxide (CO2) from burning of fossil
fuel to power transportation and industrial process is the largest contributor to global

GHGs emission. Therefore, the focus of this study is on solving a multi-period inventory
routing problem (MIRP) involving carbon emission consideration based on carbon cap
and offset policy. Hybrid genetic algorithm (HGA) based on allocation first and routing

second is used to compute a solution for the MIRP in this study. The objective of this
study is to solve the proposed MIRP model with HGA then validate the effectiveness of

the proposed HGA on data of different sizes. Upon validation, the proposed MIRP model
and HGA is applied on real-world data. The HGA is found to be able to solve small size

and large size instances effectively by providing near optimal solution in relatively short
CPU execution time.

Keywords Inventory routing problem; carbon emission; genetic algorithms

Mathematics Subject Classification 90B05, 90B06.

1 Introduction

IRP is a fundamental decision-making approach in supply chain management and has been
researched and improved upon extensively, most notably since the seminar paper published by
Bell et al. [1] where customers inventory level must be met under stochastics demand. In the
past, classical IRP often revolves around maximizing profits and minimizing costs with some
additional requirements such as travelling time or distance [2]-[3].

Over the years, IRP had been continuously developed and improved to meet various de-
mands from current issues for instance, the global warming issue particularly related to green-
house gases (GHGs) emission. GHGs contributes to global warming by trapping heat from
leaving the atmosphere and make the planet warmer. The burning of fossil fuel for transporta-
tions such as cars, trucks, ships, trains, and planes primarily emits GHGs. Over 90 percent of
the fuel used for transportation is petroleum based, which includes gasoline and diesel [4].
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Figure 1: Global GHGs Emission [5]

Globally, the key GHGs emitted by human activities are carbon dioxide (CO2), methane
(CH4), nitrous oxide (N2O) and fluorinated gases (F-gases). Figure 1 shows the contribution
of each gas to the global GHGs emission. It is obvious that CO2 from fossil fuel and industrial
process is the largest contributor to global GHGs emission at a total of 65 percent. Therefore,
it is crucial to tackle on reducing the amount of CO2 gases in the atmosphere to prevent global
warming from getting worse.

Figure 2: US CO2 Emission by Source [6]

Other than that, from Figure 2, in United States (US), transportation and electricity are
the largest share of CO2 at 34 percent. Which means that, focusing on reducing CO2 emission



Nur Arina Bazilah Aziz and Choong Jing Yee / MATEMATIKA MATEMATIKA 35:1 (2019) 39–49 41

in the transportation sector might result in great benefits to the environment. The issue of
reducing CO2 emission in transportation sector gave motivation to researchers to study on the
management of transportation in supply chain activities which leads to the improvement on
the classical IRP model by considering carbon emission in the model.

The focus of this study is to solve a multi-period inventory routing problem (MIRP) in-
volving carbon emission consideration based on carbon cap and offset policy. HGA based on
allocation first and routing second is used to compute a solution for the MIRP in this study.
The HGA is a combined algorithm of GA and double sweep algorithm (DSW) with the for-
mer is used for allocation decisions, while the latter is used for routing decisions. The supply
chain involved in this study is an inbound product collection network with one depot, a set of
geographically dispersed suppliers and one assembly plant with deterministic and time-varying
demands. The transportation cost, fuel consumption cost and inventory holding cost are fixed.
Fuel consumption is used to generate the value of carbon emissions. The expected solution
will display the best supplier allocation choice and product collection route which results in
minimal system’s total cost.

2 Inventory Routing Problem with Carbon Emission Consideration

One of the first study on IRP involving carbon emission consideration was done by Sourirajan
et al. [7]. They presented the IBM Carbon Analyzer Tool, a software solution that models and
quantifies carbon emissions and explores ways to reduce carbon emissions associated with the
support logistics for an assembly manufacturing operation through advanced analytics. The
tool has four analytical modules. One of the module related to IRP was the scenario analysis
module which explores various consolidation policies to minimize transportation, inventory, and
carbon costs, subject to inventory availability requirements.

However, study on sustainable IRP had been scarce until Mirzapour et al. [8] addressed
a multi-product multi-period Inventory Routing Problem where multiple capacitated vehicles
distribute products from multiple suppliers to a single plant to meet deterministic and time
varying demand of each product over a finite planning horizon. GHG emission level was also
incorporated into the model and the proposed model is a mixed-integer linear program and
solved by CPLEX. The GHG emission level was measured by travel distance. Sazvar et al. [9]
developed a stochastic mathematical model and proposed a new replenishment policy in a cen-
tralized supply chain for perishable products with uncertain demand. Several transportation
vehicles producing various GHG levels are considered. The best transportation vehicles and
inventory policy are determined by finding a balance between supply chain cost and environ-
mental criteria.

3 The Mathematical Formulation

3.1 Assumptions

This study focuses on the inbound product collection system consisting of an assembly plant,
a depot and N suppliers. At the beginning of the product collection process, vehicles depart
the depot and collect products from the suppliers then deliver these products to the assembly
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plant. By the end of the product collection process, vehicles must return to depot after deliv-
ering all the products collected from suppliers to the assembly plant to complete the delivery.
Assumptions made in the proposed mathematical model are as follows:

– Each supplier provides one type of product. In the first period, all the products are ready
for collection.

– The demand at the assembly plant is deterministic but varies in each period.

– Stockouts at the assembly plant is not permitted.

– Inventory holding costs are only considered in assembly plan and varies according to
products. The initial inventory level of products is zero.

– Vehicles are homogeneous and capacitated. The number of vehicles is unlimited.

– Split pick up is not allowed.

– The carbon emission regulations are imposed on each period during the time horizon.

3.2 Mathematical Model

The proposed mathematical model uses the following notations:

A = {0, 1, . . . , N + 1} A set of all nodes
S = {1, 2, . . . , N} A set of suppliers
DP = {0} Depot
AP = {N + 1} Assembly plant
H = {1, 2, . . . , T} Time horizon

dit Demand for product type i in period t (t ∈ H)
F Fixed vehicle cost per trip
C The weight capacity of each vehicle
hi Unit inventory holding cost at assembly plant for product type i

cij Distance between node i and node j

f Unit fuel price (RM
l

)
ρ0 The fuel consumption rate ( l

km
) for empty-loaded vehicle

ρ∗ The consumption rate ( l
km

) for fully-loaded fuel
ε Emissions generated per unit of fuel consumption (kgCO2

l
)

cct Carbon cap in period t

p The price (tax) per unit carbon emission bought

Decision variables

xijt xijt =

{

1, if arc(i, j) is traversed by a vehicle in period t.

0, otherwise.

ωijt The total product weight carried by a vehicle through arc (i, j) in period t

qit The product quantity picked up at supplier i in period t
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Iit The inventory level of product i at the assembly plant at the end of period t

fcijt Fuel consumption from node i to node j in period t

e+
t Amount of carbon emission credits purchased in period t

The MIRP model proposed in this study was introduced by Cheng et al. [10]. The supply
chain network is imposed with a carbon cap in each period under a carbon cap and offset
policy. This policy places a cap on the amount of carbon emission permitted for each period
and allows the purchase of extra carbon emission credits in the carbon offset market if the
carbon emission of an organization exceeds the carbon cap imposed. Carbon emission depends
on the fuel consumption according to Zhang et al. [11] and Cachon [12], therefore the carbon
emission is measure based on the fuel consumption. The computation of fuel consumption is
discussed in the following subtopic followed by the formulation of MIRP model.

Min Z =
∑

i∈S

∑

t∈H

hiIit +
∑

t∈H

∑

j∈S

Fx0jt

+ f

(

∑

t∈H

∑

i∈S∪DP

∑

j∈S∪AP

(ρ0cijxijt + βcijwijt) +
∑

t∈H

∑

j∈S

ρ0cN+1,0x0jt

)

+
∑

t∈H

pe+
t

The objective function aims to minimize the total cost of the system which include the inven-
tory holding costs, fixed transportation costs, fuel consumption costs and the cost of purchasing
the extra emission credits. From objective function above,

∑

i∈S

∑

t∈H

hiIit is the inventory holding

cost,
∑

t∈H

∑

j∈S

Fx0jt is the fixed transportation cost, f

(

∑

t∈H

∑

i∈S∪DP

∑

j∈S∪AP

(ρ0cijxijt + βcijwijt) +

∑

t∈H

∑

j∈S

ρ0cN+1,0x0jt

)

is the fuel consumption cost and
∑

t∈H

pe+
t is the carbon emission cost. The

constraints involved in this problem are as below:

subject to

Iit = Ii(t−1) + qit − dit ∀i ∈ S, ∀t ∈ H (1)
∑

j∈S∪DP

ωjit + qit =
∑

j∈S∪AP

ωijt ∀i ∈ S, i 6= j, ∀t ∈ H (2)

∑

j∈S∪DP

xjit =
∑

j∈S∪AP

xijt ∀i ∈ S, ∀t ∈ H (3)

∑

j∈S∪DP

xijt ≤ 1 ∀i ∈ S, ∀t ∈ H (4)

∑

i∈S

x0it =
∑

i∈S

xi(N+1)t ∀t ∈ H (5)

Constraint (1) is the inventory balance equation for each product at the assembly plant.
Constraint (2) is the product flow balance equation, which guarantees the flow balance at each
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ε

(

∑

i∈S∪DP

∑

j∈S∪AP

(ρ0cijxij + βcijwijt) +
∑

j∈S

ρ0cN+1,0x0jt

)

≤ cct + e+
t ∀t ∈ H (6)

ωijt ≤ Cxijt ∀i ∈ S, ∀j ∈ S ∪ AP, ∀t ∈ H (7)

x0(N+1)t = 0 ∀t ∈ H (8)

xi0t = 0 ∀i ∈ S, ∀t ∈ H (9)

x(N+1)jt = 0 ∀i ∈ S, ∀t ∈ H (10)

xiit = 0 ∀i ∈ A, ∀t ∈ H (11)

ω0it = 0 ∀i ∈ S, ∀t ∈ H (12)

Ii0 = 0 ∀i ∈ S (13)

wijt ≥ 0 ∀i, j ∈ A, ∀t ∈ H (14)

wijt ≥ Cxijt + ωijt − C ∀i, j ∈ A, ∀t ∈ H (15)

wijt ≤ ωijt ∀i, j ∈ A, ∀t ∈ H (16)

wijt ≤ Cxijt ∀i, j ∈ A, ∀t ∈ H (17)

xijt = {0, 1} ∀i, j ∈ A, ∀t ∈ H (18)

qit, Iit, ωijt, e
+
t ≥ 0 ∀i, j ∈ A, ∀t ∈ H (19)

supplier and eliminates all subtours. Constraint (3) guarantees that the number of vehicles
leaving a supplier is equal to the number of vehicles arriving at the supplier. Constraint (4)
ensures that split pick up is not allowed. Constraint (5) ensures that the number of vehicles
leaving a depot is equals to the number of vehicles arriving at the assembly plant. Constraint
(6) ensures the total emission in each period does not exceed the sum of the cap and the
purchased extra emission credits. Constraint (7) is to make sure the vehicle capacity is not
violated. Constraint (8) to constraint (9) are the impossible arc. Constraint (10) guarantees
the weight of vehicle from depot to suppliers is zero. Constraint (11) is to ensure the initial
inventory level of all products at the assembly plant is zero. Constraint (12) to constraint (13)
are obtained after the original mathematical model is linearized. Constraint (14) to constraint
(19) are the types of variables in this model.

4 Hybrid Genetic Algorithms

Solving the MIRP for large data size is computationally expensive. A metaheuristic algorithm
such as HGA is necessary to find a satisfactory solution for MIRP which is a large and complex
NP-hard problem in a reasonable amount of time. The proposed HGA will decide whether a
vehicle will collect products from a supplier in each period. As for the best product collection
route a modified sweep algorithm introduced by Lee et al. [13] also known as the DSW is
used for decisions in clustering and routing. The operators used for genetic algorithm are the
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crossover operator and mutation operator. The proposed HGA uses the following notations:

K Population size
G′ The number of generations
Pc Crossover rate
Pm Mutation rate
l Chromosome

Genetic algorithm comprises of a set of population which is made up of Kchromosomes,
each carries a solution to the problem. The chromosome representation used in this study is a
binary matrix of with N × T genes [14]. N represents the number of suppliers while T is the
number of periods. Each gene indicates whether a supplier will be visited in each period. The
genes in a chromosome is represented as below:

Chl
it =

{

1, supplier i is visited in period t for chromosome l

0, otherwise.

The binary chromosome representation matrix is used to determine the quantity of product
which will be collected from a supplier in a period. For instance, if a supplier is visited on a
period t and will be visited again on period t

′

(t
′

> t), the quantity of products collected on
period t is the sum of demands from period t to period t′ − 1. Table 1 shows an example for
the binary matrix representation and the corresponding product collection matrix with 5 × 5
genes. For instance, supplier 2 will be visited in period 1 (Chl

21 = 1 ) and will only be visited
again in period 3 (Chl

23 = 1). Therefore, the products collected from supplier 2 in period 1 is
the sum of demand from period 1 to period 2 (4 + 2 = 6) while the products collected from
supplier 2 in period 3 is the sum of demand from period 3 to period 5 (1 + 1 + 1 = 3).

Table 1: Example of Binary Matrix Representation and Product Collection Matrix.

In each generation, chromosomes will undergo fitness test to select which chromosomes to
undergo genetic evolution through the crossover and mutation process. After going through
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crossover and mutation, new chromosomes will replace the old ones to create a new set of
population for the next generation. The chromosomes will evolve until the G′ number of
generations is reached and the best chromosome among the population in the last generation
is the near optimal solution for the problem. The steps for HGA algorithm are as follows:

Step 1: Randomly generate initial population.

At the beginning of the stage, a set of initial population in binary matrix is generated
randomly. If the demand for product i in period t = 1 is nonzero, set Chl

i1 = 1; otherwise set
Chl

i1 = 0, for stockout prevention. If supplier i has been visited in period t, randomly generate
Chl

it′ = 0 or Chl
it′ = 1 for t′(t

′

> t); otherwise set Chl
it′ = 1.

Step 2: Compute the product collection matrix.

After generating the initial population, the corresponding product collection matrix can be
computed. If supplier i is visited in period t (t 6= T ) and will be visited again in later period
t
′

(t
′

> t), then the products to be collected in period t is the sum of demand from period t to
period t

′

−1. Meanwhile, if supplier i is visited in period t (t 6= T ) and will not be visited again
in later period, then the products to be collected in period t is the sum of demand from period
t to period T. If supplier i is visited in period T , then the products to be collected in period T

is the demand for product type i in period T . Please refer to Table 1 on the previous page for
the example on how product collection matrix is computed.

Step 3: Perform DSW to compute the routing for product collection.

The product collection matrix from Step 2 does not show how suppliers will be visited in
each period. To minimize the travelling distance which will affect the fuel consumption and
carbon emission, DSW is applied to the product collection matrix.

(a) For each period t = 1, 2, . . . , T , arrange the suppliers S = {1, 2, . . . , N} and the assem-
bly plant, AP around the depot, DP such that the y-coordinate of the AP is the same as
the y-coordinate of the DP . This can be done by rotating the nodes on a cartesian plane
while retaining the distances between each other. The rotation is done by converting
the coordinates (x, y) of the nodes to polar coordinates (r, θ). Then rotate all the nodes
except DP in an angle so that AP will have the same θ as DP .

(b) Sort the suppliers in ascending order according to their new y-coordinate values. Let Si

be the ith supplier after the sort.

(c) Set i = 1 and k = 1, where k is cluster. Open a route Rk = { } and set qk = 0, where qk

is the total pick-up quantity assigned to cluster k. If qk + dit ≤ C , assign Si to route Rk,
set qk = qk + dit. Proceed with i = 2, 3, . . . , N , If qk + dit > C, set k = k + 1 to open a
new route Rk = { }, assign Si to Rk. Reset k = 1 and repeat the clustering process until
all the suppliers are assigned to a route.

(d) Sort the suppliers within route Rk according to their x-coordinate values in ascending
order. Let Sk

i be the ith supplier in route Rk after the sort. Form a route that starts
at the DP , visit all the suppliers in Rk, deliver the products to AP and returns to DP .
Then go to Step 4.
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Step 4: Compute total costs and fitness value for chromosome selection.

The numbers obtained from Step 1 to Step 3 are plucked into equation (3) to compute
the total cost of the system. The fitness value is based on the total costs of each chromosome
in a population. A roulette wheel selection method is used for the chromosome selection.

Step 5: Perform crossover and mutation operator.

The crossover operator is used to mate one pair of chromosomes to produce two new off-
spring. The two selected chromosomes in Step 4 are crossed with a bitwise AND to obtain
Child 1 and a bitwise OR to obtain Child 2.

Mutation operator is performed after crossover to increase the diversity of the population.
Firstly, a chromosome is randomly selected from current population. Secondly, a of matrix with
same size consisting of random numbers is generated. These numbers are then compared to the
mutation rate, Pm. If the number is lesser than Pm, the corresponding gene will be mutated.
If the gene is “1”, then transform it to 0; otherwise, if it is “0”, then transform it to “1”.

Step 6: Repeat Step 2 to Step 5 until the maximum number of generations is attained.

The chromosome which give the best result in the last generation is the solution of the problem.

5 Results and Discussion

Three groups of data sets are applied to the proposed MIRP model and solved using HGA. The
solutions from these data are compared to existing exact solution to validate the effectiveness
of the proposed model and algorithm. Data sets used in this study are based on [13]. The
smallest group of data consists of S3H3, S3H14, S5H5, and S5H14, the medium group of
data group consists of S9H5, S9H14, S12H5, S12H14, while the largest group of data consists
of S20H15, S2H21, S50H15, S50H21. Each instance is run 10 times, the best solution and
average CPU execution time is recorded.

Table 2 shows the comparison between the solutions obtained from the proposed algorithm
and exact solutions. The last column in Table 2 shows the solution gap percentage between
CPLEX’s best integer and HGA. Observe that the CPU execution time took by HGA to find
a solution increases slightly as the size of data increases while CPLEX is able to find optimal
solution in a short amount time for smaller data sizes but unable to do so as the size of the data
increases starting from the S9H14 data set. This shows that exact method is capable in solving
smaller set of data, but it may not be suitable for bigger data which makes it incapable in solving
real world problem with big data set. On the other hand, the proposed HGA might not be as
efficient as CPLEX in solving smaller size data as the CPU execution time are slightly longer
than CPLEX for S3H3, S3H14, S5H5 and S9H5 data set. However, HGA still managed to
produce a solution in less than 1 minute (60 s). Hence, to solve a problem bigger thanS9H14
where the CPLEX will be too time consuming, HGA is a more suitable choice as the CPU
execution time is significantly faster than CPLEX.
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Table 2: Comparison of Results between HGA and CPLEX
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